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Abstract: Proton exchange membrane fuel cells (PEMFCs) with 0.1 and 0.4 mg Pt cm−2 cathode
catalyst loadings were separately contaminated with seven organic species: Acetonitrile, acetylene,
bromomethane, iso-propanol, methyl methacrylate, naphthalene, and propene. The lower catalyst
loading led to larger cell voltage losses at the steady state. Three closely related electrical equivalent
circuits were used to fit impedance spectra obtained before, during, and after contamination,
which revealed that the cell voltage loss was due to higher kinetic and mass transfer resistances.
A significant correlation was not found between the steady-state cell voltage loss and the sum of
the kinetic and mass transfer resistance changes. Major increases in research program costs and
efforts would be required to find a predictive correlation, which suggests a focus on contamination
prevention and recovery measures rather than contamination mechanisms.
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1. Introduction

Vehicles propelled by proton exchange membrane fuel cells (PEMFCs) are already commercially
available. However, opportunities still exist to improve the technology because it is not expected to
mature within the foreseeable future [1]. For instance, research activities are still ongoing to reduce cost
while maintaining durability with a lower amount of Pt catalyst [2]. Contaminants in air jeopardize
PEMFC operation by increasing the cell voltage degradation rate [3] if the intake filter [4] is saturated
or damaged. Therefore, risks associated with contamination of low Pt loaded PEMFCs need to be
assessed to support commercialization. Furthermore, fuel cell design robustness could be improved by
integrating additional mitigation approaches derived from contamination mechanisms.

Only a few publications discuss the impact of the anode catalyst loading during PEMFC exposures
to reformate fuel contaminants, such as CO, CO2, H2S, NH3, and halogenated compounds. All of
these species are included in the hydrogen fuel standard [5]. For CO and H2S, a lower Pt or PtRu
catalyst loading generally leads to an increase in the anode overpotential [6–10]. However, it was
reported that for H2S, the catalyst loading effect disappears for values equal to or below 25 µg cm−2 [10].
An effect was not observed with the weak contaminant CO2, which is attributed to a concentration
that was substantially lower (1%) [7] than in a typical reformate (10–20%) [11]. The same situation
was noted for NH3, which is assigned to a rapid conversion to NH4

+ in the presence of protons or
water [12,13], followed by ion exchange with ionomer H+ and transport to the cathode away from the
anode under the influence of the electric field [14,15]. For halogenated compounds, a decrease in the
Pt catalyst loading of both electrodes led to a faster degradation rate in the presence of HCl in both
reactant stream humidifiers [16]. The effect of the anode Pt catalyst loading was exploited to develop
sensor cells that are more sensitive to contamination by CO, H2S, and NH3 in H2. These sensors were
either based on a PEMFC [17] or a H2 pump [18] design. Only two PEMFC contamination documents
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focusing on the cathode catalyst loading effect were found [19,20]. However, contamination data
in [19] are not directly comparable because both the catalyst layer design and catalyst loading were
concurrently altered. The authors also refer to 10 ppb SO2 data obtained by another group that showed
more severe fuel cell damage with a catalyst loading decrease from 0.4 to 0.3 mg Pt cm−2. In contrast,
the effect of 2,6-diaminotoluene, a species that leaches out of the fuel cell system balance of plant
materials, was more impactful after the Pt catalyst loading was lowered from 0.4 to 0.1 mg Pt cm−2 [20].
In comparison to the anode, the higher cathode potential is expected to affect the contamination
mechanism with, for example, a different Pt surface charge, altered contaminant adsorbates and
reaction intermediates, catalyst coverage, and cell voltage loss. This situation is exacerbated with a
catalyst loading change, which affects the overpotential of the irreversible oxygen reduction reaction
and the cathode potential. Information about chemical and electrochemical reactions for specific
contaminants may be available in the literature. However, the presence of relevant cathode reactants,
oxygen and water, may not be considered. For instance, novel intermediates or products were not
detected with chlorobenzene in air [21]. However, the presence of acetylene in air led to small amounts
of methane [22] that were not expected based on acetylene chemistry and electrochemistry. Therefore,
tests completed under these significantly different operating conditions are needed in part because
contaminant reactions are not currently predictable in assessing catalyst coverage and cell voltage loss.

This report documents the impact of the cathode Pt catalyst loading effect for PEMFCs contaminated
with seven model organic airborne species, which were previously evaluated and selected from a larger
pool of 21 contaminants [23]: Acetonitrile (nitrile), acetylene (alkyne), bromomethane (halocarbon),
iso-propanol (alcohol), methyl methacrylate (ester), naphthalene (polycyclic aromatic), and propene
(alkene). Cell voltage transients obtained under galvanostatic conditions were recorded for this analysis.
Additionally, impedance spectroscopy data were acquired to facilitate the development of predictive
correlations and contamination mechanisms.

2. Results and Discussion

2.1. Cell Voltage Transients

Figure 1a depicts voltage transients for cells temporarily exposed to 20 ppm CH3CN. The cell
voltage for the first 5 h is constant and higher for the 0.4 mg Pt cm−2 catalyst loading. This observation
is consistent with previously published data for Gore catalyst coated membranes with the same
cathode catalyst loadings and gas diffusion layers (Sigracet 25 BC) [24]. After approximately 5 h
of operation, acetonitrile was injected into the cell, which led to a rapid cell voltage decrease that
progressively slowed until a steady state was reached. For acetonitrile, the cell voltage loss was
larger for the 0.1 mg Pt cm−2 catalyst loading. Subsequently, the acetonitrile injection was interrupted,
which quickly initiated a voltage recovery that gradually decelerated until a new steady state was
reached. For acetonitrile, the cell voltage after recovery coincided with the value before contaminant
injection. Acetonitrile contamination and recovery transients are qualitatively and quantitatively
consistent with prior results [23,25–28]. At irregular intervals and during all baseline, contamination,
and recovery stages, cell voltage transients were minimally disrupted for a short period by impedance
spectroscopy measurements and the superimposition of a current signal of a small amplitude and
variable frequency.
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Figure 1. Cell voltage transients resulting from a temporary contaminant injection. (a) Acetonitrile; (b)
acetylene; (c) bromomethane; (d) isopropanol; (e) methyl methacrylate; (f) naphthalene; (g) propene.
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Figure 1b–g illustrates voltage transients for the other contaminants. Most of these transients
share common features, including a similar initial baseline voltage, a relatively rapid voltage decrease
until a steady state is reached, and a complete voltage recovery after contaminant injection was
stopped. However, bromomethane transients were significantly slower and only a small fraction
of the voltage loss was recovered (Figure 1c). This behavior is the result of a rapid bromomethane
hydrolysis within the cell, producing methanol and bromide [28–30]. The effective bromomethane
concentration is lower than the nominal value, whereas bromide is prevented from penetrating the
ionomer by Donnan exclusion [12]. This situation delays the stronger and inhibiting adsorption
of bromomethane and bromide on the catalyst surface. The removal of bromide from the catalyst
surface is equally hindered due to an unfavorable cathode potential that is significantly higher than
the potential of zero charge, preventing bromide desorption and Donnan exclusion, which explains
the incomplete voltage recovery. During isopropanol contamination, the voltage is characterized by
rapid fluctuations (Figure 1d), which were not observed for lower isopropanol concentrations [23,31].
These fluctuations are attributed to isopropanol, a surfactant commonly used to disperse Pt/C catalyst
particles in solution [32], which adsorbs on carbon materials (gas diffusion layer, catalyst support) [33]
and modifies liquid water management (buildup and release of liquid water drops), as previously
proposed for acetylene [34]. A higher number of buildup and release events of water drops and a higher
voltage fluctuation frequency for the lower catalyst loading (Figure 1d) may be related to the lower
cathode potential (cell voltage compensated by a similar ohmic drop), which leaves a higher proportion
of isopropanol surfactant unoxidized (oxidation initiated at a potential above 0.32 V vs. the reversible
hydrogen electrode (RHE) [35]) and more hydrophilic carbon surfaces. The effect of naphthalene was
rapid and severe for the 0.1 mg Pt cm−2 catalyst loading (Figure 1f). As a result, the current density was
temporarily lowered and the contaminant injection was interrupted before a steady state was obtained
to avoid an automatic test station shutdown. Contamination and recovery transients are qualitatively
and quantitatively consistent with the prior results for acetylene [23,36–39], bromomethane [23,28–30],
isopropanol [23,31], methyl methacrylate [23,31], naphthalene [23,40], and propene [23,28,31,41].

Table 1 summarizes steady-state cell voltages before, during, and after contamination as well as
the cell voltage change during and after contamination for both catalyst loadings. The cell voltage
decrease during the contamination period is generally higher for the 0.1 mg Pt cm−2 catalyst loading
(23% to 89% in comparison to 1.2% to 43%). After the recovery period, the cell voltage change is
minimal and independent of the catalyst loading, varying from −1.7% to 2%, with the exception of
bromomethane (−40% to −45%). The larger cell voltage loss during contamination for the low catalyst
loading is an important consideration for the selection of tolerance limits for commercially relevant
catalyst loadings. Data obtained with a 0.4 mg Pt cm−2 catalyst loading were used to derive tolerance
limits [42]. The data of Table 1 suggest that these tolerance limits require a revision for a 0.1 mg Pt
cm−2 catalyst loading and additional tests carried out over a range of concentrations. In contrast,
International Organization for Standardization (ISO) tolerance limits for hydrogen contaminants [5,43],
which do not take account of the catalyst loading effect, were deemed too strict for formaldehyde and
formic acid, a low anode catalyst loading of 0.05 mg Pt cm−2, and automotive operating conditions
(high fuel utilization, fuel recirculation) [44]. The formaldehyde tolerance limit was recently modified
from 10 [43] to 200 ppb [5].

The magnitude of the cell voltage change during contamination (Table 1) with catalyst loading
is species-dependent. For instance, the catalyst loading hardly affected the cell voltage loss for
bromomethane (−43% and −47%), whereas for acetylene, the cell voltage loss substantially increased
from −1.2% to −85% with a catalyst loading decrease. This observation is attributed to different
contamination mechanisms. Impedance spectroscopy data obtained during contamination by all
Table 1 species and with a 0.4 mg Pt cm−2 catalyst loading revealed that kinetic, ohmic, and mass
transport overpotentials were impacted [42]. These and additional impedance spectroscopy data
acquired with a 0.1 mg Pt cm−2 catalyst loading were analyzed to evaluate the existence of a correlation
between these resistances and the cell voltage loss due to contamination at the steady state.
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Table 1. Steady-state cell voltages at the end of each contamination period, and steady-state cell voltage changes during and after contamination.

Contaminant Catalyst Loading/mg
Pt cm−2

Cell Voltage/V Cell Voltage Percentage Change/%

Before
Contamination 1

During
Contamination

After
Contamination

During
Contamination

After
Contamination

Acetonitrile
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0.1 0.609 0.209 0.621 −66 2.0
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1 For 0.1 mg Pt cm−2, mean = 0.586 V and standard deviation = 0.022 V. For 0.4 mg Pt cm−2, mean = 0.671 V and standard deviation = 0.006 V. 2 Not at steady state because the cell voltage
was still decreasing.
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2.2. Impedance Spectra

Figure 2a shows impedance spectra (Nyquist representation) for a 0.1 mg Pt cm−2 catalyst loading,
before, during, and after acetonitrile contamination. All three spectra share the same features and
have two main loops that are respectively attributed to oxygen reduction (medium frequencies)
and oxygen mass transfer (low frequencies) [45]. A third loop ascribed to hydrogen oxidation is
barely visible as a hump at high frequencies [45]. The high-frequency intercept represents the ohmic
resistance, which is mostly caused by the poorly conducting membrane [45]. Multiple explanations
were proposed for the inductive impedance values at the lowest and highest frequencies, including
electrical cables [46,47] for high frequencies, and processes involving side reactions with intermediate
species [47], oxide growth [48], or a slow ionomer water uptake/release [49] for low frequencies. Most of
these considerations were either ignored because they did not focus on relevant aspects (electrical
cables) or were easily dismissed because, in the absence of contaminants, the cathode potential was
too low for Pt oxidation and the sub-saturated air stream did not yield an inductive behavior. For the
0.4 mg Pt cm−2 catalyst loading, the average cell voltage of 0.671 V (Table 1) compensated with an
ohmic loss of 0.1 V for a worst-case scenario (1 A cm−2

× 0.1 Ω cm2 from the high-frequency intercepts
in Figure 2a) leads to a cathode potential of 0.771 V vs. RHE, which is lower than the smallest Pt
oxidation potential of 0.837 V vs. RHE [50]. Acetonitrile contamination causes an increase in the
high-frequency intercept and a diameter increase for both main loops (Figure 2a). An increase in ohmic
loss was only observed with acetonitrile, owing to the production of ammonium cations by hydrolysis,
which displace protons as the main charge carriers in the ionomer [28,51]. In relative terms, this effect
is significantly smaller than the kinetic and mass transfer effects, with an approximate doubling of both
oxygen reduction and transport loop diameters. However, because the effect is cumulative, a larger
change is observed for a longer exposure duration [26]. After contamination, the high-frequency
intercept returns to its original value, and both main loops decrease in size to a diameter that is smaller
than the original value. These impedance spectra agree with prior results [25–28]. However, smaller
kinetic and mass transfer loops are inconsistent with a complete cell voltage recovery (Figure 1a,
Table 1). This observation is possibly due to subtle structural or other changes that are not detectable by
cell voltage measurements, such as Pt surface reconstruction in the presence of foreign species [52,53].
The oxygen reduction and mass transfer resistances before, during, and after contamination were
generally obtained by curve-fitting an equivalent circuit developed for a PEMFC contaminated with
SO2 (Figure 3a) [54]. Resistances during contamination for acetonitrile and a 0.1 mg Pt cm−2 catalyst
loading were derived using a modified equivalent circuit that accounts for the inductive behavior at
low frequencies (Figure 3b) [55,56]. Resistances during contamination for acetonitrile (0.4 mg Pt cm−2)
and propene (0.1 mg Pt cm−2) were obtained using a modified version of the Figure 3b equivalent
circuit by omitting the cathode resistance Rk (Figure 3b) to limit the number of parameters (Figure 3c).
The impedance spectra are accurately represented by the equivalent circuit models (Figure 2a–f).
The resistance values are discussed later in this section.

Most of the other impedance spectra for both catalyst loadings and all contaminants are equally
well represented by the equivalent circuits shown in Figure 3a,c. For this reason, only a selection is
given in Figure 2. A few spectra could not be fitted with any of the equivalent circuits in Figure 3a–c
for a few 0.1 mg Pt cm−2 catalyst loading cases. For acetylene, the impedance spectrum during
contamination was approximately a single loop of a large diameter that could not be fitted to a
two-loop equivalent circuit. For isopropanol, cell voltage fluctuations during contamination (Figure 1d)
created a low frequency artefact that also prevented the use of the equivalent circuits of Figure 3a
or Figure 3c. For naphthalene, the cell voltage transient was interrupted before a steady state was
obtained (Figure 1f), which also led to a low-frequency artefact that could not be fitted to the equivalent
circuits of Figure 3a–c. The impedance spectra agree with the prior results for acetonitrile [25–28],
acetylene [36–38], bromomethane [28–30], isopropanol [31], methyl methacrylate [31], naphthalene [40],
and propene [28,31,41].
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Figure 2. Impedance spectra before, during, and after contamination by acetonitrile in (a) and (b),
bromomethane in (c) and (d), and methyl methacrylate in (e) and (f) for Pt catalyst loadings of 0.1 mg
cm−2 in (a), (c), and (e), and 0.4 mg cm−2 in (b), (d), and (f).



Molecules 2020, 25, 1060 8 of 15

Molecules 2020, 25, x 8 of 15 

 

Table 2 collects kinetic and mass transfer resistances before, during, and after contamination for 

both catalyst loadings. Dimensionless kinetic and mass transfer resistances during and after 

contamination are also given in Table 2. The dimensionless kinetic and mass transfer resistances 

concurrently increase during contamination and are 1.05, with the exception of the 0.93 

dimensionless mass transfer resistance for isopropanol and a 0.4 mg Pt cm−2 catalyst loading. The 

isopropanol anomaly may be related to water management, as discussed in the previous section. A 

hypothesized connection between kinetic and mass transfer resistances during contamination [34] 

was recently substantiated [57]. Contaminant adsorbates covering the catalyst surface increase the 

effective current density closer to the limiting value and mass transfer losses in the ionomer layer 

covering the catalyst. This situation is similar to a decrease in catalyst loading, which has been shown 

to also increase mass transfer losses [58,59]. The dimensionless kinetic and mass transfer resistances 

after recovery, with the exception of bromomethane, indicate an incomplete recovery that is less 

extensive for the lower catalyst loading. For the dimensionless kinetic resistance, values are 0.832 

and 0.95 for, respectively, 0.1 and 0.4 mg Pt cm–2 catalyst loadings. For the dimensionless mass 

transfer resistance, values are 0.842 and 0.88 for, respectively, 0.1 and 0.4 mg Pt cm–2 catalyst 

loadings. These results are in contrast with the data of Figure 1 and Table 1, showing a complete 

recovery within experimental error, with the exception of bromomethane. The discrepancy between 

the recovery extents of cell voltage and kinetic and mass transfer resistances is due to the higher 

sensitivity of impedance measurements and the movement of the reaction front (current density and 

catalyst layer effectiveness redistributions over the catalyst layer thickness). The hydrogen peroxide 

yield is enhanced in the presence of acetonitrile, acetylene, methyl methacrylate, naphthalene, and 

propene [60–63]. The elevated level of hydrogen peroxide in turn promotes ionomer degradation [64] 

and structural modifications to the catalyst layer that are relatively more impactful for the lower 

catalyst loading. Therefore, in view of the lower cell voltage and cathode potential for a lower catalyst 

loading (Figure 1, Table 1), a higher hydrogen peroxide yield [60–63] and ionomer degradation are 

expected. Tafel plots obtained before and after contamination with acetylene (Figure 4) support this 

hypothesis, with a larger cell voltage loss for the 0.1 mg Pt cm–2 catalyst loading (7.9 mV in 

comparison to 2.9 mV). 

 

Figure 3. Equivalent circuit models for a proton exchange membrane fuel cell (PEMFC). (a) The model 

previously derived for SO2 contamination and used for all 7 organic contaminants investigated in this 

work; (b) the model previously derived to capture low-frequency inductive data in the absence of 

contaminants and used to fit data during acetonitrile contamination (0.1 mg Pt cm–2); (c) the modified 

model (b) to capture low-frequency inductive data obtained during acetonitrile (0.4 mg Pt cm–2) and 

propene (0.1 mg Pt cm–2) contamination. 

Figure 3. Equivalent circuit models for a proton exchange membrane fuel cell (PEMFC). (a) The model
previously derived for SO2 contamination and used for all 7 organic contaminants investigated in this
work; (b) the model previously derived to capture low-frequency inductive data in the absence of
contaminants and used to fit data during acetonitrile contamination (0.1 mg Pt cm−2); (c) the modified
model (b) to capture low-frequency inductive data obtained during acetonitrile (0.4 mg Pt cm−2) and
propene (0.1 mg Pt cm−2) contamination.

Table 2 collects kinetic and mass transfer resistances before, during, and after contamination
for both catalyst loadings. Dimensionless kinetic and mass transfer resistances during and after
contamination are also given in Table 2. The dimensionless kinetic and mass transfer resistances
concurrently increase during contamination and are ≥1.05, with the exception of the 0.93 dimensionless
mass transfer resistance for isopropanol and a 0.4 mg Pt cm−2 catalyst loading. The isopropanol
anomaly may be related to water management, as discussed in the previous section. A hypothesized
connection between kinetic and mass transfer resistances during contamination [34] was recently
substantiated [57]. Contaminant adsorbates covering the catalyst surface increase the effective current
density closer to the limiting value and mass transfer losses in the ionomer layer covering the catalyst.
This situation is similar to a decrease in catalyst loading, which has been shown to also increase mass
transfer losses [58,59]. The dimensionless kinetic and mass transfer resistances after recovery, with the
exception of bromomethane, indicate an incomplete recovery that is less extensive for the lower catalyst
loading. For the dimensionless kinetic resistance, values are ≥0.832 and ≥0.95 for, respectively, 0.1 and
0.4 mg Pt cm−2 catalyst loadings. For the dimensionless mass transfer resistance, values are ≥0.842
and ≥0.88 for, respectively, 0.1 and 0.4 mg Pt cm−2 catalyst loadings. These results are in contrast with
the data of Figure 1 and Table 1, showing a complete recovery within experimental error, with the
exception of bromomethane. The discrepancy between the recovery extents of cell voltage and kinetic
and mass transfer resistances is due to the higher sensitivity of impedance measurements and the
movement of the reaction front (current density and catalyst layer effectiveness redistributions over
the catalyst layer thickness). The hydrogen peroxide yield is enhanced in the presence of acetonitrile,
acetylene, methyl methacrylate, naphthalene, and propene [60–63]. The elevated level of hydrogen
peroxide in turn promotes ionomer degradation [64] and structural modifications to the catalyst layer
that are relatively more impactful for the lower catalyst loading. Therefore, in view of the lower
cell voltage and cathode potential for a lower catalyst loading (Figure 1, Table 1), a higher hydrogen
peroxide yield [60–63] and ionomer degradation are expected. Tafel plots obtained before and after
contamination with acetylene (Figure 4) support this hypothesis, with a larger cell voltage loss for the
0.1 mg Pt cm−2 catalyst loading (7.9 mV in comparison to 2.9 mV).
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Table 2. Steady-state kinetic and mass transfer resistances at the end of each contamination period, and
steady-state dimensionless resistances during and after contamination.

Contaminant
Catalyst

Loading/mg
Pt cm−2

Kinetic/Mass Transfer Resistances/Ω cm2
Dimensionless Resistance

During/After
Contamination 1

Before
Contamination

During
Contamination

After
Contamination Kinetic Mass

Transfer

Acetonitrile
0.1 0.118/0.095 0.396/0.187 0.108/0.080 3.36/0.915 1.97/0.842

0.4 0.104/0.056 0.210/0.079 0.099/0.056 2.02/0.952 1.41/1.00

Acetylene 0.1 0.133/0.107 - 2 0.117/0.106 - -

0.4 0.107/0.061 0.112/0.064 0.109/0.059 1.05/1.02 1.05/0.967

Bromomethane
0.1 0.103/0.109 0.139/0.341 0.285/0.288 1.35/2.77 3.13/2.64

0.4 0.116/0.062 0.265/0.157 0.274/0.167 2.28/2.36 2.53/2.69

Isopropanol 0.1 0.102/0.100 - 3 0.123/0.090 - -

0.4 0.100/0.070 0.117/0.065 0.095/0.068 1.17/0.950 0.929/0.971

Methyl
methacrylate

0.1 0.121/0.104 0.164/0.189 0.104/0.098 1.36/0.860 1.82/0.942

0.4 0.111/0.063 0.152/0.104 0.107/0.059 1.37/0.964 1.65/0.937

Naphthalene 0.1 0.115/0.108 - 3 0.119/0.097 - -

0.4 0.106/0.075 0.288/0.152 0.101/0.066 2.72/0.953 2.03/0.880

Propene 0.1 0.137/0.107 0.189/0.118 0.114/0.107 1.38/0.832 1.10/1.00

0.4 0.117/0.063 0.152/0.134 - 4 1.30/- 2.13/-
1 Resistance during/after contamination divided by the resistance before contamination. 2 Equivalent circuit models
do not fit due to a side surface reaction involving intermediates. 3 Artefact created by flooding or rapid change in
cell voltage. 4 Data was not recorded by error.
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Figure 4. Tafel plots before contamination (BC) and after contamination (AC) with 100 ppm acetylene
for 0.1 and 0.4 mg Pt cm−2 catalyst loadings. The change in cell voltage between plots at a current
density of 0.0447 A cm−2, a value located in the middle of the range used to correlate data (0.02 to 0.1 A
cm−2), ignores the slight change in slope.

2.3. Contaminant Effect Prediction

The steady-state cell voltage loss during contamination was correlated with the sum of the kinetic
and mass transfer resistance changes during contamination (Figure 5). A significant correlation was not
identified, as significant deviations from Ohm’s law were noted. Furthermore, it is difficult to argue that
there is a catalyst loading effect because the two data sets largely overlap. The absence of a correlation
is not surprising, considering the effects of cell design and operating conditions on contamination.
Several parameters were mentioned in an earlier attempt to correlate the effect of contaminants on
oxygen reduction kinetics [65], including contaminant partial pressure and temperature, exposed



Molecules 2020, 25, 1060 10 of 15

Pt surface features (crystal faces, edges), Pt state (reduced or oxidized), phase in contact with the
Pt surface (air, ionomer), adsorption isotherms for O2, contaminants, and related intermediates and
products, and elementary chemical and electrochemical reactions and associated rate constants for
O2 reduction and contaminant oxidation or reduction. This list is enlarged by factors affecting ohmic
and mass transfer losses, including cation and neutral molecules’ absorption isotherms influencing
ionomer and membrane ionic conductivity and oxygen permeability by swelling and changing the
distance between sulfonate groups, and contaminant scavenging by liquid water modifying the
effective contaminant concentration [12,13,66–71]. Although cell design and operating conditions
were maintained as constant as possible, with the exception of catalyst loading and contaminant
concentration, the change in cell resistance is insufficiently precise to capture all contamination nuances
and accurately predict the cell voltage loss (Figure 5). An accurate correlation for the cell voltage
loss would be useful. However, given the amount of information that will be required and the
complexity associated with the derivation of a detailed mathematical model of contamination, a focus
on preventive and recovery measures may be more fruitful. This suggestion is reinforced by considering
practical aspects, contaminant mixtures [28], and long-term effects [26] that increase the number of
contamination parameters and the difficulty in predicting contaminant effects.
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Figure 5. Cell voltage loss as a function of the sum of the changes in kinetic and mass transfer resistance.

3. Materials and Methods

A single modified Fuel Cell Technologies cell with an active area of 50 cm2 and triple/double
serpentine channels for the cathode/anode was used for all experiments. Gore PRIMEA M715
catalyst-coated membranes with a Pt loading of 0.1 or 0.4 mg Pt cm−2 (50 % Pt/C) on each side were
inserted between SGL Carbon Sigracet 25 BC gas diffusion layers. The cell was operated with a FCATS™
G050 series test station (Green Light Power Technologies). After cell activation, operating conditions
were set to air/H2, 2/2 stoichiometry, 48.3/48.3 kPag outlet pressure, 50%/100% relative humidity, 80 ◦C,
and 1 A cm−2. Contaminant concentrations varied between 1.4 and ~8000 ppm: Acetonitrile (20 ppm),
acetylene (100 ppm), bromomethane (5 ppm), isopropanol (~8000 ppm), methyl methacrylate (20 ppm),
naphthalene (1.4 ppm), and propene (100 ppm). Contaminant concentrations were individually and
empirically adjusted based on prior experience to cause a perceptible to significant cell voltage decrease
at the steady state for the 0.4 mg Pt cm−2 catalyst loading, and to leave a sufficient cell voltage window
for an additional decrease induced by the lower 0.1 mg Pt cm−2 catalyst loading. Contaminants were
injected after the air humidifier using air-based gas mixtures for most cases. However, isopropanol
and naphthalene were respectively evaporated and sublimated by employing a thermally controlled
and calibrated liquid/solid holder. Contaminant injection was initiated after 5 h with an exposure
that lasted from less than 1 to ~70 h until a steady state was achieved. After the contamination
injection was interrupted, the self-induced recovery was recorded until a steady state was obtained,
which necessitated between 5 and ~60 h.
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During the galvanostatic experiments, impedance spectra were acquired at irregular intervals by
superimposing 0.1 Hz to 10 kHz (10 points per decade) current perturbations that caused a voltage
change of ~5 mV. The Solartron SI1260 impedance/gain-phase analyzer was operated with ZPlot®

software (Version 2.9c, Scribner Associates, Southern Pines, NC, USA). Measurement accuracy was
improved by utilizing Stanford Research SR560 low-noise preamplifiers and by winding up both
load-bank cables, which have an equal length, to reduce their inductance. The ZView® software
(Version 3.5e, Scribner Associates) was employed for fitting impedance spectra to equivalent circuit
models. Polarization curves were only recorded before and after acetylene contamination. Polarization
curves were measured by decreasing the current density from 2 to 0 (open circuit voltage) A cm−2

in a stepwise fashion, allowing a stabilization time of 15 min at each stage, and otherwise using
contamination test operating conditions.

4. Conclusions

The effect of Pt catalyst loading on the steady-state cell voltage loss was characterized for
seven organic airborne contaminants. Impedance spectroscopy was used to gain mechanistic insight.
The steady-state cell voltage loss is mostly attributed to a concurrent increase in both kinetic and mass
transfer resistances that is reminiscent of the effect of a decrease in catalyst loading in the absence
of a contaminant. Low Pt catalyst loadings generally lead to a larger steady-state cell voltage loss.
A significant correlation between the steady-state cell voltage loss and the sum of the kinetic and
mass transfer resistance changes was not found, and would only be improved with major increases
in cost and effort. For this reason, it is proposed to focus activities on contamination prevention and
recovery measures.

For a commercially relevant cathode catalyst loading of 0.1 mg Pt cm−2, it would be advantageous
to expand the current database to other contaminants and contaminant concentrations for the derivation
of tolerance limits to support the design of air filters. Although tolerance limits were previously
derived for single contaminants rather than for more practically relevant mixtures [42], for very
low contaminant concentrations, tolerance limits may still prove useful because the catalyst surface
coverage by contaminant adsorbates may be so small that the different species may not interact. In other
words, the effects of all contaminants may be additive. It would also be useful to verify this hypothesis
with diluted, single, and multiple contaminant mixtures.
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