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Introduction

 

Diabetes mellitus is associated with the development of athero-
sclerosis [1]. Both macrovascular disease, such as acute coronary
syndrome, stroke and claudication, and microvascular disease,
such as diabetic nephropathy and retinopathy, are commoner
in diabetic than in non-diabetic populations and contribute
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Abstract

 

Aims

 

Type 2 diabetes is preceded by a symptom-free period of impaired glu-
cose tolerance (IGT). Pancreatic B-cell function decreases as glucose intolerance
develops. In many patients with IGT, fasting blood glucose is within normal
limits and hyperglycaemia occurs only postprandially. We examined whether
pancreatic B-cell function changes during acute hyperglycaemia induced by oral
glucose loading.

 

Methods

 

We calculated the insulinogenic index (I.I.) as an indicator of pancreatic
B-cell function and measured serum levels of thioredoxin, a marker of cellular
redox state, and 8-hydroxy-2

 

′

 

-deoxyguanosine (8-OHdG), a marker of oxidative
stress, during a 75-g oral glucose tolerance test (OGTT) in 45 subjects [24
patients with normal glucose tolerance (NGT), 14 with IGT and seven with
Type 2 diabetes].

 

Results

 

Thioredoxin levels decreased after glucose loading [66.1 

 

±

 

 23.7,
*59.3 

 

±

 

 22.4, *49.3 

 

±

 

 21.2 and *37.7 

 

±

 

 18.0 ng/ml, fasting (0 min) and at 30, 60
and 120 min, respectively; *

 

P <

 

 0.001 vs. fasting]. In contrast, concentrations of
8-OHdG peaked at 30 min and then gradually decreased (0.402 

 

±

 

 0.123,
*0.440 

 

±

 

 0.120, †0.362 

 

±

 

 0.119 and †0.355 

 

±

 

 0.131 ng/ml, *

 

P <

 

 0.05 vs. fasting,
†

 

P <

 

 0.01 vs. 30 min). The insulinogenic index correlated with the change in
thioredoxin levels (

 

r =

 

 0.34, 

 

P

 

 < 0.05). However, there was no relationship with
the change in 8-OHdG levels from 0 to 30 min.

 

Conclusions

 

Hyperglycaemia in response to oral glucose impairs pancreatic
B-cell function with decreasing thioredoxin levels. The augmented oxidative
stress induced by hyperglycaemia may affect the cellular redox state. These
findings strongly suggest that repeated postprandial hyperglycaemia may play
an important role in the development and progression of diabetes mellitus.

Diabet. Med. 24, 154–160 (2007)

 

Keywords

 

blood glucose, impaired glucose tolerance, oxidative stress, post-
prandial hyperglycaemia

 

Abbreviations

 

8-OHdG, 8-hydroxy-2

 

′

 

-deoxyguanosine; 

 

ANOVA

 

, analysis of vari-
ance; DM, diabetes mellitus; IGT, impaired glucose tolerance; I.I., insulinogenic
index; NGT, normal glucose tolerance; OGTT, oral glucose tolerance test;
TRX, thioredoxin

 

Blackwell Publishing LtdOxford, UKDMEDiabetic Medicine0742-3071Blackwell Publishing, 200623

 

Original Article

 

Original articleAcute oxidative stress in hyperglycaemia 

 

Y. Miyazaki et al.

 

Pancreatic B-cell function is altered by oxidative stress 
induced by acute hyperglycaemia

 

Y. Miyazaki, H. Kawano, T. Yoshida, S. Miyamoto, J. Hokamaki, Y. Nagayoshi, 
H. Yamabe, H. Nakamura*, J. Yodoi† and H. Ogawa

 

Department of Cardiovascular Medicine, Graduate 
School of Medical Sciences, Kumamoto University, 
Kumamoto, *Thioredoxin Project, Department of 
Experimental Therapeutics, Translational Research 
Centre, Kyoto University Hospital and †Department 
of Biological Responses, Institute for Virus Research, 
Kyoto University, Kyoto, Japan 

 

Accepted 29 August 2006



 

Original article

 

DIABETIC

 

Medicine

 

© 2007 The Authors.
Journal compilation © 2007 Diabetes UK. 

 

Diabetic Medicine

 

, 

 

24

 

, 154–160

 

155

 

to the morbidity and mortality associated with diabetes [1–3].
The predominant clinical form is Type 2 diabetes, which
accounts for > 90% of all cases [2,3]. Most Type 2 diabetes
is preceded by a symptom-free period of impaired glucose
tolerance (IGT), characterized by a response to oral glucose
loading that is abnormal but does not satisfy the criteria for
diabetes [1]. Patients with Type 2 diabetes show failure of
glucose-induced insulin secretion, which is characterized by a
decrease in the first phase of glucose-induced insulin secretion,
delayed hyperinsulinaemia and, latterly, failure of insulin
synthesis. Since Type 2 diabetes has a polygenetic background,
several factors may cause the failure of B cells. One possibility
is several types of stress, such as oxidative stress. Recently, we
and other investigators reported that acute hyperglycaemia
induces oxygen-derived free radicals [4–7], which are involved
in pancreatic B-cell dysfunction and apoptosis in an animal
model of Type 1 diabetes [8].

The redox state is finely tuned to preserve cellular homeos-
tasis through the expression and regulation of oxidant and
antioxidant enzymes. Mammalian cells have a complex net-
work of antioxidants such as catalase, superoxide dismutase
and glutathione peroxide to scavenge reactive oxygen species. In
addition to these enzymes, the members of the thiol-disulphide
oxidoreductase family act as cytoprotective antioxidants [9].
One of the most important thiol-disulphide oxidoreductases
is thioredoxin (TRX) [10].

The purpose of the present study was to examine the effect of
acute hyperglycaemia induced by oral glucose loading on pan-
creatic B-cell function. We further addressed the role of oxidative
stress in pancreatic B-cell function during oral glucose loading.

 

Patients and methods

 

Study subjects

 

The study group comprised 45 subjects (mean age 67 

 

±

 

 11 years)
who were admitted to our hospital for investigation of coronary

artery disease. None was known previously to have diabetes.
Fasting glucose levels were < 7.0 mmol/l and a 75-g oral glucose
tolerance test (OGTT) was done to examine risk factors for
coronary artery disease. Diabetes was diagnosed according to
World Health Organization criteria [2]. Twenty-four patients
had normal glucose tolerance (NGT), 14 had IGT and seven
had Type 2 diabetes mellitus (DM). Fourteen patients in the
NGT group, eight in the IGT group and five in the diabetes
group had ischaemic heart disease. The characteristics of the
patients are shown in Table 1. Written informed consent was
obtained from each patient before the study was commenced.
The procedures used in the study were approved by the ethics
committee at our institution.

 

Study design

 

The study was performed during a 75-g OGTT after a 12–14-h
fast. Blood samples were obtained in the fasting state, and 30,
60 and 120 min after the administration of a 75-g glucose
equivalent load (Trelan-G, Takeda, Japan). The plasma glucose
concentration was determined with an autoanalyser using a
glucose oxidase method. The serum insulin concentration was
measured by immunoradiometric assay using an antihuman in-
sulin antibody. Fasting serum total cholesterol and triglyceride
concentrations were measured enzymatically, and the serum
high-density lipoprotein cholesterol concentration was meas-
ured by heparin-Ca

 

2+

 

/Ni

 

2+

 

 precipitation [7,11]. The insulino-
genic index (I.I.) was calculated as the ratio of the increment of
insulin to that of plasma glucose 30 min after the glucose load
[(30 min insulin 

 

−

 

 fasting insulin)/(30 min glucose 

 

−

 

 fasting
glucose)] [12,13].

Adaptation to stress evokes a variety of biological responses
in humans. TRX is an important constituent of cellular anti-
oxidant buffering systems that control the redox state of proteins,
which is released into the extracellular space [14]. We thus
measured the serum levels of TRX as a marker of the cytopro-
tective antioxidant system (ELISA kit; Fuji Rebio, Tokyo,
Japan) [14–17]. The detection limit of TRX was 2.0 ng/ml
and the intra- and interassay coefficients were 0.81–3.74% and
4.87–6.97%, respectively [14]. Plasma levels of 8-hydroxy-2

 

′

 

-

Table 1 Characteristics of study subjects

NGT (n = 24) IGT (n = 14) DM (n = 7) P-value

Age (years) 68 ± 12 64 ± 11 72 ± 3 NS
Men/women (n) 10/14 10/4 2/5 NS
BMI (kg/m2) 23.7 ± 3.7 24.8 ± 4.7 25.7 ± 7.4 NS
HbA1c (%) 5.6 ± 0.4 5.8 ± 0.4 6.5 ± 0.5 < 0.01
FBG (mmol/l) 4.9 ± 0.4 5.4 ± 0.8 6.2 ± 0.7 < 0.01
SBP (mmHg) 133 ± 25 135 ± 25 135 ± 24 NS
DBP (mmHg) 79 ± 18 80 ± 12 70 ± 15 NS
Smoker/non-smoker 3/21 2/12 2/5 NS
Total cholesterol (mmol/l) 5.0 ± 0.90 5.5 ± 0.70 5.3 ± 0.62 NS
HDL-cholesterol (mmol/l) 1.29 ± 0.34 1.42 ± 0.47 1.55 ± 0.62 NS
Triglyceride (mmol/l) 3.2 ± 1.53 4.2 ± 2.02 3.1 ± 1.42 NS

BMI, Body mass index; DBP, diastolic blood pressure; DM, diabetes mellitus; FBG, fasting blood glucose; HDL, high-density lipoprotein; IGT, 
impaired glucose tolerance; NGT, normal glucose tolerance; SBP, systolic blood pressure.
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deoxyguanosine (8-OHdG), a sensitive marker of oxidative
stress, were measured with enzyme-linked immunosorbent
assay (ELISA) (8-OHdG check; Japan Institute for the Control
of Ageing, Fukuorio, Shizuoka).

 

Statistical analysis

 

Comparisons of data between the three groups were performed
using one-way analysis of variance (

 

ANOVA

 

) followed by Bonfer-
roni’s multiple comparison test. The 

 

χ

 

2

 

 test was used to compare
gender and the prevalence of smokers. Changes in variables were
assessed by two-way 

 

ANOVA

 

 with repeated measures followed
by post hoc testing with Scheffe’s test. Correlations between the
insulinogenic index and plasma TRX concentrations, insulino-
genic index and plasma 8-OHdG concentrations were examined
with linear regression analysis. Statistical significance was
defined as 

 

P

 

 < 0.05.

 

Results

 

There were no differences in serum concentrations of total
cholesterol, low-density lipoprotein cholesterol, triglyceride,

age or blood pressure between the three groups (Table 1). The
differences in body mass index were not significant.

Figure 1 and Table 2 show the plasma glucose and serum
insulin concentrations during the OGTT in the three groups.
The increase in fasting plasma glucose levels as glucose toler-
ance deteriorated from IGT to DM was not significant, but the
difference between the DM group and the NGT group did
reach statistical significance (

 

P <

 

 0.01). After the glucose load,
both the plasma glucose and the serum insulin concentrations
increased in each group. Plasma glucose levels were signifi-
cantly higher in the IGT and the DM groups than in the NGT
group at 30, 60 and 120 min after glucose loading (

 

P <

 

 0.01).
The concentrations were not different between the IGT group
and the DM group at 30 min, but were significantly higher in
the DM group than in the IGT group at both 60 and 120 min
(

 

P <

 

 0.01). Fasting serum insulin concentrations were not
significantly different between the three groups and increased
significantly in each group after the glucose load. In the NGT
group, serum insulin concentrations peaked at 60 min, and
then decreased. In contrast, they continued to increase until
120 min after the glucose load in the IGT and DM groups.

FIGURE 1 Blood glucose, insulin, thioredoxin and 8-hydroxy-2′-deoxyguanosine (8-OHdG) concentrations during an oral glucose tolerance test in 
subjects with normal glucose tolerance (NGT, �), impaired glucose tolerance (IGT, ×) and diabetes (∆). *P < 0.01 vs. NGT; †P < 0.05 vs. IGT; 
††P < 0.01 vs. IGT.



 

Original article

 

DIABETIC

 

Medicine

 

© 2007 The Authors.
Journal compilation © 2007 Diabetes UK. 

 

Diabetic Medicine

 

, 

 

24

 

, 154–160

 

157

 

Serum insulin concentrations at 60 min in the NGT group
were the highest in the three groups (

 

P <

 

 0.01) and at 120 min
were the lowest (

 

P <

 

 0.01). There was no difference in the
insulin concentrations between the IGT and DM groups at
60 min or 120 min. Serum concentrations of TRX gradually
decreased after oral glucose loading in each group (

 

P <

 

 0.05 vs.
fasting; Fig. 1). Concentrations of 8-OHdG were similar in all
three groups, both fasting and at 30 min, and did not change
from fasting to 30 min in any group. 8-OHdG concentrations
decreased in the NGT and DM groups from 30 to 60 min (

 

P <

 

0.01). There were no significant changes in the IGT group.
The insulinogenic index was highest in the NGT group

and lowest in the DM group (NGT 0.904 

 

±

 

 0.511, IGT
0.605 

 

±

 

 0.435, DM 0.376 

 

± 

 

0.256; 

 

P

 

 = 0.02 NGT vs. DM).
In the combined cohort, the insulinogenic index correlated
with the change in TRX during oral glucose loading (

 

∆

 

TRX)
(

 

r =

 

 0.34, 

 

P

 

 < 0.05) (Fig. 2). However, there was no relation-
ship with the change in 8-OHdG concentrations from fasting
to 30 min (

 

∆

 

8-OHdG).

 

Discussion

 

There is widespread agreement that diabetes increases the risk
of cardiovascular disease [2,3,18–21]. The mechanism of this
increased risk is controversial [3,18–22], but hyperglycaemia
may play an important role in patients with diabetes and IGT
[22,23]. Although hyperglycaemia is clearly related to diabetic
microvascular complications [22], its contribution to the
increased risk of atherosclerosis in Type 2 diabetes remains
controversial. Type 2 diabetes and IGT are commonly associated
with other risk factors, such as dyslipidaemia, hypertension
and obesity [3,18–22,24]. All of these factors may contribute
to the occurrence of cardiovascular disease in patients with
diabetes and IGT.

Failure of insulin secretion in patients with Type 2 diabetes
and IGT is characterized by decreased first-phase glucose-
induced insulin secretion, delayed hyperinsulinaemia and

Table 2 Concentrations of measured variables during oral glucose tolerance test

Fasting 30 min 60 min 120 min

Glucose (mmol/ l) NGT 4.9 ± 0.4 8.6 ± 1.4** 5.9 ± 1.0** 4.3 ± 1.8
IGT 5.4 ± 0.4 9.9 ± 1.6** 10.9 ± 2.3** 9.6 ± 0.8**
DM 6.2 ± 0.7 11.6 ± 1.6** 13.5 ± 1.3** 11.2 ± 3.1**

Insulin (µU/ml) NGT 6.1 ± 2.2 65.1 ± 45.4** 105.2 ± 93.1** 42.3 ± 26.5**
IGT 7.9 ± 4.5 58.3 ± 46.8** 73.7 ± 39.1** 89.1 ± 37.6**
DM 11.1 ± 5.6 44.3 ± 20.9** 68.2 ± 28.2** 98.3 ± 67.2**

Thioredoxin (ng/ml) NGT 64.0 ± 19.9 59.1 ± 19.2* 48.5 ± 17.4** 38.7 ± 17.8**
IGT 67.9 ± 29.8 59.6 ± 26.3* 53.6 ± 28.5** 39.7 ± 19.9**
DM 70.0 ± 19.9 59.5 ± 27.6* 43.4 ± 16.8** 30.4 ± 14.6**

8-OHdG (ng/mL) NGT 0.44 ± 0.13 0.46 ± 0.11 0.35 ± 0.13** 0.36 ± 0.11**
IGT 0.35 ± 0.11 0.40 ± 0.13* 0.41 ± 0.11* 0.37 ± 0.16
DM 0.37 ± 0.07 0.44 ± 0.09* 0.28 ± 0.07** 0.29 ± 0.07**

*P < 0.05 vs. fasting; **P < 0.01 vs. fasting.
DM, Diabetes mellitus; IGT, impaired glucose tolerance; NGT, normal glucose tolerance.

FIGURE 2 Correlation between insulinogenic index and the change in 
thioredoxin from 0 to 30 min, and the relation between the insulinogenic 
index and the change in 8-hydroxy-2′-deoxyguanosine (8-OHdG) from 
0 to 30 min. I.I., Insulinogenic index; ∆thioredoxin, the change in 
thioredoxin; ∆8-OHdG, the change in 8-OHdG. �, Normal glucose 
tolerance; ∆, impaired glucose tolerance; �, diabetes. 
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the late development of failure of insulin synthesis [25–29].
In the present study, the peak in the glucose concentration
was 60 min after glucose loading in each group. In contrast,
although the peak of insulin concentration was 60 min after
glucose loading in the NGT group, the peak was at 120 min in
the DM and IGT groups. These findings suggested that insulin
secretion in response to oral glucose loading was already
impaired in the DM and the IGT group.

In the present study, oral glucose loading decreased serum
TRX concentrations. Thioredoxins are critical for redox regu-
lation of protein function and signalling via thiol redox control
[30]. TRX is induced by stress, and protects cells from various
types of stress, such as viral infection. TRX is not only a
scavenger of free reactive oxygen species but also regulates
the activity of various intracellular molecules, including trans-
cription factors such as nuclear factor-κB, activator protein 1,
myb, redox factor 1 and mitogen-activated kinase [31]. Thus,
cytosolic mammalian TRX has numerous functions in the
defence against oxidative stress, control of growth and apop-
tosis [32]. TRX and the redox system it modulates have an
important role in cellular defence against cytotoxicity caused
by reactive oxygen species. In the present study, we could not
show a relationship between the insulinogenic index and TRX
or 8-OHdG concentrations. However, there was a correlation
between the change in TRX concentrations after the oral
glucose loading and the insulinogenic index (Fig. 2). The changes
in glucose concentrations from fasting to 30 min after glucose
loading are the largest changes after the glucose load. Thus,
the concentrations of 8-OHdG increased 30 min after glucose
loading, and increased oxidative stress may affect the TRX
concentrations. The increased TRX is used to protect the cell
against oxidative stress. Therefore, both released extracellular
TRX and 8-OHdG concentrations decrease 60 min after
glucose loading [32]. The present study demonstrates that
hyperglycaemia after a glucose load may affect the cellular
antioxidant system in humans.

Glucose is the primary fuel and regulator of pancreatic islet
B-cell function. The primary function of insulin is to maintain
blood glucose concentrations in the normal range. However,
chronic hyperglycaemia impairs glucose-induced insulin
secretion and insulin gene expression [33]. One of the potential
mechanisms is oxidative stress, because glucose is able to
generate reactive oxygen species [4–7], which have adverse
effects on islet function [34–37]. The augmented reactive
oxygen species generation produced by exposure to elevated
glucose may play an important role in the diminished activity of
B-cells [38,39]. Although the pathogenesis of Type 2 diabetes
is multifactorial, B-cell functional abnormalities are present at
a very early stage of development of the disease [40,41]. It is
well known that B-cell dysfunction is observed even in patients
with IGT, as shown in the present study. Our findings suggest
that increased reactive oxygen species induced by postprandial
hyperglycaemia may affect B-cell function. Consequently,
insulin secretion in response to blood glucose may become
impaired. In the present study, 8-OHdG, a marker of oxidative

stress, increased after glucose loading, but TRX, a marker of
cellular redox state, decreased. There was a significant relation-
ship between TRX concentrations and insulinogenic index,
a marker of insulin secretory activity of B-cells. Thus, the
augmented reactive oxygen species production may reduce
cellular antioxidant defences. This may affect the B-cell and
result in impairment of insulin secretion.

A variety of mechanisms may generate reactive oxygen
species during acute hyperglycaemia [42–44]. These include
autoxidation, non-enzymatic glycation of proteins due to
extended exposure to hyperglycaemia, metabolism of glucose
via aldose reductase with changes in sorbitol-myoinositol
concentrations and the increased de novo synthesis of diacylg-
lycerol from glycolytic intermediates and subsequent activation
of the protein kinase C pathway [43,44]. However, non-
enzymatic glycation processes do not account for the rapid
increase of oxidative products in response to acute hypergly-
caemia, because glycation processes occur slowly over days to
weeks [45].

Our results suggest that acute hyperglycaemia produces
reactive oxygen species, and that the increase in reactive
oxygen species affects cellular antioxidant defences. In animal
models, antioxidant treatment protects against the onset of
diabetes [46]. In addition, acarbose effectively reduced the risk
of development of diabetes in patients with IGT [47]. Since this
α-glucosidase inhibitor reduces postprandial hyperglycaemia,
protection of B-cells from reactive oxygen species after post-
prandial hyperglycaemia could be a possible mechanism by
which acarbose prevents progression to diabetes mellitus.
These previous reports support our findings.

It is possible that TRX is induced by hyperinsulinaemia or
dyslipidaemia in IGT or diabetes and thus alters the insulino-
genic index. Thus, further studies are needed to clarify the role
of hyperinsulinaemia and dyslipidaemia in insulin secretion in
humans.

In conclusion, acute hyperglycaemia in response to oral
glucose loading generates reactive oxygen species, which may
affect the cellular redox state. Thus, postprandial hypergly-
caemia reduces pancreatic B-cell function, and results in impair-
ment of insulin secretion. These findings strongly suggest that
repeated postprandial hyperglycaemia may play an important
role in the development and progression of diabetes mellitus.

Conflict of interest

None to declare.

Acknowledgements

This study was supported in part by a Grant-in-Aid for Scientific
Research (14770318) from the Ministry of Education, Science,
Cardiovascular Research Foundation, and a Japan Heart
Foundation/Pfizer Grant for Research on Hypertension,
Hyperlipidemia and Vascular Metabolism, Japan Arterioscle-
rosis Prevention Fund, Tokyo, Japan.



Original article DIABETICMedicine

© 2007 The Authors.
Journal compilation © 2007 Diabetes UK. Diabetic Medicine, 24, 154–160 159

References

1 National Diabetes Data Group. Diabetes in America: Diabetes Data

Compiled 1984. NIH publication 85-1468. Bethesda, MD: National
Institute of Health 1985.

2 Report of a WHO Study Group. Prevention of Diabetes Mellitus.

Technical Report Series no. 844. Geneva: World Health Organization
1994.

3 Nathan DM, Meigs JB, Singer DE. The epidemiology of cardiovascular
disease in type 2 diabetes mellitus: how sweet it is or is it? Lancet

1997; 350: SI4–9.
4 Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell

dysfunction caused by elevated glucose. Am J Physiol 1992; 263:
H321–H326.

5 Cosentino F, Hishikawa K, Katusic ZS, Luscher TF. High glucose
increases nitric oxide synthase expression and superoxide anion
generation in human aortic endothelial cells. Circulation 1997; 96:
25–28.

6 Sakamoto T, Ogawa H, Kawano H, Hirai N, Miyamoto S, Takazoe
K et al. Rapid change of platelet aggregability in acute hyperglycemia.
Detection by a novel laser-light scattering method. Thromb Haemost

2000; 83: 475–479.
7 Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y,

Sakamoto T et al. Hyperglycemia rapidly suppresses flow-mediated
endothelium-dependent vasodilation of brachial artery. J Am Coll

Cardiol 1999; 34: 146–154.
8 Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K,

Hirashima Y et al. Mitochondrial reactive oxygen species reduce
insulin secretion by pancreatic beta-cells. Biochem Biophys Res

Commun 2003; 300: 216–222.
9 Schenk H, Klein M, Erdbrugger W, Droge W, Schulze-Osthoff K.

Distinct effects of thioredoxin and antioxidants on the activation of
transcription factors NF-κB and AP-1. Proc Natl Acad Sci USA 1994;
91: 1672–1676.

10 Prinz WA, Aslund F, Holmgren A, Beckwith J. The role of the thiore-
doxin and glutaredoxin pathways in reducing protein disulfide bonds
in the Escherichia coli cytoplasm. J Biol Chem 1997; 272: 15661–
15667.

11 Noma A, Okabe H, Netsu-Nakayama K, Ueno Y, Shinohara H.
Improved method for simultaneous determination of cholesterol in
high- and low-density lipoproteins. Clin Chem 1979; 25: 1480–
1481.

12 Yoshinaga H, Kosaka K. Heterogeneous relationship of early insulin
response and fasting insulin level with development of non-insulin-
dependent diabetes mellitus in non-diabetic Japanese subjects with or
without obesity. Diabetes Res Clin Pract 1999; 44: 129–136.

13 Kosaka K, Kuzuya T, Hagura R, Yoshinaga H. Insulin response to
oral glucose load is consistently decreased in established non-insulin-
dependent diabetes mellitus: the usefulness of decreased early insulin
response as a predictor of non-insulin-dependent diabetes mellitus.
Diabet Med 1996; 13: S109–119.

14 Makino Y, Okamoto K, Yoshikawa N, Aoshima M, Hirota K, Yodoi
J et al. A redox-regulating cellular cofactor for glucocorticoid
hormone action. J Clin Invest 1996; 98: 2469–2477.

15 Kogaki H, Fujiwara Y, Yoshiki A, Kitajima S, Tanimoto T, Mitsui A
et al. Sensitive enzyme-linked immnosorbent assay for adult T-cell
leukemia-derived factor and normal value measurement. J Clin Lab

Anal 1996; 10: 257–261.
16 Kawano H, Yasue H, Hirai N, Yoshida T, Fukushima HMD, Miyamoto

S et al. Effects of transdermal and oral estrogen supplementation on
endothelial function, inflammation, and cellular redox state. Int J

Clin Pharmacol Therapeutics 2003; 41: 346–353.
17 Hirai N, Kawano H, Yasue H, Takazoe K, Shimomura H, Miyamoto

S et al. Attenuation of nitrate tolerance and oxidative stress by
angiotensin II receptor blocker in patients with coronary spasm.
Circulation 2003; 108: 1446–1450.

18 Meigs JB, Singer DE, Sullivan LM, Dukes KA, D’Agostino RB,
Nathan DM et al. Metabolic control and prevalent cardiovascular
disease in non-insulin-dependent diabetes mellitus. Am J Med 1997;
102: 38–47.

19 Semenkovich CF, Heinecke JW. The mystery of diabetes and athero-
sclerosis. Diabetes 1997; 46: 327–334.

20 Kuusisto J, Mykkanen L, Pyorala K, Laakso M. NIDDM and its
metabolic control predict coronary heart disease in elderly subjects.
Diabetes 1994; 43: 960–967.

21 Feener EP, King GL. Vascular dysfunction in diabetes mellitus.
Lancet 1997; 350: SI9-SI13.

22 Harris MI, Eastman RC. Is there a glycemic threshold for mortality
risk? Diabetes Care 1998; 21: 331–333.

23 The Diabetes Control and Complications Trial Research Group. The
effect of intensive treatment of diabetes on the development and pro-
gression of long-term complications in insulin-dependent diabetes
mellitus. N Engl J Med 1993; 329: 977–986.

24 Syvanne M, Taskinen M-R. Lipids and lipoproteins as coronary risk
factors in non-insulin-dependent diabetes mellitus. Lancet 1997;
350: SI20–SI23.

25 Leahy JL, Bonner-Weir S, Weir GC. Beta-cell dysfunction induced by
chronic hyperglycemia. Current ideas on mechanism of impaired
glucose-induced insulin secretion. Diabetes Care 1992; 15: 442–455.

26 DeFronzo RA. Pathogenesis of type 2 (non-insulin dependent) diabetes
mellitus: a balanced overview. Diabetologia 1992; 35: 389–397.

27 Taylor R, Agius L. The biochemistry of diabetes. Biochem J 1998;
250: 625–640.

28 McGarry JD. What if Minkowski had been ageusic? An alternative
angle on diabetes. Science 1992; 258: 766–770.

29 Brunzell JD, Robertson RP, Lerner RL, Hazzard WR, Ensinck JW,
Bierman EL et al. Relationships between fasting plasma glucose levels
and insulin secretion during intravenous glucose tolerance tests.
J Clin Endocrinol Metab 1976; 42: 222–229.

30 Arner ESJ, Holmgren A. Physiological functions of thrioredoxin and
thioredoxin reductase. Eur J Biochem 2000; 267: 6102–6109.

31 Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular
activation. Annu Rev Immunol 1997; 15: 351–369.

32 Nakamura H, De Rosa SC, Yodoi J, Holmgren A, Ghezzi P, Herzen-
berg LA et al. Chronic elevation of plasma thioredoxin: inhibition of
chemotaxis and curtailment of life expectancy in AIDS. Proc Natl

Acad Sci USA 2001; 98: 2688–2693.
33 Robertson RP, Harmon JS, Tanaka Y, Sacchi G, Tran POT, Gleason

CE et al. Glucose toxicity of the beta-cell: cellular and molecular
mechanisms. In: Le Roith D, Taylor S, Olefsky JM eds. Diabetes

Mellitus. A Fundamental and Clinical Text, 2nd edn. Philadelphia:
Lippincott Williams & Wilkins 2000; 125–132.

34 Hohmeier HE, Thigpen A, Tran VV, Davis R, Newgard CB. Stable
expression of manganese superoxide dismutase (MnSOD) in
insulinoma cells prevents IL-1beta-induced cytotoxicity and reduces
nitric oxide production. J Clin Invest 1998; 101: 1811–1820.

35 Kubisch HM, Wang J, Bray TM, Phillips JP. Targeted overexpression
of Cu/Zn superoxide dismutase protects pancreatic beta-cells against
oxidative stress. Diabetes 1997; 46: 1563–1566.

36 Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between anti-
oxidant enzyme gene expression and antioxidative defense status of
insulin-producing cells. Diabetes 1997; 46: 1733–1742.

37 Ihara Y, Toyokuni S, Uchida K, Okada H, Tanaka T, Ikeda H et al.

Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK
rats, a model of type 2 diabetes. Diabetes 1999; 48: 927–932.

38 Tanaka Y, Gleason CE, Tran POT, Harmon JS, Robertson P. Preven-
tion of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats
by antioxidants. Proc Natl Acad Sci USA 1999; 96: 10857–10862.

39 Matsuoka T, Kajimoto Y, Watada H, Kaneto H, Kishimoto M,
Umayahara Y et al. Glycation-dependent, reactive oxygen species-
mediated suppression of the insulin gene promoter activity in HIT
cells. J Clin Invest 1997; 99: 144–150.



DIABETICMedicine Acute oxidative stress in hyperglycaemia • Y. Miyazaki et al.

© 2007 The Authors.
160 Journal compilation © 2007 Diabetes UK. Diabetic Medicine, 24, 154–160

40 DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of
NIDDM: a balanced overview. Diabetes Care 1992; 15: 318–365.

41 Porte DJ. Banting lecture 1990 Beta-cells in type 2 diabetes mellitus.
Diabetes 1990; 40: 166–180.

42 Wolff SP, Dean RT. Glucose autoxidation and protein modification.
Biochem J 1987; 245: 243–250.

43 King GL, Kunisaki M, Nishio Y, Inoguchi T, Shiba T, Xia P. Bio-
chemical and molecular mechanisms in the development of diabetic
vascular complications. Diabetes 1996; 45: S105–S108.

44 Giugliano D, Paolisso G, Ceriello A. Oxidative stress and diabetic
vascular complication. Diabetes Care 1996; 19: 257–267.

45 Brownlee MA, Cerami A, Vlassara H. Advanced glycosylation end
products in tissue and the biochemical basis of diabetic complications.
N Engl J Med 1988; 318: 1315–1321.

46 Kaneto H, Kajimoto Y, Miyagawa T, Matsuoka Y, Fujitani Y,
Umayahara Y et al. Beneficila effects of antioxidants in diabetes:
possible protection of pancreatic beta-cells against glucose toxicity.
Diabetes 1999; 48: 2398–2406.

47 Chiasson JL, Robert GJ, Gomis R, Hanefeld M, Karasik A, Laakso
M. For the STOP-NIDDM Trial Research Group: acarbose for
prevention of type 2 diabetes mellitus. The STOP-NIDDM randomized
trial. Lancet 2002; 359: 2072–2077.


