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Abstract The existence of discrete phenotypic traits suggests that the complex regulatory

processes which produce them are functionally modular. These processes are usually represented

by networks. Only modular networks can be partitioned into intelligible subcircuits able to evolve

relatively independently. Traditionally, functional modularity is approximated by detection of

modularity in network structure. However, the correlation between structure and function is loose.

Many regulatory networks exhibit modular behaviour without structural modularity. Here we

partition an experimentally tractable regulatory network—the gap gene system of dipteran

insects—using an alternative approach. We show that this system, although not structurally

modular, is composed of dynamical modules driving different aspects of whole-network behaviour.

All these subcircuits share the same regulatory structure, but differ in components and sensitivity

to regulatory interactions. Some subcircuits are in a state of criticality, while others are not, which

explains the observed differential evolvability of the various expression features in the system.

DOI: https://doi.org/10.7554/eLife.42832.001

Introduction
Systems biology aims to understand the function and evolution of complex regulatory networks. This

requires some sort of hierarchical decomposition of these networks into manageable and intelligible

subsystems, whose properties and behaviour can be analysed and understood in relative isolation

(Simon, 1962; Riedl, 1975; Lewontin, 1978; Bonner, 1988; Raff, 1996; West-Eberhard, 2003;

Schlosser and Wagner, 2004; Callebaut et al., 2005). If each subsystem possesses a clearly delim-

ited and discernible function, the network can be subdivided into functional modules (Raff, 1996;

von Dassow and Munro, 1999; Hartwell et al., 1999; Wagner et al., 2007; Mireles and Conrad,

2018). In the Introduction of our paper, we provide a careful argument showing that the most com-

mon approach to identify functional modules has severe limitations, and propose an alternative

method, which we then use to dissect and analyse a specific pattern-forming network, the gap gene

system of the vinegar fly, Drosophila melanogaster.

The most common strategy to identify functional modules is to partition the graph representing a

network into simple motifs (Shen-Orr et al., 2002; Alon, 2007) or subcircuits (also called subnet-

works or communities; (Girvan and Newman, 2002; Oliveri and Davidson, 2004; Babu et al.,
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2004; Levine and Davidson, 2005; Newman, 2006; Davidson and Erwin, 2006; Oliveri and

Davidson, 2007; Erwin and Davidson, 2009; Davidson, 2010). Network motifs are small subgraphs

that are identified through their statistical enrichment (Alon, 2007; Alon, 2006), while subcircuits

are characterised by a high connection density among their component nodes contrasting with

sparse connections to the outside (Girvan and Newman, 2002; Radicchi et al., 2004; New-

man, 2006; Wagner et al., 2007; Fortunato, 2010). In both cases, subsystems are defined in terms

of the regulatory structure or network topology: they are structural modules. This approach presup-

poses a strong connection between functional and structural modularity (see, for example,

Lim et al., 2013).

Strictly interpreted, structural modules are mutually exclusive: they are disjoint subgraphs of a

complex regulatory network that do not share nodes between each other (Girvan and Newman,

2002; Radicchi et al., 2004; Palla et al., 2005). And yet, such modules can never be fully isolated:

their context within the larger network influences behaviour and function. The structural approach

therefore relies on the assumption that context-dependence is weak, and structural modularity is

generally pronounced enough, to preserve the salient properties and behaviour of a motif or subcir-

cuit in its native network context.

Structural modularity is widely regarded as a necessary condition for the evolvability of complex

networks. ‘Evolvability,’ in the general sense of the term, is defined as the ability to evolve (Daw-

kins, 1989; Wagner and Altenberg, 1996; Hendrikse et al., 2007; Pigliucci, 2008). More specifi-

cally, evolvability refers to the capacity of an evolving system to generate or facilitate adaptive

change (Wagner and Altenberg, 1996; Pigliucci, 2008). Structural modularity can boost this capac-

ity in several ways. Entire modules can be co-opted into new pathways during evolution, generating

innovative change (Raff, 1996; von Dassow and Munro, 1999; True and Carroll, 2002;

Davidson and Erwin, 2006; Erwin and Davidson, 2009; Monteiro and Podlaha, 2009; Wag-

ner, 2011). Furthermore, each module can vary relatively independently, and it has been argued

that this accounts for the individuality, origin, and homology of morphological characters as well as

their trait-specific variational properties (Wagner and Altenberg, 1996; Wagner et al., 2007; Wag-

ner, 2014). Finally, structural modularity allows for a fine-tuned response to specific selective pres-

sures by minimizing off-target pleiotropic effects (Wagner and Altenberg, 1996; Pavlicev et al.,

2008; Wagner and Zhang, 2011).

The identification and analysis of structural modules has been very successful in many cases. For

example, it has been used to understand the regulatory principles of segment determination in Dro-

sophila (von Dassow et al., 2000; Ingolia, 2004), the origin and evolution of butterfly wing spots

(Carroll et al., 1994; Brakefield et al., 1996; Keys et al., 1999; Beldade et al., 2002;

Monteiro et al., 2003; Monteiro et al., 2006) and beetle horns (Moczek, 2006), and the mecha-

nism and evolution of larval skeleton formation in sea urchins and sea stars (Hinman et al., 2003;

Hinman and Davidson, 2007; Oliveri et al., 2008; Gao and Davidson, 2008). Other examples

abound in the literature (see Raff, 1996; Schlosser and Wagner, 2004; Callebaut et al., 2005;

Peter and Davidson, 2015 for comprehensive reviews).

In spite of its usefulness, structural modularity has a number of serious limitations. Some model-

ling studies suggest that it is not necessary for evolvability (see, for example, Crombach and Hoge-

weg, 2008). Furthermore, it is notoriously difficult to identify structural modules and delimit their

boundaries with any precision. One reason for this may be that the definition of (sub)system bound-

aries is fundamentally context- and problem-dependent (see, for example, Chu et al., 2003;

Chu, 2011). More to the point, even the simplest subcircuits tend to exhibit a rich dynamic reper-

toire comprising a range of different behaviours depending on context (boundary conditions), quan-

titative strength of parameter values (determining genetic interactions as well as production and

decay rates), and the specific form of the regulation-expression functions used to integrate multiple

regulatory inputs (Mangan and Alon, 2003; Wall et al., 2005; Ingram et al., 2006; Siegal et al.,

2007; Payne and Wagner, 2015; Ahnert and Fink, 2016; Perez-Carrasco et al., 2018; Page and

Perez-Carrasco, 2018). Because of this, it is usually not possible to single out subgraphs exhibiting

specific behaviours and functions that are robustly independent of their native network context. In

cases like these, looking for structural modules is not the most fruitful approach to subdivide a com-

plex regulatory network.

A recent simulation-based screen of multifunctional gene regulatory networks nicely illustrates

this important point (Jiménez et al., 2017). The authors performed a systematic computational
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search for network structures able to implement two qualitatively different dynamical behaviours.

They then identified the particular subcircuits that were responsible for either of the two behaviours

(or functions). What they found is an entire spectrum of structural overlap among functional mod-

ules. At one end of the spectrum, ‘hybrid’ networks represent the sum of two completely disjoint

structural modules. At the other end, ‘emergent’ networks use exactly the same nodes and connec-

tions to implement both dynamical behaviours (note that Salazar-Ciudad et al., 2000; Salazar-

Ciudad et al., 2001a; Salazar-Ciudad et al., 2001b) introduce a different definition of ‘emergent’

network structure, indicating a flat hierarchy of regulatory interactions rich in regulatory feedback).

Most networks identified by the screen fell somewhere in between these two extremes, that is, they

show partial structural overlap between functional modules. This suggests that most functionally

modular networks are not modular in the strict structural sense.

The limitations of structural modularity can be further illustrated using the real-world example of

the gap gene system. This gene regulatory network is involved in pattern formation and segment

determination during the blastoderm stage of early embryogenesis in dipteran insects such as D.

melanogaster (see Jaeger, 2011 for review). Its regulatory structure is summarized in Figure 1A.

Nodes in this network represent genes encoding transcription factors that activate or repress each

other as indicated by their connections. The gap gene network reads and interprets morphogen gra-

dients formed along the major or antero-posterior (A–P) axis of the embryo by the protein products

of the maternal co-ordinate genes bicoid (bcd), caudal (cad), and hunchback (hb). This results in

broad, overlapping expression domains for the trunk gap genes hb, Krüppel (Kr), knirps (kni), and

giant (gt) (Figure 1B, C). Extensive gap-gene cross-regulation, especially during the last cleavage

cycle (cycle 14A, C14A) of the blastoderm stage, is essential for the correct dynamic positioning of

expression domain boundaries, in particular the dynamic kinematic shifts of posterior gap domains

towards the anterior of the embryo (Jaeger et al., 2004b; Jaeger et al., 2004a; Surkova et al.,

2008; Manu et al., 2009a; Crombach et al., 2012; Verd et al., 2018). Maternal co-ordinate and

gap genes together then regulate pair-rule and segment-polarity genes, which form a molecular

pre-pattern at the time of gastrulation that precedes and determines the formation of morphological

segments during later stages of development.

Due to its small size and high connection density (see Figure 1A), it is not possible to identify

structural clusters in the gap gene system. Previous simulation-based analyses identified a number of

mechanisms driving gap gene expression. One of these consists of two double-negative (positive)

feedback loops between hb/kni and Kr/gt that are responsible for the basic staggered arrangement

of gap domains along the A–P axis. Another one comprises the asymmetric repressive interactions

between overlapping gap genes (e. g. kni on Kr and Kr on hb) that are driving dynamic anterior

shifts of gap domains over time (Figure 1A, B) (Jaeger et al., 2004a; Jaeger et al., 2004b; Jae-

ger, 2011; Crombach et al., 2012). Note that these mechanisms are not structurally modular, as

they involve different interactions among the same set of genes. Moreover, attempts to explain gap

gene expression dynamics with network motifs have consistently failed to correctly account for the

integrated behaviour of the whole system (Zinzen and Papatsenko, 2007; Ishihara and Shibata,

2008; Papatsenko, 2009).

All these difficulties arise because the gap gene network is a strongly emergent network (sensu

Jiménez et al., 2017). If there are functional modules in this network, they show a high degree of

structural overlap. For such emergent networks, analyses based on structural modularity fail, because

this approach is only valid for systems of markedly hybrid character. As was argued in Jiménez et al.

(2017), such systems only constitute a tiny subset of all possible naturally occurring regulatory

networks.

An alternative way to identify network modules that does not rely directly on their structure is to

define them in terms of their activity (Kauffman, 1993; Hartwell et al., 1999; von Dassow and

Munro, 1999; Newman and Bhat, 2008; Newman and Bhat, 2009; Alexander et al., 2009;

Benı́tez and Alvarez-Buylla, 2010). Such dynamical modules or dynamical subsystems consist of a

group of connected network nodes that implement a particular behaviour (Irons and Monk, 2007;

Benı́tez and Alvarez-Buylla, 2010). Their spatio-temporal pattern of activity specifies a certain type

of dynamics—such as bistable or oscillatory—termed a ‘dynamical regime’ (Verd et al., 2017;

Verd et al., 2018). Different dynamical regimes are distinguished by the composition of the underly-

ing phase portraits (Strogatz, 2015; Perez-Carrasco et al., 2018). For instance, they can be gener-

ated by different subsets of a system’s attractors (with associated basins) (Irons and Monk, 2007).
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Figure 1. The gap gene system: structure, regulation, and expression. (A) The regulatory structure of the gap

gene network. Nodes represent transcription factors encoded by maternal coordinate genes bicoid (bcd, purple)

and caudal (cad, cyan), as well as trunk gap genes hunchback (hb, yellow), Krüppel (Kr, green), knirps (kni, red) and

giant (gt, blue). Activating interactions are indicated by arrows, repressive interactions by T-bars. Circular arrows

Figure 1 continued on next page
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With this type of classification, nodes may be shared between overlapping modules, simultaneously

driving different dynamics in the context of different subsystems. No disjoint modular network struc-

ture is required or even expected (Jiménez et al., 2017). Still, each module’s behaviour is relatively

independent and clearly distinguishable from that of other dynamical subsystems (Irons and Monk,

2007).

Note that dynamical modules are not the same as co-expression modules (sometimes also called

regulatory modules; see, for example, Eisen et al., 1998; Bar-Joseph et al., 2003; Segal et al.,

2003; Stuart et al., 2003; Kim et al., 2009; Koch et al., 2017). The latter are defined by the corre-

lated or anti-correlated expression of their components. In contrast, the mutual dependence of com-

ponent expression patterns in dynamical modules is causal, rather than correlative. It can be very

complex and obscured by the non-linearity of regulatory interactions. Dynamical modules are not

identified by individual expression patterns, but rather by the coherent collective activity of the mod-

ule as a whole (Kauffman, 1993; Irons and Monk, 2007; Alexander et al., 2009).

Just like their structural counterparts, dynamical modules also influence evolvability. However, the

way they achieve this is fundamentally different. Structural subcircuits can vary independently since

they are only loosely interconnected. Dynamical modules, in contrast, drive distinct behaviours that

exhibit different levels of sensitivity to changes in system parameters (Alexander et al., 2009). In

particular, some dynamical modules may be in a state of criticality, close to a bifurcation point

beyond which their dynamics may change drastically and abruptly; others may be structurally stable,

that is, not critical and far from any bifurcation, and therefore insensitive or robust to changes in

parameters (Thom, 1976; Kauffman, 1993; Jaeger et al., 2012; Jaeger and Monk, 2014;

Jaeger and Sharpe, 2014; Strogatz, 2015). Recall that specific network components may be

involved in governing more than one dynamic behaviour. Mutations affecting these components will

tend to have a strong effect on those behaviours that are critical, leaving others unaltered because

they are structurally stable. This type of dynamic modularity implies that the network is more likely

to evolve in certain directions than others. While mutations may be random, their effects on network

dynamics are certainly not. Behaviours driven by modules that are critical (close to bifurcation) will

be more labile than those driven by modules that are structurally stable. This amounts to functional

modularity, even though the overall structure of the network is not modular.

Dynamical modularity transcends the inherent limitations of structural approaches and allows us

to gain insights into heavily emergent regulatory networks. However, it is far from trivial to apply this

framework to the experimental study of specific evolving developmental processes. Irons and Monk

have developed an algorithmic method to identify dynamical modules in Boolean network models

(Irons and Monk, 2007). Unfortunately, this method is difficult to generalize and adapt to continu-

ous mathematical frameworks (for instance, models formulated as systems of ordinary differential

equations) used to study morphogen-driven pattern-forming networks such as the gap gene system.

Figure 1 continued

indicate auto-activation. Dashed lines represent weak, solid lines stronger regulatory interactions. (B) Spatial

representation of gap gene regulation: boxes indicate relative positions of gap domains along the antero-

posterior (A–P) axis of the embryo. Anterior is to left, posterior to the right. Background colour indicates

predominant activating inputs by maternal gradients. T-bars indicate gap gene cross-repression. Circular arrows

represent gap gene auto-activation. (C) Gene expression dynamics of maternal coordinate genes bcd (purple) and

cad (cyan), as well as trunk gap genes hb (yellow), Kr (green), kni (red) and gt (blue). Quantified expression

patterns are shown as lines (maternal coordinate) and coloured areas (gap genes). Output of the fitted full model

is shown as dots. Y-axes represent relative protein concentration in arbitrary units (a.u.); X-axes represent A–P

position in %, where 0% is the anterior pole. C12 and C14 refer to cleavage cycle 12 and 14A, respectively. C14A is

subdivided into eight time classes T1–8 of equal length. Only the trunk region of the embryo from 35 to 75% is

shown. (D) Dynamical regimes driven by the gap gene system. Multistable (switch-like) behaviour in the anterior is

indicated by a phase space with trajectories converging to multiple point attractors (represented by circles).

Damped oscillations leading to dynamic anterior shifts of gap domains in the posterior are indicated by a colour

wheel with trajectories cycling through successions of different gap genes. The bifurcation boundary between the

two regimes at 52% A–P position is indicated by a dashed line. See text for details. Figure adapted from

Verd et al. (2017); Verd et al. (2018).

DOI: https://doi.org/10.7554/eLife.42832.002
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For this reason, we adopt a pragmatic approach to identify dynamical modules in the gap gene

network of D. melanogaster. Our approach is based on the observation that only subsets of gap

genes are expressed and exert their regulatory influence in any one region of the embryo. This

allowed us to identify four localized subsystems, each containing three trunk gap genes that are

active in different but overlapping regions of the embryo. Surprisingly, all four subsystems share the

same regulatory structure, which identifies them as AC/DC subcircuits (Panovska-Griffiths et al.,

2013; Perez-Carrasco et al., 2018). AC/DC subcircuits represent one of the simplest known genetic

systems able to produce both switch-like (multistable) and oscillatory behaviour. We show that these

AC/DC modules drive distinct dynamical regimes: static domain boundaries in the anterior, versus

anteriorly shifting gap domains in the posterior of the embryo (Figure 1C, D; Verd et al., 2017;

Verd et al., 2018). The boundary between these two dynamical regimes is positioned by an AC/DC

circuit in a state of criticality. This makes the position of this boundary especially sensitive to changes

in the strength of regulatory interactions, and we argue that this has shaped the evolvability of the

gap gene system within the Dipteran order (flies, midges, and mosquitoes).

Results and discussion

Modularity
The gap gene system is composed of three dynamical modules
We have taken a pragmatic approach to identifying dynamical modules in the gap gene network

(Figure 1A, B; Jaeger, 2011). The analysis asks which of the four trunk gap genes (hb, Kr, kni, and

gt) are required—or, more accurately, which ones are not—to drive correct expression dynamics in

nuclei at different positions along the antero-posterior (A–P) axis during cleavage cycle 14A (C14A).

It is based on a detailed dynamical model of the gap gene network (the ‘full model’), which has

been fit to quantitative spatio-temporal data of trunk gap gene expression (see Figure 1C)

(Verd et al., 2017; Verd et al., 2018). This model implements accurate dynamic mechanisms of gap

gene regulation that have been extensively validated against empirical evidence (Jaeger et al.,

2004b; Jaeger et al., 2004a; Manu et al., 2009b; Manu et al., 2009a; Ashyraliyev et al., 2009;

Jaeger, 2011; Crombach et al., 2012; Verd et al., 2017; Verd et al., 2018). We consider the sensi-

tivity of the network to a gap gene negligible, if the node representing that gene in the network can

be removed from the model at the onset of C14A without significant consequences to the resulting

expression dynamics (see ‘Node sensitivity analysis’ in ‘Materials and methods’). If sensitivity is negli-

gible in a given nucleus, we conclude that the gene is not required to drive gap gene expression in

that nucleus during C14A.

The results of our analysis are shown in Figure 2A. They reveal three regions that are insensitive

to specific gap genes: (1 in the region between 35 and 47% A–P position, developmental trajectories

are insensitive to kni (red background); (2) between 49 and 59% A–P position, they are insensitive to

gt (blue), and (3) between 61 and 75% A–P position, they are insensitive to hb (yellow). Therefore,

the gap gene regulatory network can be reduced from four to three trunk gap genes in each of

these three regions (Figure 2A and B). Regional boundaries reflect the position of expression

boundaries, but differ from those in that they remain constant, while expression patterns change

over time during C14A (Surkova et al., 2008; Jaeger, 2011).

Next, we single out a minimum set of gap gene interactions that are still able to drive correct

expression dynamics in each of these three regions. Surprisingly, the structure of all three resulting

subcircuits is qualitatively the same, even though each involves a different (overlapping set of gap

genes (Figure 2B), and therefore distinct strengths of regulatory interactions (Figure 2C). This struc-

ture combines a negative feedback loop between all three genes of a subcircuit with a double-nega-

tive (positive) feedback loop between two of them (Figure 2B, C). Such a combination between

positive and negative feedback loops is called the ‘AC/DC circuit,’ first described in the context of

dorso-ventral patterning in the vertebrate neural tube (Balaskas et al., 2012; Panovska-

Griffiths et al., 2013; Perez-Carrasco et al., 2018). Positive feedback loops occur between non-

overlapping gap genes Kr and Gt, as well as Hb and Kni; the interactions involved are much stronger

than the negative repressive interactions between gap genes with overlapping expression domains

(Figure 2C). Previous work has shown that strong positive feedback is required for the basic stag-

gered arrangement of gap domains (‘alternating cushions’), while weaker (and hence slower)
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negative feedback drives anterior shifts in gap domain position over time in the posterior trunk

region of the embryo (Jaeger et al., 2004b; Jaeger et al., 2004a; Perkins et al., 2006;

Ashyraliyev et al., 2009; Jaeger, 2011; Crombach et al., 2012; Verd et al., 2018).

The dynamics of AC/DC subcircuits faithfully reproduce the dynamics from
the full model
The next step is to establish whether AC/DC subcircuits are sufficient for patterning in each of the

three embryonic regions identified in Figure 2A. In order to qualify as a true dynamical module

sensu Irons and Monk (2007), each AC/DC subcircuit must recover the expression dynamics as well

as the underlying dynamical regime of the full model in the region where it is active. Anterior to the

bifurcation boundary at 52% A–P position, this means static gap domain borders governed by multi-

stability; posterior to 52% A–P position, this means kinematically shifting domain boundaries gov-

erned by a monostable dynamical regime that drives a stereotypical temporal succession of gap

gene expression in each nucleus (Figure 1B, C and Figure 3A) (Verd et al., 2017; Verd et al.,

2018).

All three AC/DC subcircuits—AC/DC1 in the anterior, AC/DC2 in the middle, and AC/DC3 in the

posterior—reproduce the expression dynamics of the full model with reasonable accuracy in their

respective regions of influence throughout cleavage cycle 14A, which we subdivide into eight time

Figure 2. Identification of dynamical modules in the gap gene system. (A) Node sensitivity analysis. The plot

shows sensitivity of model output to the removal of hb (yellow), Kr (green), kni (red) and gt (blue). Y-axis represents

node sensitivity as defined in ‘Materials and methods,’ Equation (4); X-axis represents A–P position in %, where

0% is the anterior pole. Regions insensitive to the absence of specific gap genes are indicated by background

colour. (B) Dissecting the gap gene network into dynamical modules. Network schemata as in Figure 1B.

Subcircuits active in each region identified in (A) are highlighted. (C) AC/DC subcircuits. All subcircuits identified in

(A) and (B) share the same regulatory structure, indicated by T-bar connectors. Numbers indicate strength of

interactions (in arbitrary units). Maternal inputs and auto-activation are omitted for clarify. Note that there is a

fourth AC/DC subcircuit posterior of the region included in the present analysis (not shown, see ‘Materials and

methods’). See text for details.

DOI: https://doi.org/10.7554/eLife.42832.003
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Figure 3. AC/DC subcircuits faithfully reproduce the dynamics of the full model. (A) Spatio-temporal dynamics of gap gene expression in the trunk

region of the embryo. Coloured areas show the position of gap domains for hb (yellow), Kr (green), kni (red), and gt (blue). Y-axis represents time

(flowing downwards) during cleavage cycle C14A. Time classes T1–eight as defined in Figure 1. X-axis represents % A–P position, where 0% is the

anterior pole. Regions of influence for each AC/DC subcircuit is indicated by grey lines. Black dotted line indicates the bifucation at 52% position

separating static from shifting gap domain boundaries. (B) Comparative dynamical analysis of AC/DC subcircuits and the full model. Instantaneous

phase portraits of AC/DC1 (nucleus at 37%), AC/DC2 (nuclei at 49 and 59%), and AC/DC3 (nucleus at 63% A–P position) are shown. Point attractors are

shown as spheres, spiral sinks as cylinders, saddles as cubes. Colour code indicates time class, from T1 (dark red) to T8 (yellow). Trajectories from

simulations of AC/DC subcircuits are shown in turquoise, trajectories from simulations of the full model in black. Axes represent concentrations of gap

proteins (in arbitrary units) as indicated. See ‘Materials and methods’ for model definition and details on phase space analysis.

DOI: https://doi.org/10.7554/eLife.42832.004

The following figure supplements are available for figure 3:

Figure supplement 1. Comparison of AC/DC subcircuits and the full model.

DOI: https://doi.org/10.7554/eLife.42832.005

Figure supplement 2. Comparative dynamical analysis of AC/DC subcircuits and the full model.

DOI: https://doi.org/10.7554/eLife.42832.006
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classes T1–8 of equal length for the purpose of our analysis (Figure 3—figure supplement 1)

(Jaeger et al., 2004b; Jaeger et al., 2004a; Surkova et al., 2008). The only major expression

defect involves the anterior boundary of the posterior gt domain, which fails to shift in the AC/DC3

model, starting to deviate from the full model around time class T3 (Figure 3—figure supplement

1). Other defects affect aspects of domain shape or levels of expression (Figure 3—figure supple-

ment 1), but not the dynamic positioning of boundary interfaces, on which our analysis is focused.

The range of dynamical regimes that can be implemented by a circuit is constrained by its regula-

tory structure (see ‘Introduction’. Which particular dynamical regime is realized depends on the

strength of regulatory interactions as well as initial and boundary conditions provided by maternal

factors. Since all three AC/DC subcircuits exhibit different interaction strengths (Figure 2C) and

receive different maternal inputs, they can drive different expression dynamics (see Appendix 1 for a

systematic mathematical analysis).

We determine the dynamical regime of each AC/DC subcircuit by calculating and analysing their

associated phase portraits. To achieve this, we simulate each AC/DC subcircuit in isolation, including

realistic time-variable inputs from maternal gradients (Verd et al., 2017) and auto-activation. It has

been shown previously that auto-activation does not significantly contribute to patterning in the gap

gene system, but is required to regulate accurate levels of gap gene expression (Perkins et al.,

2006). The time-dependent boundary conditions render these systems time-variant or non-autono-

mous, and cause their phase portraits to change their geometry over time (Verd et al., 2017). Time-

variance or non-autonomy means that not only the variables, but also the parameters or boundary

conditions change over time, and therefore implicitly the rules governing the regulatory system

themselves. Previously, we have developed a successful method for the classification of transient tra-

jectories in time-variant, non-autonomous dynamical systems (Verd et al., 2014), and have used it to

study the dynamics of gap gene expression in the full model (Verd et al., 2017; Verd et al., 2018).

Here, we redeploy this technique to study each AC/DC subcircuit independently (see ‘Materials and

methods’ for details).

AC/DC1 consists of nodes representing hb, Kr, and gt (Figure 2C, left panel. Its region of influ-

ence lies between 35 and 47% A–P position (Figure 2A). Phase portraits in this region exhibit multi-

stability with two or more point attractors (shown for the nucleus at 37% A–P position in Figure 3B,

left; additional nuclei are shown in Figure 3—figure supplement 2A). These trajectories are very

similar to those simulated with the full model, suggesting that flow direction and magnitude is con-

served between both models (Figure 3B and Figure 3—figure supplements 2A, A’). In each case,

trajectories are shaped by the pursuit of a moving point attractor (Verd et al., 2014), located at

equivalent positions in phase space in AC/DC1 and the full model. The only difference between the

two models is an additional attracting steady state in the full system, situated at high Kr levels. This

attractor is positioned too far from the trajectories to influence their shape.

The nodes in AC/DC2 represent hb, Kr, and kni (Figure 2C, central panel), and it is active

between 49 and 59% A–P position (Figure 2A). This region straddles the bifurcation that occurs at

52% A–P position in the full model, designating the division between static anterior and shifting pos-

terior gap domains (Manu et al., 2009a; Gursky et al., 2011; Verd et al., 2017). To be considered

a dynamical module throughout this region, the AC/DC2 subcircuit must recover the two distinct

dynamical regimes on either side of the bifurcation boundary. The phase portraits of a nucleus ante-

rior and another one posterior to the bifurcation boundary are shown in Figure 3B (centre). Addi-

tional nuclei are shown in Figure 3—figure supplement 2B.

The nucleus at 49% is located just anterior to the bifurcation. The phase portrait of AC/DC2 in

this nucleus is bistable for all time points except the last one (at T8, when it becomes monostable

and only an attractor close to the origin persists (Figure 3B). This is extremely similar to what hap-

pens in the full model, where by T8 the steady states at high Kr values have disappeared, and only

steady states close to the origin remain. This transition to monostability occurs too late to signifi-

cantly alter the course of the trajectory. Instead, the geometry of the trajectory in this nucleus—

almost identical in AC/DC2 and the full model—first converges towards a saddle during early C14A,

and later directly towards a moving attractor (Figure 3B). In the full model, a geometric capture

occurs at stages prior to C14A (Verd et al., 2014; Verd et al., 2017), outside the time range of the

AC/DC models (Verd et al., 2017).

Steady states in the phase portrait of AC/DC2 at 49% A–P position are restricted to the Hb-Kr

plane. They can be mapped onto a subset of steady states present in the full model (Figure 3—
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figure supplements 2B, B’). Additional steady states in the full model are located on the Hb-Gt

plane, at positions which are very similar to those present in AC/DC1 in more anterior nuclei (Fig-

ure 3—figure supplement 2A). This suggests that phase portraits of the full model are composites

of AC/DC1 and AC/DC2 in the region anterior to the bifurcation boundary at 52% A–P position.

Posterior to the bifurcation at 52% A–P position, the full model exhibits trajectories that curve

towards a spiral sink attractor in a monostable phase portrait (Verd et al., 2018). The trajectories of

AC/DC2 in this region are very similar (Figure 3B for the nucleus at 59% A–P position, see Figure 3—

figure supplements 2B, B’ for trajectories in other nuclei). Both exhibit a spiralling geometry which

is confined to the Kr-Kni plane, with some minor deviations in peak concentration at late stages.

Interestingly, however, the underlying topology of phase space is not equivalent in the AC/DC2

subcircuit and the full model. While both models exhibit monostability in this region, and trajectories

in both are shaped by the pursuit of a moving attractor, there are no spiral sinks in AC/DC2

(Figure 3B, and Figure 3—figure supplement 2B). Spiralling trajectories in this subcircuit are

shaped mainly by the movement of a conventional point attractor, with spiral sinks appearing only

late, at time points T7 and T8. Attractor movement is much more pronounced than in the full model

(Figure 3B, and Figure 3—figure supplements 2B, B’). Furthermore, the steady states of AC/DC2

are located along the Kni axis with early attractors at high concentration values of Kni, while the full

model shows steady states arranged along the Gt axis with early attractors at high concentration val-

ues of Gt (Figure 3—figure supplement 2B’). This is similar to steady states in AC/DC3 in the

nucleus at 63% A–P positions (Figure 3B, right panel). At later stages, when the influence of

attractor position on the geometry of the trajectory becomes more pronounced, the positions of

steady states converge between the two models: in each case, they are located at low Kni values,

along the Kni axis. This illustrates that identical transient behaviour can be caused by different types

of moving attractors in (biological) time-variant or non-autonomous dynamical systems.

The nodes in AC/DC3 represent Kr, kni, and gt (Figure 2C, right panel). It is active between 61

and 75% A–P position (Figure 2A). In the nuclei at 61 and 63% A–P position, AC/DC3 faithfully

reproduces the dynamics of gap gene expression obtained from the full model (Figure 3B, right,

and Figure 3—figure supplement 2C). As in the case of AC/DC2, the system is monostable, and

trajectories are shaped by the pursuit of a moving attractor. This attractor is located at high Gt con-

centrations early on, moving closer to the origin over time with only residual levels of Kni left at late

stages (Figure 3B, and Figure 3—figure supplement 2C). Similar to AC/DC2, the type of attractor

differs between the full model, where it is a spiral sink at all time points, and AC/DC2, where it is a

conventional point attractor during time classes T1–6, only turning into a spiral sink at time points T7

and T8 (Figure 3B, and Figure 3—figure supplements 2C, C’).

Posterior to 63% A–P position, AC/DC3 no longer recapitulates gap gene expression dynamics

accurately, because its trajectories fail to switch from the Kr-Kni to the Kni-Gt plane as they do in the

full model (Figure 3—figure supplement 1C). It is possible that this switch requires overlap with a

fourth AC/DC subcircuit in the posterior sub-terminal region of the embryo, which could not be char-

acterised further since most of its region of influence lies outside the spatial range we can analyse in

the full model (see ‘Materials and methods’).

In summary, phase space analysis of AC/DC subcircuits establishes that they are true dynamical

modules of the gap gene network in the region between 35% and 63% A–P position (Irons and

Monk, 2007). They faithfully recover the geometry of trajectories in the full model, whose phase

portrait can be seen as an overlapping composite of those of the subcircuits in this region. This sim-

ple picture is complicated by the fact that spiralling trajectories occur posterior to 52% A–P position

despite the absence of spiral sinks in the phase portraits of AC/DC models. The lack of spiral sinks is

compensated by more pronounced movements of conventional point attractors, suggesting that dis-

tinct time-variant or non-autonomous phase space topologies can generate equivalent transient

dynamics. We discuss this somewhat degenerate relationship between phase space topology and

trajectory shapes further in the ‘Conclusions.’

Criticality and evolvability
AC/DC1 in the anterior and AC/DC3 in the posterior each have a consistent dynamical regime across

their respective regions of influence (Figures 1–3), indicating that these two dynamical modules are

structurally stable with respect to inputs from maternal gradients. In contrast, AC/DC2 correctly

reproduces the bifurcation observed in the full model at 52% A–P position, which separates static
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anterior patterning from kinematically shifting domains in the posterior (Figure 3) (Manu et al.,

2009a; Gursky et al., 2011; Verd et al., 2017). The presence of a bifurcation implies that this

dynamical module is in a state of criticality with respect to the inputs from maternal gradients. In

other words, the parameters of the AC/DC2 circuit place it very close to a bifurcation boundary,

which it will cross due to the different maternal inputs it receives along the A–P axis of the embryo

within its region of influence. Our analysis therefore suggests that the gap gene network of D. mela-

nogaster is critical to maternal inputs only in the middle of the embryo, where AC/DC2 is active

between 49 and 59% A–P position, while it is structurally stable outside of this region. This contrasts

with an earlier proposition—based on the quantification of cross-correlations between expression

patterns and a set of purely theoretical models of gap gene regulation—which suggested that the

system shows signs of criticality along the entire antero-posterior axis (Krotov et al., 2014).

Understanding criticality in complex regulatory networks is far from trivial, since bifurcations may

depend on more than just one of the system’s parameters (see, for example, Thom, 1976;

Scheffer, 2009; Kuznetsov, 2004). This can lead to counter-intuitive effects. For instance, gap gene

patterning in the central region of the D. melanogaster blastoderm is robust towards variation in the

levels of maternal gradients (Figure 4) (Houchmandzadeh et al., 2002; Gregor et al., 2007a;

Manu et al., 2009b; Gursky et al., 2011). This is surprising in light of the fact that AC/DC2 is in a

critical state. In contrast, the position of the bifurcation boundary between static and shifting gap

domains is labile between different dipteran species (Jaeger et al., 2004b; Surkova et al., 2008;

Manu et al., 2009a; Garcı́a-Solache et al., 2010; Jaeger, 2011; Crombach et al., 2014;

Wotton et al., 2015). In the scuttle fly Megaselia abdita (Phoridae), it is located more anteriorly

compared to D. melanogaster: the region where gap domain shifts occur includes the Hb-Kr inter-

face at around 40% A–P position (see Figure 5 below) (Wotton et al., 2015). The moth midge Clog-

mia albipunctata (Psychodidae) shows even more extended and pronounced gap domain shifts

(Garcı́a-Solache et al., 2010; Crombach et al., 2014). In the following subsections, we will provide

an analysis that resolves this apparent paradox.

Figure 4. Intra-species robustness of gap gene patterning to perturbations in levels of maternal gradients. (A) The position of gap gene expression

features is relatively robust towards changes in maternal gradient concentrations. This sketch—modified from Figure 1 of Manu et al. (2009b)—shows

concentration variation in the maternal Bcd gradient (above) and the zygotic expression domain of Kr (below). Solid line and coloured area indicate

averaged expression patterns, dashed lines indicate expression variation. Red arrows show the difference between the range of positional variation in

Bcd (red background) and Kr. (B) Phase diagram for AC/DC2 in response to variation in Bcd concentration. Pink dots and error bars show average Bcd

concentration with standard deviation between 47 and 61% A–P position. Dashed lines show the maximum range of Bcd profiles in the data. AC/DC2

subcircuits for nuclei indicated by the X-axis, where simulated with Cad concentration fixed to its value at T1, and Bcd concentration fixed to the values

given by the Y-axis. Background colour indicates the resulting dynamical regime: the multistable anterior regime is shown in black, the monostable

posterior regime in grey. (C) Phase diagram for AC/DC2 in response to variation in Cad concentration. White dots indicate Cad concentrations

between 47 and 61% A–P position. AC/DC2 subcircuits for nuclei indicated by the X-axis, where simulated with Bcd concentration fixed to its value at

T1, and Cad concentration fixed to the values given by the Y-axis. Background indicates dynamical regime as in (B). See text for details.

DOI: https://doi.org/10.7554/eLife.42832.007
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Figure 5. Inter-species lability of the bifurcation boundary depends on altered gap-gap interactions. (A) The

position of the bifurcation boundary separating static and shifting gap gene expression domains differs between

D. melanogaster (upper panel, 52%) and M. abdita (lower panel, 40% A–P position). The difference between

species is highlighted by a grey arrow. Phylogenetic distance between the two species is indicated to the left in

‘million years ago’ (mya). (B) Phase diagram for AC/DC2 in response to altering the strength of hb repression by Kr

(plotted against A–P position). (C, D) Phase diagram for AC/DC2 in response to altering both hb repression by Kr

(X-axis) and Kr repression by Kni (Y-axis) shown for subcircuits in nuclei at 49 (C) and 59% (D) A–P position. (E)

Figure 5 continued on next page
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Intra-specific robustness to maternal gradient concentration
We used the AC/DC2 model to assess the effect of changing the maternal Bcd and Cad gradients on

the position of the bifurcation boundary (cf. Figure 4). In the region between 47 and 61% A–P posi-

tion, Bcd spans a range of concentration from 24 to 7 arbitrary units in our data (Figure 4B). For each

nucleus in this region, we fixed Cad levels to their values during early C14A (time point T1), while vary-

ing Bcd levels in steps of 0.01 from to 30 arbitrary units. We then calculated the phase portraits of AC/

DC2 for each combination of maternal input concentrations (see ‘Materials and methods’).

The resulting dynamical regimes are shown in the phase diagram displayed in Figure 4B. There is

a threshold response at a Bcd concentration of approximately 15 arbitrary units: above this thresh-

old, the system is bistable; below, it is monostable. Bcd concentrations in nuclei anterior of 52% fall

into the multistable regime, nuclei posterior of this position fall into the monostable regime (see

dots in Figure 4B), recovering the same bifurcation position as in the full model (Manu et al.,

2009a; Gursky et al., 2011; Verd et al., 2017).

Quantitative measurements of the Bcd gradient reveal a standard deviation of about 15% relative

concentration (Gregor et al., 2007b; Liu et al., 2013). Plotting this as error bars in Figure 4B, we

find that they cross the boundary between dynamical regimes only in nuclei between 51 and 53% A–

P position. This very narrow spatial range is in agreement with observed levels of variability in the

data and in previous analyses of gap gene circuits (Gregor et al., 2007b; Manu et al., 2009b;

Gursky et al., 2011). If we alter the concentration of Bcd by a larger amount, as happens in mutants

with varying numbers of bcd copies (Driever and Nüsslein-Volhard, 1988; Houchmandzadeh et al.,

2002; Liu et al., 2013), we see a more pronounced displacement of the boundary as indicated by

the intersection of the dashed gradient profiles with the bifurcation threshold in Figure 4B.

The situation is very different for the maternal Cad gradient. In the region between 47 and 61%

A–P position, Cad spans a range of concentrations from 70 to 110 arbitrary units (Figure 4C). For

each nucleus in this region, we fixed Bcd levels to their values during early C14A (time point T1),

while varying Cad levels in steps of 0.1 from 60 to 120 arbitrary units. We then calculated the phase

portraits of AC/DC2 for each combination of maternal input concentrations (see ‘Materials and

methods’).

The resulting phase diagram shows that, in contrast to Bcd, the position of the bifurcation bound-

ary is entirely insensitive to Cad concentration. There is an abrupt vertical divide between dynamical

regimes around 52% A–P position (Figure 4C). This implies that varying Cad concentration has no

effect on the position of the bifurcation, and therefore the extent of the posterior region that exhib-

its dynamic gap domain shifts. This complements earlier studies which suggested that Cad serves as

a general activator in the posterior, but is not directly involved in setting the position of gap gene

expression features (Struhl et al., 1992; Manu et al., 2009a; Verd et al., 2017), or in controlling the

rate of gap domain shifts in this region of the embryo (Verd et al., 2018).

Inter-specific lability of the bifurcation boundary
The analysis described in the previous section predicts that increased levels of Bcd should lead to a

posterior displacement of the bifurcation boundary between the static anterior and the shifting pos-

terior patterning regime (Figure 4B). Surprisingly, exactly the opposite is observed in M. abdita. In

this species, the anterior localization domain of bcd mRNA is expanded compared to D. mela-

nogaster, which presumably leads to an expanded Bcd protein gradient (Stauber et al., 1999;

Stauber et al., 2000; Wotton et al., 2015; Crombach et al., 2016). However, despite more Bcd

being present, the bifurcation boundary is located further anterior than in D. melanogaster

Figure 5 continued

Phase diagram for AC/DC1 in response to altering the strength of hb repression by Kr (plotted against A–P

position). (F) Phase diagram for AC/DC1 in response to altering both hb repression by Kr (X-axis) and gt

repression by Hb (Y-axis) shown for the subcircuit in the nucleus at 37% A–P position. (A–F) Background indicates

dynamical regimes as in Figure 4: the multistable anterior regime is shown in black, the monostable posterior

regime in grey. In addition, there is a narrow strip of a multistable oscillatory regime in (F) (shown in red). All Phase

diagrams were calculated with maternal gradient concentrations fixed to their values at T1. See text for details.

DOI: https://doi.org/10.7554/eLife.42832.008
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(Figure 5A) (Wotton et al., 2015; Crombach et al., 2016). This is impossible to explain if we only

take maternal inputs to the gap gene system into account.

Previous studies have shown that the strength of gap-gap cross-regulatory interactions differs

between M. abdita and D. melanogaster (Wotton et al., 2015; Crombach et al., 2016). Based on

this, we sought to identify the specific gap-gap interactions that could account for the altered posi-

tion of the bifurcation in our models. The dissection of the gap gene network into dynamical mod-

ules narrows this search to interactions within the AC/DC1 and AC/DC2 subcircuits (Figure 2B, C),

since their regions of influence cover the relevant region of the embryo. First, we focus on AC/DC2,

because the bifurcation boundary in D. melanogaster lies within its region of influence. We know

from previous analyses, that the strong positive feedback between hb and kni is heavily conserved

between the two species (Wotton et al., 2015; Crombach et al., 2016). We also know that asym-

metric interactions between overlapping gap genes (kni on Kr, and Kr on hb) are involved in regulat-

ing domain shifts in both species (Jaeger et al., 2004b; Jaeger et al., 2004a; Ashyraliyev et al.,

2009; Crombach et al., 2012; Crombach et al., 2016). Therefore, we concentrate our analysis on

these two interactions.

In our D. melanogaster model, repression of hb by Kr is negligible (Figure 2C). In contrast, both

genetic evidence (Wotton et al., 2015) and models (Crombach et al., 2016) for M. abdita indicate

that there is a significant net repressive effect of Kr on hb in this species. In Figure 5B, we plot the

dynamical regimes of AC/DC2 in nuclei between 47 and 61% A–P position, while varying this regula-

tory parameter by decreasing steps of 0.0005 across a narrow range of values from to �0.0035. If

repression remains minimal (closer to zero than �0.0005), we recover the bifurcation at 52% A–P

position, as nuclei anterior to this position are multistable, while more posterior nuclei are monosta-

ble (Figure 5B). If the strength of repression is further increased, the bifurcation boundary moves

anteriorly and vanishes altogether around a repression strength of �0.0025. In contrast, the position

of the bifurcation boundary is largely insensitive to the interaction between kni and Kr (Figure 5, D).

Taken together, the analysis predicts that AC/DC2 in M. abdita should be structurally stable, as net

repression of hb by Kr is increased in this species (Wotton et al., 2015; Crombach et al., 2016),

eliminating the bifurcation boundary present in D. melanogaster.

However, the bifurcation boundary in M. abdita is located even further anterior, as shifting

boundaries extend to around 40% A–P position (Wotton et al., 2015; Crombach et al., 2016), far

into the region between 35 and 45% A–P position covered by AC/DC1. Since the repression of hb

by Kr is shared between AC/DC1 and AC/DC2, we asked if increasing its strength would induce a

bifurcation in AC/DC1, abolishing its structural stability and rendering it critical. Interestingly, this is

not the case, as AC/DC1 remains multistable regardless of repression strength due to the very

strong positive feedback between Kr and gt (Figure 5). In this subcircuit, further alterations to regu-

latory interactions are required to render the circuit monostable. This can be achieved, for example,

by simultaneously changing both repressive interactions of Kr on hb and Hb on gt (Figure 5). In this

case, the latter interaction is the critical one. Therefore, at least two repressive interactions must be

stronger in M. abdita than in D. melanogaster to render AC/DC1 critical in this species.

In summary, our analysis suggests that in D. melanogaster only AC/DC2 is critical, while in M.

abdita the bifurcation boundary between static and dynamic patterning regimes falls into the region

of influence of AC/DC1. This change in the stability of dynamical modules is caused by changes in

the strength of particular gap-gap cross-repressive interactions. Dynamical modules and their criti-

cality—how close they are to a bifurcation boundary—have important consequences for the evolv-

ability of the gap gene network. Our work predicts that small changes in the strength of gap-gap

cross-regulatory interactions specifically affect the extent of static versus shifting patterning regimes.

In contrast, other aspects of gap gene patterning, such as the alternating-cushions mechanism of

positive feedback between Kr and gt as well as hb and kni, are extremely robust towards changes in

interaction strengths.

Conclusions
Stuart Kauffman’s notion of adaptive systems at the ‘edge of chaos’ first encapsulated the idea that

evolving regulatory networks exhibit modular dynamics and are in a state of criticality (Kauff-

man, 1993). (Irons and Monk, 2007) later made the idea of dynamical modules precise, and formu-

lated an algorithm to detect them in Boolean network models. Here, in the first part of our analysis,

we generalize the notion of a dynamical module to continuous systems and use a pragmatic

Verd et al. eLife 2019;8:e42832. DOI: https://doi.org/10.7554/eLife.42832 14 of 40

Research article Computational and Systems Biology Developmental Biology

https://doi.org/10.7554/eLife.42832


approach based on sensitivity analysis to identify dynamical modules in the empirically tractable gap

gene system of D. melanogaster. The three modules described include distinct sets of regulators,

but share a common regulatory network structure. They all correspond to AC/DC subcircuits, able to

drive multistable (switch-like) and oscillatory dynamics depending on parameter values and boundary

conditions, amongst others (Panovska-Griffiths et al., 2013). In this paper, we show that each cir-

cuit is active in a particular region of influence along the antero-posterior axis, where it is able to

reproduce the geometry of transient gap gene expression trajectories, and hence the overall expres-

sion dynamics, of a full gap gene circuit (Figures 2 and 3).

(Benı́tez and Alvarez-Buylla, 2010; Benı́tez and Alvarez-Buylla, 2010) have used a similar

approach to study the robustness of pattern formation in the root and leaf epidermis of the mustard

cress Arabidopsis thaliana (see also Benı́tez et al., 2008; Benı́tez et al., 2011). These authors define

‘dynamic modules’ in a manner quite similar to Irons and Monk (2007). Their modules are com-

posed of overlapping sets of components and interactions that generate a specific dynamic behav-

iour, or set of attractors, in the context of a given tissue (leaf or root). In contrast to our analysis, all

of these modules are able to faithfully reproduce the behaviour of the full model. They are therefore

heavily redundant and their linkage is responsible for making the patterning outcome of the whole

network robust, rather than generating a diversified pattern in different regions of a tissue. This indi-

cates that dynamical modularity can not only be used to analyse the multifunctionality of gene regu-

latory networks, but also the robustness or stability of their behaviour.

Dynamical modules as defined and used here should not be confused with dynamic patterning

modules (Newman and Bhat, 2008; Newman and Bhat, 2009; Hernández-Hernández et al.,

2012), which require an interaction of conserved molecular regulatory networks with generic bio-

physical properties of aggregated cells. Dynamic patterning modules can be considered a specific

sub-type of dynamical modules, which exhibit characteristic and robust behaviour based on the self-

organising reciprocal interaction of genetic and tissue-level regulation. While dynamic patterning

modules are predominantly used to explain the emergence of biological form during the early evolu-

tion of multicellular organisms, dynamical modules are intended for the decomposition and func-

tional characterization of general cellular or developmental processes and their evolutionary

potential (see below).

Our dynamical modules should also not be confused with the recent postulation of ‘static’ and

‘dynamic’ modules in the segment determination network of the flour beetle Tribolium castaneum

(Zhu et al., 2017). ‘Static’ and ‘dynamic’ in that case refer to slow versus rapid time scales of expres-

sion dynamics driven by distinct classes of subcircuits, which are all defined in terms of their disjoint

structural components. In contrast, our results indicate that structural modularity is not essential for

the evolution of insect segmentation. The search for structural modules may be in vain, as it is in the

case of the gap gene network of D. melanogaster where only dynamical modules are present in the

system. In this sense, dynamical modules provide a powerful complementary alternative to identify-

ing structural modules.

Concerning the dynamical analysis of the AC/DC subcircuits, it is interesting to note that the

geometry of transient trajectories generated by different time-variant or non-autonomous models

can be equivalent despite underlying discrepancies in features of phase space (see ‘Results and dis-

cussion’. In particular, posterior subcircuits AC/DC2 and AC/DC3 exhibit spiralling trajectories in the

absence of spiral sink attractors (Figure 3, and Figure 3B, B’, C, C’) (Verd et al., 2017; Verd et al.,

2018). In these models, the spiral geometry of the trajectories is generated by a corresponding

movement of a point attractor in space, while in the full model it is the consequence of (much less

pronounced) attractor movement in addition to the complex eigenvalues of the spiral sink. In other

words, there is a certain degeneracy or disconnect between the attractors present in phase space

and the resulting transient dynamics driven by the system.

This in turn has important implications for the way in which we analyse dynamical systems models

in biology. To understand the dynamics of a regulatory network, it is not generally sufficient to per-

form a steady-state analysis of a time-invariant or autonomous version of the system. Transient

dynamics, and the explicit dependence of regulatory structure on time implied by time-variance or

non-autonomy, should be considered the default assumption. Steady-state dynamics and time-invari-

ant autonomy must first be established before conclusions from classical attractor analysis can be

considered valid and applicable.
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In the second part of our analysis, we focus on the consequences of dynamical modularity and

criticality on the evolvability of the system. Our results shed light on the apparent paradox that gap

gene expression dynamics are surprisingly insensitive to maternal gradient concentrations during

development within a species, but quite labile when comparing different species on an evolutionary

time scale (Figures 4 and 5) (Briscoe and Small, 2015). We show that the paradox is resolved if we

consider the fact that this lability depends on changes in downstream regulatory interactions

between gap genes rather than evolutionary changes to maternal gradients.

Bifurcation analysis reveals that AC/DC1 and AC/DC3 are structurally stable in D. melanogaster,

and therefore insensitive to changes in the parameter values that affect the strength of interactions.

In contrast, AC/DC2 is in a state of criticality, close to a bifurcation boundary, with regard to varia-

tion in the strength of the repressive effect of Kr on hb. Increasing repression between these two

genes leads to a bifurcation event, which changes the dynamical regime of AC/DC2 from multista-

ble, switch-like, behaviour (generating stable gap domain boundaries to spiralling trajectories (gen-

erating shifting transient boundaries). Evolvability of the gap gene system therefore depends on the

fact that some dynamical modules are critical, while others are structurally stable. Evolution induces

changes in the stability of specific modules. This explains why the extent and dynamics of gap

domain shifts appear to be highly evolvable, while the basic staggered arrangement of domain

boundaries remains remarkably stable, at least during the evolution of cyclorrhaphan (or ‘higher’)

flies (Bonneton et al., 1997; Stauber et al., 2000; Shaw et al., 2002; Lemke et al., 2008;

Lemke and Schmidt-Ott, 2009; Lemke et al., 2010; Wotton et al., 2015; Crombach et al., 2016,

see Jaeger, 2011 for review).

Our analysis of D. melanogaster allows us to infer a number of characteristics of gap gene regula-

tion in other dipteran species, such as M. abdita, even though the quality of the models we have for

that species unfortunately does not allow a direct comparison of phase spaces (Crombach et al.,

2012; Crombach et al., 2016). Dynamic boundary shifts extend much further anterior in this species

than in D. melanogaster (Figure 5A) (Wotton et al., 2015). The anteriorly displaced position of the

bifurcation suggests that AC/DC1, not AC/DC2, must be critical in M. abdita. Our analysis reveals

that changes in several gap-gap interactions are required to render AC/DC1 structurally unstable

(Figure 5). This provides a plausible lineage explanation (Calcott, 2009) (or evolutionary trajectory)

for changes in dynamical modules that accurately fit what we know about changes in gap gene

expression and regulation between M. abdita and D. melanogaster (Wotton et al., 2015;

Crombach et al., 2016).

Outside the cyclorrhaphan lineage, the arrangement of gap domains and the patterning output

of the system changes. In the moth midge C. albipunctata, for example, there is no posterior domain

of Gt protein expression, and the posterior domain of hb mRNA only forms after gastrulation

(Rohr et al., 1999; Garcı́a-Solache et al., 2010). Gap domain shifts are much more pronounced in

this species compared to D. melanogaster or M. abdita (Garcı́a-Solache et al., 2010;

Crombach et al., 2014). The beetle T. castaneum shows an even more dynamic mode of segment

determination: only the anterior-most domains form simultaneously, while more posterior domains

are generated sequentially by sustained oscillations in segmentation gene expression

(Sarrazin et al., 2012; El-Sherif et al., 2012).

An extended analysis of our AC/DC circuits (see Appendix 1) reveals that they can be induced to

drive sustained limit-cycle oscillations with relatively small additional changes in the values of param-

eters that determine cross-regulatory interactions (summarized in Figure 6) (Panovska-

Griffiths et al., 2013; Perez-Carrasco et al., 2018; Page and Perez-Carrasco, 2018). Although gap

genes do not seem to be directly involved in the process of segment determination in T. castaneum,

they do show repeated waves of kinematically shifting gene expression in the blastoderm and germ-

band of the embryo (Zhu et al., 2017). So do pair-rule genes (Sarrazin et al., 2012; El-Sherif et al.,

2012; El-Sherif et al., 2014), which are known to be essential for segment determination in all

arthropods. Pair-rule genes in T. castaneum may also be regulated by AC/DC-like regulatory subcir-

cuits (Choe et al., 2006). These surprising resemblances suggest that ancestral gap and pair-rule

expression may have relied on similar regulatory principles, and that the regulatory changes required

to turn sequential (short-germband) into simultaneous (long-germband) segmentation may be much

more subtle than commonly thought (see Tautz, 2004; Clark, 2017). Improved empirical and model-

ling evidence from many additional species will be required to rigorously test this prediction.
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Taken together, our results demonstrate the potential of analysing the developmental and evolu-

tionary dynamics of regulatory networks using an approach based on dynamical rather than struc-

tural modularity. The main limitation of this approach remains the small number of systems in which

this type of analysis is currently possible. While structural analysis only requires the mechanistic

decomposition of a system into its components and their interactions, our analysis relies on the

‘recomposition’ or reconstitution of the system with a dynamical model of some sort (Bechtel and

Abrahamsen, 2005; Bechtel and Abrahamsen, 2010; Bechtel, 2011). This model can be discrete

and qualitative as in the Boolean analysis carried out by Irons and Monk (2007), or it can be contin-

uous and quantitative as in our example of the gap gene system. In the former case, we require

good qualitative evidence on the expression of the relevant factors and their interactions; in the lat-

ter, we need quantitative sets of expression data suitable for model fitting (Jaeger and Crombach,

2012). Significant advances in ‘omics’ and ‘big-data’ techniques, genetic perturbation by gene

knock-down, precise genome editing, as well as the methodologies of quantitative microscopy and

image bioinformatics should render the acquisition of such evidence feasible in a wide range of cellu-

lar and developmental systems. The most important consideration for these efforts is that empirical

Figure 6. AC/DC subcircuits and their possible role in the evolution of long-germband from short-germband segment determination. (A) Phylogenetic

relationships between the intermediate-germband insect T. castaneum and the two long-germband dipteran species analysed in this paper. Coloured

bars indicate which dynamical regimes are active in which relative region along the A–P axis of the embryo (see key). (B) Visualisation of the dynamical

regimes of an AC/DC circuit. We combine equation parameters into two composite control parameters which correspond to the x and ~G3 parameters in

Equations (28) and (29) of Appendix 1 and represent the strength of the positive feedback between two of the genes in the circuit (X-axis) and the

strength of the negative feedback involving all three genes (Y-axis) respectively. We used simplified connectionist models (see ‘Materials and

methods’)—with all degradation rates set to equal values, time-constant basal activation terms, and no auto-activation—to evaluate the dynamical

regimes for varying values of these two control parameters. The results are colour-coded as indicated in the key. Possible dynamical regimes are:

monostability and multistability without (grey), and with damped oscillations (light/dark red), as well as sustained limit-cycle oscillations (bright red) (see

Appendix 1 for details).

DOI: https://doi.org/10.7554/eLife.42832.009
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and modelling efforts are tightly integrated and adjusted to each other for an accurate representa-

tion and analysis of systems dynamics.

One peculiarity of our gap gene example is the fact that we are dealing with a spatio-temporal

patterning system. Accordingly, the pragmatic approach for identifying dynamical modules we pres-

ent here relies on the fact that different subcircuits are relevant in different regions of an embryo or

tissue (see Figure 2). Clearly, this approach is not appropriate for regulatory systems without spa-

tially differentiated dynamics, and in these cases a different strategy is needed. There are two possi-

bilities worth pursuing in the regard. Analogous to the spatial case, node sensitivity analysis can be

performed to identify network nodes that are not required during certain periods of time. This sub-

divides the system into modules active during different periods of influence, rather than regions of

influence. However, this approach is limited since it will miss modules that simultaneously drive dif-

ferent dynamical regimes in a multistable network. To overcome this limitation in Boolean systems

(whether spatial or not), the approach by Irons and Monk (2007) can be straightforwardly applied.

It is based on mapping system components to simple and fundamental dynamical patterns (called

subsystems) that combinatorially compose the attractors of a system (see also Jaeger and Monk,

2019). This general strategy could also be used as a guide to identifying dynamical modules in con-

tinuous systems: what are the qualitative distinguishable behaviours of the system? What are the

simplest dynamical patterns they share? Which network components contribute to which of these

patterns? A general strategy of this kind fits well with the type of approach we employed here in the

spatial context of the gap gene system.

It is important to note that, in continuous systems, dynamical modularity will always be a matter

of degree, just as in the case of structural and functional modules (Wagner and Altenberg, 1996).

Subsystems interact and dynamical regimes depend on each other to varying degrees (see

Koseska and Bastiaens, 2017), for an interesting perspective on the importance of this phenome-

non). This is no major impediment to our approach. As long as the behaviour of a subsystem can be

distinguished from other types of dynamics, we can map it to those network components and their

interactions that are mainly responsible for driving it. Our analysis of the gap gene network nicely

illustrates this point, as the individual AC/DC subcircuits reproduce the main features of the full sys-

tem’s dynamics, while subtle differences, caused by interactions between subsystems, remain

detectable (see Results and Discussion).

Finally, we must ask ourselves whether our approach is scalabale to larger networks and, if so, to

what extent. Scalability in this case crucially depends on the availablity of a dynamical model for the

full system. If there is a Boolean model, the approach by Irons and Monk (2007) can be used with-

out specific size limitations (see, for example, the networks described in Kauffman, 1993). For

larger-scale continuous models, for instance genome-scale dynamic models of metabolism

(Smallbone and Mendes, 2013; Srinivasan et al., 2015), what is needed is the ability to identify all

(or at least the most prominent or biologically relevant) attractors and dynamical regimes. The

numerical analysis of such models can be challenging but, given enough computing power, there is

no reason to assume that it cannot be scaled to such larger network models. Indeed, since our

approach depends on attractors and dynamical regimes, it is important to note that these increase

in number only slowly with an increase in the number of nodes in an interaction network

(Kauffman, 1993).

Luckily, all of the limitations discussed above are of a purely practical nature and the number of

potential systems amenable to dynamical analysis is increasing. AC/DC circuits involved in neural

tube patterning in vertebrates can be considered dynamical modules (Balaskas et al., 2012; Panov-

ska-Griffiths et al., 2013; Perez-Carrasco et al., 2018). So can the growing number of experimen-

tally verified Turing-type pattern generators, for example, those driving digit patterning in the

vertebrate limb from sharks to mammals (Raspopovic et al., 2014; Onimaru et al., 2016). We pro-

vide a generalised account of dynamical modularity with additional examples in Jaeger and Monk

(2019). Apart from these examples, there are good theoretical reasons to believe that dynamical

modularity is a very widespread phenomenon. The in silico screen performed by Jiménez et al.

(2017) suggests that many regulatory systems are capable of multistable behaviours, while different

dynamical regimes rarely map to cleanly separable clusters in the structure of the network. In other

words, most regulatory networks are of emergent rather than hybrid type, exhibiting dynamical but

not necessarily structural modularity. Based on this, we conclude that the gap gene system is proba-

bly not an isolated example of a system where our approach is useful. As a matter of fact, we see an
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urgent and growing need to identify and characterise dynamical modules in development and evolu-

tion (Jaeger and Monk, 2019). The theory and the approach we present here greatly extend the

reach of traditional methods by capturing modularity in systems that show no overt clusters in regu-

latory structure or co-expression patterns. They bring us closer to the aim of identifying true func-

tional modules in evolving developmental systems (Wagner, 2014), as dynamical behaviour is much

more tightly integrated with biological function than the regulatory structure of a network.

Materials and methods

The full model: a diffusion-less gap gene circuit
What we refer to as the ‘full model’ in this paper corresponds to a diffusion-less gap gene circuit,

which is formulated in the connectionist modelling framework first proposed by Mjolsness et al.

(1991). It is derived from gap gene circuits with diffusion (Ashyraliyev et al., 2009), and was previ-

ously published and described (Verd et al., 2017; Verd et al., 2018). Here, we only provide a brief

description of the model. See these previous publications for details.

Gap gene circuits consist of a one-dimensional row of nuclei, arranged along the antero-posterior

(A–P axis of the embryo. They are hybrid models that implement continuous dynamics during inter-

phase and mitosis, with discrete instantaneous nuclear divisions occurring at the end of each mitosis.

The spatial domain of the model used here extends over a range of 35 to 75% A–P position (where

0% is the anterior pole), covering the trunk region of the embryo. The full model includes cleavage

cycles C13 and C14A of the blastoderm stage during early development of D. melanogaster

(Foe and Alberts, 1983). C14A is further subdivided into eight time classes of equal duration (T1–

T8) (Surkova et al., 2008). Division takes place at the end of C13.

The state variables of the model represent the concentrations of transcription-factor proteins

encoded by trunk gap genes hb, Kr, kni, and gt. gai ðt represents the concentration of protein a in

nucleus i at time t. The rate of change in gap protein concentration over time is given by the follow-

ing system of ordinary differential equations:

dgai ðtÞ
dt

¼ RafðuaÞ�lagai ðtÞ; (1)

where Ra is the rate of protein production, and la the rate of protein decay. f is a sigmoid regula-

tion-expression function which is used to represent the coarse-grained saturating kinetics of tran-

scriptional regulation. It is defined as follows:

fðuaÞ ¼ 1

2
ð ua

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðuaÞ2 þ 1

q þ 1Þ; (2)

where

ua ¼
X

b2G
Wbagbi ðtÞþ

X

m2M
Emagmi ðtÞþ ha: (3)

G¼ fhb;Kr;kni;gtg denotes the set of trunk gap genes, and M ¼ fBcd;Cadg the set of external

inputs from protein gradients encoded by maternal coordinate genes (which are not themselves reg-

ulated by gap genes. We linearly interpolate quantified spatio-temporal protein expression data

(Surkova et al., 2008; Pisarev et al., 2009; Ashyraliyev et al., 2009) to obtain the concentration

profiles of the maternal regulators gmi .

Interconnectivity matrices W and E, with elements wba and ema, represent regulatory weights of

interactions between gap genes, and external inputs from maternal gradients, respectively. The

effect of regulator b or m on gap gene target a is activating, if the corresponding weight is positive,

repressive, if the weight is negative; there is no interaction if the weight is (near zero. ha is a thresh-

old parameter encoding the basal activity of gap gene a in the absence of any spatially or temporally

specific regulators. The system of Equations (1) governs regulatory dynamics during interphase. Ra

is set to zero during mitosis.

Earlier studies have established that diffusion of gap proteins is not essential for pattern forma-

tion (Jaeger et al., 2004b; Manu et al., 2009a; Verd et al., 2017). Therefore, it is not included in
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this version of the model. Omitting diffusion renders each nucleus independent of the others, and

reduces the dimensionality of system from 164 (4 gene products in 41 nuclei) to 41 independent sys-

tems with 4 dimensions each. This makes the system amenable to phase (or state) space analysis.

Fitting of the full model
Values for parameters Ra, la, W, E, and ha were obtained by fitting the model to quantitative spatio-

temporal gene expression data as previously described (Reinitz and Sharp, 1995; Jaeger et al.,

2004b; Ashyraliyev et al., 2009; Verd et al., 2017). Briefly: we solve model Equations (1) numeri-

cally, and compare the resulting model output to data by calculating a weighted root-mean-square

(RMS) score (Ashyraliyev et al., 2009). This is repeated while changing parameter values until the fit is

no longer improving. The difference between model output and data is minimized using a global opti-

mization algorithm called parallel Lam Simulated Annealing (pLSA) (Chu et al., 1999). Model fitting

was carried out on the Mare Nostrum cluster at the Barcelona Supercomputing Centre (http://www.

bsc.es). The circuit used here is identical to that published and described in Verd et al. (2017);

Verd et al. (2018). It accurately reproduces the spatio-temporal expression dynamics of gap gene

expression (see Figure 1B), and is fully consistent with the available experimental evidence on gap

gene regulation (see Jaeger et al., 2004b; Jaeger et al., 2004a; Manu et al., 2009b; Manu et al.,

2009a; Ashyraliyev et al., 2009; Jaeger, 2011; Crombach et al., 2012; Verd et al., 2017;

Verd et al., 2018).

Identifying dynamical modules
The full gap gene circuit described above drives two distinct dynamical regimes anterior and poste-

rior of a bifurcation, which occurs at 52% A–P position (Verd et al., 2017; Verd et al., 2018). Ante-

rior to the bifurcation, the system is multistable, positioning static gap domain boundaries through

switch-like dynamic behaviour; posterior to the bifurcation, the system is monostable, and the only

attractor present is a spiral sink implementing a damped oscillator mechanism driving the observed

dynamic anterior shifts of posterior gap domains (Verd et al., 2017; Verd et al., 2018). In the

absence of any evident structural modules in the network (see the ‘Introduction’), we ask whether

there are dynamical modules or subcircuits that suffice to reproduce the observed dynamical

regimes in different regions of the embryo. We define dynamical modules as subcircuits embedded

in the gap gene network that are capable of recovering the dynamics of gap gene expression at a

given A–P position (Irons and Monk, 2007). Dynamical modules may show overlap in their compo-

nents, interactions, and regions of influence.

Node sensitivity analysis
We observe that any specific nucleus along the A–P axis of the embryo only ever expresses two gap

genes at the same time, and never more than three different gap genes over the whole duration of

cleavage cycle C14A. This implies that only a subset of the four trunk gap genes are required for pat-

terning at any given position. To identify these subsets and their regions of influence, we assessed the

sensitivity of simulated developmental trajectories to the removal of gap genes in all nuclei between

35 and 75% A–P position. Early gap gene patterning is largely governed by regulatory inputs from

maternal gradients, while gap-gap interactions become increasingly predominant during late C13 and

C14A. Since our analysis focuses on gap-gap cross-regulation, we limit our analysis to C14A.

Using maternal gradient and simulated gap gene concentrations at the onset of C14A (time class

T1 as initial conditions, we numerically solve the full model, and compare it to simulations where one

of the gap genes and all its regulatory interactions have been erased from the model. The ‘node

sensitivity’ of the system in a given nucleus with respect to a particular deleted gap gene (or node of

the network) is then given by the distance between the trajectory simulated using the full model

(curve a), and the trajectory obtained from a simulation lacking the node representing that gene

(curve b). Differences are summed over all time classes (T1–T8) in C14A, which results in the follow-

ing distance metric:

d¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

8

i¼1
ðHbaTi �HbbTiÞ

2 þðKraTi �KrbTiÞ
2 þðKniaTi �KnibTiÞ

2 þðGtaTi �GtbTiÞ
2

q

8
: (4)
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ðHb
j
Ti
;Kr

j
Ti
;Kni

j
Ti
;Gt

j
Ti

represent simulated concentrations of gap genes at time class Ti indicates

whether the concentration is derived from the full model (a) or simulations with specific nodes

removed (b). When a particular node is removed the concentration of that gene in the trajectory sim-

ulated from the resulting AC/DC is . The smaller the distance between trajectories, the smaller the

contribution of the removed gap gene to the overall dynamics of gene expression. Sensitivities close

to zero indicate that the removed gene is not required for patterning in a given nucleus during

C14A. The resulting regions of insensitivity are shown in Figure 2A. The corresponding AC/DC sub-

circuits associated which each of these regions are shown in Figure 2B and C.

AC/DC subcircuits
Formulation and simulation
We implemented models of the three subcircuits consisting of the components and interactions

shown in Figure 2C using the gene circuit modelling formalism described above. Parameter values,

including time-variable maternal inputs and autoregulatory weights are taken from the full model.

AC/DC1 includes hb, Kr, and gt, spanning the region of 35 to 47% A–P position; AC/DC2 includes

hb, Kr, and kni, spanning the region of 49 to 59% A–P position; AC/DC3 includes Kr, kni, and gt,

spanning the region of 61 to 75% A–P position. There is a fourth AC/DC subcircuit, consisting of hb,

kni, and gt (AC/DC4, whose region of influence lies further posterior, outside the spatial domain of

the full model. The AC/DC4 subcircuit was not analysed further in this study.

We use maternal gradients and simulated gap protein concentrations from the full model at C14-

T1 as initial conditions. Simulations of AC/DC subcircuits include C14A only (no mitosis or division.

During C14A, zygotic gap gene cross-regulation has become essential for the positioning of domain

boundaries, largely supplanting initial positional cues by gradients of maternal activators

(Jaeger et al., 2007; Jaeger, 2011).

Phase space analysis
Since they implement time-variable maternal inputs, AC/DC subcircuits are time-variant or non-

autonomous dynamical models (Strogatz, 2015). We previously developed a methodology to char-

acterise and classify simulated transient trajectories in such models (Verd et al., 2014), which we

have used to analyse the full gap gene circuit model (Verd et al., 2017; Verd et al., 2018). Here,

we redeploy this method for the comparative analysis of AC/DC subcircuits and the full model.

Briefly, we calculate instantaneous phase portraits for different time points by ‘freezing’ parameter

values (maternal inputs) to the value at each given time. Steady states were calculated using a New-

ton-Raphson algorithm as in Manu et al. (2009a). For each nucleus within an AC/DC subcircuit’s

region of influence, we compare trajectories and attractor positions between the subcircuit and the

full model. The results are shown in Figure 3, and Figure 3—figure supplement 2, and are dis-

cussed in further detail the ‘Results and discussion’ section of our paper. A more systematic analysis

of dynamical regimes that can be driven by the AC/DC subcircuit is provided in Appendix 1.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.42832.011

Mathematical analysis of the AC/DC circuit
The aim of this analysis is to understand the overall dynamic repertoire of the AC/DC circuit.

More specifically, we want to understand the dynamical regimes (as defined in the main text

that this circuit can implement with different sets of parameters determining the strength of its

repressive regulatory interactions. We start from the well-studied behaviour of the three-gene

repressilator circuit (Elowitz and Leibler, 2000; Müller et al., 2006; Garcia-Ojalvo et al.,

2004; Strelkowa and Barahona, 2010), and then extend the analysis to the AC/DC network

(Panovska-Griffiths et al., 2013).

For both repressilator and AC/DC circuit, we characterize the number and type of steady

states present for any given set of parameter values. From this, we establish the range of

different dynamical regimes that each of these circuits can implement. This comparative

approach illustrates how the addition of the backward repressive interaction that distinguishes

the AC/DC from the repressilator circuit affects the dynamical repertoire of the network. This

analysis reveals that the AC/DC circuit (unlike the repressilator can implement all the

dynamical regimes of gene expression that have been observed during segment

determination in different groups of insects.

Analysis of the repressilator circuit
Let us first consider the three-gene repressilator circuit shown in Appendix 1—figure 1A.

Transcription factor X represses gene y, whose product, transcription factor Y, represses gene

z, whose product, transcription factor Z, in turn represses gene x. We represent repressive

regulatory interactions by bounded, monotonically decreasing, and continuous functions G.

For example, any sigmoid-shaped regulation-expression function conforms to these general

conditions.

Appendix 1—figure 1. Analysis of the repressilator circuit. (A) Structure of the repressilator

circuit: the nodes of the network represent genes and their products X, Y, and Z (circles).
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Repressive interactions among these nodes are indicated by T-bars. We assume constitutive

activation of all three nodes. (B) Uniqueness of solutions: solutions of Equation (7) are defined

by intersections of the curves given by HðXÞ ¼ X and HðXÞ ¼ gx � gz � gyðXÞ. In this particular

case, the shape of both curves results in them intersecting at only one value of X, X�, and

therefore there is only one solution. (C) Complex roots of ðlþ dÞ3 is a real negative number,

therefore it has one real negative, and two complex roots: l1, l2 and l3. (D, E) Two different

sets of possible eigenvalues: (D) Eigenvalues of a saddle point. One of the eigenvalues

associated with the steady state has a negative real part, while the other two have positive

real parts. In this case, the steady state is a saddle point. The uniqueness of the steady state,

and the nature of the regulation-expression functions we’ve chosen, allows us to infer the

presence of a limit cycle driving stable oscillations. (E) Eigenvalues of a stable spiral sink. All

eigenvalues associated with the steady state have negative real parts and two of them are

complex. In this case, the steady state is a stable spiral sink, which drives damped oscillations.

DOI: https://doi.org/10.7554/eLife.42832.012

We use the following abstract formulation of the repressilator circuit, where G stands for a

regulation-expression function conforming to the conditions prescribed above, and d are gene

product degradation rates:

_X ¼GxðZÞ� dxX

_Y ¼GyðXÞ� dyY

_Z ¼GzðYÞ� dzZ:

(5)

This system has a unique steady state. Defining gi �
1

di
Gi, for i ¼ fX; Y ; Zg, the steady states

of the system are solutions of the following system of equations:

0¼ gxðZÞ�X

0¼ gyðXÞ�Y

0¼ gzðYÞ�Z:

(6)

By solving for the state variables in the system, and substituting, we obtain:

X ¼ gx � gz � gyðXÞ: (7)

Due to the fact that the three regulation-expression functions are bounded, monotonically

decreasing, and continuous, so is their composition. Therefore, there is a unique positive

solution X� to Equation (7) (Appendix 1—figure 1B). By substituting backwards, following

analogous reasoning, we can establish that there is a unique positive steady state given by

ðX�; Y�; Z�Þ.

Types of steady states: eigenvalue analysis
In order to evaluate the nature of the steady state solution of the repressilator model

(Equation 7), we linearise the system around its steady state: X ¼ X� þ x, Y ¼ Y� þ y,

Z ¼ Z� þ z, and evaluate its eigenvalues (Strogatz, 2015; Hirsch et al., 2012). This

linearisation at steady state (X�, Y�, Z�) is written in matrix form as:

_x

_y

_z

2

6

4

3

7

5
¼

�dx 0 �gx

�gy �dy 0

0 �gz �dz

2

6

4

3

7

5

x

y

z

2

6

4

3

7

5
; (8)

where

gx ¼�dGx

dZ

�

�

�

�

Z�

;gy ¼�dGy

dX

�

�

�

�

X�

;gz ¼�dGz

dY

�

�

�

�

Y�

: (9)

The gi are all positive due to the fact that Gx, Gy and Gz are monotonically decreasing

continuous functions; they measure the sensitivity of the regulation functions at the steady
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state (so, for example gx measures the sensitivity of the rate of production of the product of X

to changes in its regulator Z.

The local stability of the steady state ðX�; Y�; Z� is determined by the nature of the

eigenvalues l associated with the linearised system at the steady state. These are the roots of

the characteristic polynomial given by

�dx �l 0 �gx

�gy �dy �l 0

0 �gz �dz�l

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ 0 (10)

ð�dx �lÞð�dy�lÞð�dz�lÞ�gxgygz ¼ 0 (11)

ðlþ dxÞðlþ dyÞðlþ dzÞ ¼�gxgygz ��G
3<0; (12)

where we define G to be a negative real number.

For simplicity, we consider the special case where all degradation rates are equal,

dx ¼ dy ¼ dz ¼ d:

ðlþ dÞ3 ¼�G
3
: (13)

The three distinct complex roots of ðlþ d3 ¼ �G
3 are given by (see also Appendix 1—

figure 1C):

lþ d¼ ð�G
3Þ13 ¼

�G

Ge�
ip
3

�

(14)

It follows that the three eigenvalues associated with the linearised system are

l1 ¼�G� d;

l2 ¼ Ge
ip
3 � d;

l3 ¼ Ge�
ip
3 � d;

(15)

l1 is always negative and real. However, the real parts of l2 and l3 can take either sign,

since

Reðl2;3Þ ¼
G

2
� d: (16)

Proof:

l2 ¼ Ge
ip
3 � d¼ G cos

p

3

� �

þ i sin
p

3

� �� �

� dReðl2Þ ¼ Gcos
p

3

� �

� d¼ G

2
� d;

l3 ¼ Ge�
ip
3 � d¼ G cos

p

3

� �

� i sin
p

3

� �� �

� dReðl3Þ ¼ Gcos
p

3

� �

� d¼ G

2
� d:

(17)

This leaves us with two alternative possibilities. From the equations in Equation (17) we

know that Reðl2;3Þ>0 if G

2
� d>0. From this, it follows that Reðl2;3Þ>0 if G>2d (this case is

illustrated in Appendix 1—figure 1D). A steady state with one negative eigenvalue and two

eigenvalues with positive real parts is an unstable saddle point. Since the repressilator only has

one steady state, this saddle point is unique.

By applying the Poincaré-Bendixson theorem, we can establish that the system must have a

limit cycle (Strogatz, 2015; Hirsch et al., 2012). The Poincaré-Bendixson theorem in two

dimensions predicts the presence of limit cycles. It tells us that if we can find a trapping

region—a closed and bounded region of the phase plane that contains a trajectory that

remains within this region from a certain time onwards—and this trapping region contains no

equilibrium points, then there must be at least one limit cycle within this region. The Poincaré-

Bendixson theorem does not normally hold for systems of dimension larger than two.

However, (Mallet-Paret and Smith, 1990) have shown that, in monotone cyclic feedback
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systems, the !-limit set of any bounded orbit can be embedded in R2. Under these conditions,

which are met in our case, and in this two-dimensional subspace, the Poincaré-Bendixson

theorem applies, and we can infer that there must be a limit cycle present. In this case,

therefore, the dynamical regime of the repressilator is to drive stable limit-cycle oscillations.

There is a second possibility. If G<2d¼)Reðl2;3Þ (Appendix 1—figure 1E). The fact that all

three eigenvalues have negative real part, with one real and one complex conjugate pair of

eigenvalues, implies that the unique steady state is a stable spiral sink. Spiral sinks are the

hallmark of damped oscillations. In this case, the dynamical regime of the repressilator is to

drive damped oscillations.

A third, very unlikely, possibility occurs when Reðl2;3 ¼ 0. In this case, linear stability analysis

suggests that the steady state has a centre in a two dimensional subspace. However, further

analysis of the full nonlinear system is required to determine the true nature of the steady

state in this case.

In summary, our analysis shows that the repressilator circuit only has one unique steady

state. Depending on the parameter values of the model, this steady state is either a saddle

point or a spiral sink. Therefore, the dynamical repertoire of this repressilator consists of two

distinct dynamical regimes: stable limit-cycle oscillations, or damped oscillations (in agreement

with Page and Perez-Carrasco, 2018).

Analysis of the AC/DC circuit
We obtain an AC/DC circuit (Panovska-Griffiths et al., 2013) by adding an additional

backward repressive interaction from Z to Y to the repressilator (compare Appendix 1—figure

1A with Appendix 1—figure 2A). The mathematical formulation of the AC/DC circuit is then

as follows:

_X ¼GxðZÞ� dxX

_Y ¼GyðX;ZÞ� dyY

_Z ¼GzðYÞ� dzZ:

(18)

Appendix 1—figure 2. Analysis of the AC/DC circuit. (A) Structure of the AC/DC circuit: the

nodes of the network represent genes and their products X, Y, and Z (circles). T-bars represent
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the repressive interactions between the genes, where A,B,C and D denote the strengths of

those respressions. Repressive interactions among these nodes are indicated by T-bars. We

assume constitutive activation of all three nodes. (B) General shape of the function given by

FðYÞ. (C–E) Effect of increasing the back reaction on the number of steady states. Functions as

defined in the text. (C) No back reaction: there is only one intersection point. (D) Weak back

reaction: still, there is only one intersection point. (E) Strong back reaction: now there are

three intersection points. (F) The simplified characteristic Equation (27) defines a depressed

cubic. Its dependence on parameter values is shown. (G,H) Roots of the depressed cubic given

by Equation (27). (G) Option 1: one real negative root, and two complex roots with positive

real part. (H) Option 2: real roots, where one has negative real part and two have positive real

parts. (I–M) Combinations of eigenvalues for steady states in the AC/DC circuit. (I) Unstable

spiral sink: a steady state with one real negative eigenvalue and two complex eigenvalues with

positive real parts. (J) Stable spiral sink: a steady state with one real negative eigenvalue and

two complex eigenvalues with negative real parts. (K) Point attractor: a steady state with real

negative eigenvalues. (L) Saddle1,2: a steady state with real eigenvalues where one is positive

and two are negative. (M) Saddle2,1: a steady state with real eigenvalues where two are

positive and one is negative.

DOI: https://doi.org/10.7554/eLife.42832.013

Regulation-expression functions Gx and Gz are assumed to be bounded, monotonically

decreasing, and continuous. GyðX; Z will typically be taken as the multiplication of the

regulation-expression function of X on Y, and that of Z on Y, and its form is explained in more

detail below.

Let us begin by finding the steady states of the system:

0 ¼GxðZÞ� dxX

0 ¼GyðX;ZÞ� dyY

0 ¼GzðYÞ� dzZ

9

>

=

>

;

)

)
X� ¼ 1

dx
GxðZ�Þ ¼ 1

dx
Gxð 1dzGzðY�ÞÞ ¼ 1

dx
FðY�Þ

Y� ¼ 1

dy
GyðX�;Z�Þ ¼ 1

dy
Gyð 1dxFðY�Þ;

1

dz
GzðY�ÞÞ

Z� ¼ 1

dz
GzðY�Þ

8

>

>

<

>

>

:

(19)

Y� depends on the strength of the backward reaction from Z on Y, as given by GzðY�, and
on the combination of the reactions of Z on X and X on Y represented by FðYÞ (Equation (19))

is monotonically increasing, as it results from the composition of two monotonically decreasing

functions, with a general shape as shown in Appendix 1—figure 2B. As the backward reaction

on Y is increased, the three scenarios shown in Appendix 1—figure 2C–E become possible.

Let us now look at the Jacobian matrix associated with the system:

�dx 0 �gx

�gyx �dy �gyz

0 �gz �dz

2

6

4

3

7

5
(20)

where

gx ¼�dGx

dZ

�

�

�

�

steadystate

;gz ¼�dGz

dY

�

�

�

�

steadystate

>0; (21)

and

gyx ¼�dGy

dX

�

�

�

�

steadystate

;gyz ¼�dGy

dZ

�

�

�

�

steadystate

>0: (22)

gyx measures the sensitivity of the repressive interaction of X on Y, and gyz, to the repressive

interaction of Z on Y. Again, for the sake of simplicity, let us assume that dx ¼ dy ¼ dz ¼ d and

calculate the associated characteristic equation:
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�d�l 0 �gx

�gyx �d�l �gyz

0 �gz �d�l

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ 0 (23)

From this, it follows that

ð�d�lÞ3 þð�gxÞð�gyxÞð�gzÞ� ð�d�lÞð�gyzÞð�gzÞ ¼ 0; (24)

ðdþlÞ3þgxgyxgz�ðdþlÞgyzgz ¼ 0: (25)

If we let d þ l ¼ h and ~G3 ¼ gxgyxgz>0, then Equation (25) becomes

h3�gyzgzhþ ~G3 ¼ 0: (26)

Now, let x ¼ gyzgz>0, and Equation (26) becomes

h3� xhþ ~G3 ¼ 0: (27)

This implies that the AC/DC circuit has either one or three steady states.

Types of steady states: eigenvalue analysis
The eigenvalues of all steady states are roots of the polynomial in Equation (27). In particular,

x and ~G are evaluated at the steady state. They remain positive since

x¼ gyz jss
gz jss>0 (28

~G3 ¼ gxjssgyxjss
gzjss>0: (29)

The simplified characteristic equation shown in Equation (27) defines a depressed cubic

(Appendix 1—figure 2F). Its exact shape depends on the values of x and ~G when evaluated at

each steady state. Given that these parameters always remain positive, we can look at the

shape of Equation (27), and from it infer the possible roots, as well as the type and sign of

every eigenvalue.

From Appendix 1—figure 2F we can see that, when solving for h, Equation (27) will

always have a negative real root and, depending on the magnitude of x, either two positive

real roots, or two conjugate complex roots, both with positive real parts (Appendix 1—figure

2G, H). The roots of the depressed cubic are given by hi; i 2 f1; 2; 3g, where hi ¼ li þ di and

li; i 2 f1; 2; 3g, are the eigenvalues associated with the corresponding steady state of the AC/

DC circuit. If we consider di ¼ d, 8i, we get five possible combinations of eigenvalues,

indicating that steady states found in the AC/DC circuit can be unstable spiral sinks

(Appendix 1—figure 2I), stable spiral sinks (Appendix 1—figure 2J), point attractors

(Appendix 1—figure 2K), saddles1,2 (Appendix 1—figure 2L), or saddles2,1 (Appendix 1—

figure 2M).

In summary, the AC/DC circuit can exhibit dynamical regimes that consist of one or three

steady states from among the five types described above. This indicates a rich dynamical

repertoire, which includes the regimes shown below, known to be involved in segment

determination in different groups of insects.

Appendix 1—figures 4–6 show phase portraits that have been calculated using a

connectionist version of the AC/DC model (see Equation 33 below), where production rates

Rx ¼ Ry ¼ Rz ¼ 1. Diffusion paramters d, expression thresholds h, and repressive interaction

strengths A;B;C;D are shown in the corresponding Appendix 1—tables 1–3.

. Sustained oscillations are observed if the underlying phase portrait has a unique unstable spi-

ral, and therefore a limit cycle (Appendix 1—figure 3, parameter values used for simulation

are shown in Appendix 1—table 1).
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Appendix 1—figure 3. Sustained limit-cycle oscillations: simulation showing a limit cycle (blue

curve) driving sustained oscillations in the phase portrait of an AC/DC circuit. This circuit was

simulated using the connectionist formulation given by Equation 33, and the parameter values

shown in Appendix 1—table 1.

DOI: https://doi.org/10.7554/eLife.42832.014

Appendix 1—table 1. Parameter values used to simulate the limit cycle shown in Appendix 1—

figure 3. See Equation 33 for parameter definitions.

Dynamical regime Parameters

dx dy dz H A B C D

Sustained Oscillations 0:09 0:09 0:09 1:5 �0:01 �0:01 �0:01

DOI: https://doi.org/10.7554/eLife.42832.015

. Damped oscillations are observed if the underlying phase portrait has a unique stable spiral

sink (Appendix 1—figure 4, parameter values used for simulation are shown in Appen-

dix 1—table 2).
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Appendix 1—figure 4. Damped oscillations: simulation of the damped oscillatory dynamical

regime. Two spiralling trajectories (blue and green curves) are shown converging towards a

stable spiral sink. This circuit was simulated using the connectionist formulation given by

Equation 33, and the parameter values shown in Appendix 1—table 2.

DOI: https://doi.org/10.7554/eLife.42832.016

Appendix 1—table 2. Parameter values used to simulate the damped oscillations shown in

Appendix 1—figure 4. See Equation 33 for parameter definitions.

Dynamical regime Parameters

dx dy dz H A B C D

Damped Oscillations 0:09 0:09 0:09 1:5 �0:025 �0:025 �0:025

DOI: https://doi.org/10.7554/eLife.42832.017

. In addition, the AC/DC circuit can also exhibit a bistable dynamical regime, where the

underlying phase portrait will have two point attractors and a saddle1,2 (Appendix 1—fig-

ure 5, parameter values used for simulation are shown in Appendix 1—table 3).
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Appendix 1—figure 5. Bistability: simulation of the bistable dynamical regime. Trajectories

with varying initial conditions (coloured curves) are shown to converge towards the two point

attractors. This circuit was simulated using the connectionist formulation given by

Equation 33, and the parameter values shown in Appendix 1—table 3.

DOI: https://doi.org/10.7554/eLife.42832.018

Appendix 1—table 3. Parameter values used to simulate the bistable regime shown in

Appendix 1—figure 4. See Equation 33 for parameter definitions.

Dynamical regime Parameters

dx dy dz H A B C D

Bi-stability 0:09 0:09 0:09 1:5 �0:01 �0:09 �0:01 �0:09

DOI: https://doi.org/10.7554/eLife.42832.019

We were able to find additional dynamical regimes by sampling the parameter space

numerically. These are listed below. Note that a numerical analysis cannot guarantee an

exhaustive list of all possible dynamical regimes. The biological relevance of these regimes

has not yet been explored.

. An unstable spiral can co-exist with a saddle and a point attractor.

. A stable spiral sink can co-exist with a saddle2,1 and a point attractor in a bistable regime.

The saddle probably needs to have a 2-dimensional unstable manifold, for there to be a

basin of attraction with a stable spiral.
. A bistable regime with two stable spiral sinks.

We conclude that the dynamical repertoire of the AC/DC circuit contains at least six

different monostable and multistable regimes, three of which correspond to behaviour

observed in insect segmentation. Similar dynamical regimes have been observed when the

ACDC circuit was explored using different regulatory functions (Perez-Carrasco et al., 2018;

Page and Perez-Carrasco, 2018).
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Validation of the analysis when using a connectionist model
formulation
The analysis above uses an abstract general formulation of the AC/DC circuit to characterize

its dynamical repertoire. We validate this analysis for the connectionist formalism as

described in ‘Materials and methods’, which was used for all the simulations in the main

paper.

Let us consider the AC/DC circuit shown in Appendix 1—figure 6A, and this time

formulate it mathematically as follows:

_X ¼ RxgðuÞ� dxX

_Y ¼ RygðuÞ� dyY

_Z ¼ RzgðuÞ� dzZ

(30)

where:

gðuÞ ¼ 0:5
u

ffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p þ 1

� �

(31)

Appendix 1—figure 6. Connectionist AC/DC circuit. (A) Regulatory structure and parameters

of the simulated AD/DC circuit. Nodes represent genes and their transcription-factor

products. T-bars represent repressive regulatory interactions. All genes are constitutively

activated. (B) Sigmoidal regulation-expression function used for the simulations

(Equation 31). (C) The number of steady states in the connectionist AD/DC circuit, can be

one (black curves), or three (coloured curves) depending on the strength of the back

reaction.

DOI: https://doi.org/10.7554/eLife.42832.020

The sigmoidal function Equation (31) is shown in Appendix 1—figure 6B. It is bounded,

monotonically increasing, and continuous. u represents the sum of all regulatory

contributions to a given target gene. For example, the contribution of gene product X on

gene y is evaluated as the product between the strength of the interaction of X on y, the

sign of that interaction (negative for repression, positive for activation, denoted by dþ�), and

the concentration of X. R represents the maximum rate of activation for every gene. More

generally, we write u as:

u¼
X

i

ðdþ�ÞaiXi; (32)

based on which Equation (30) becomes:

_X ¼ Rxgð�CZþ hÞ� dxX

_Y ¼ Rygð�AX�DZþ hÞ� dyY

_Z ¼ Rygð�BY þ hÞ� dzZ

(33)
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In what follows, we will assume that Rx ¼ Ry ¼ Rz ¼ R, dx ¼ dy ¼ dz ¼ d, and R
d
¼ �R . As in

the general case explored above, it is possible to have more than one steady state with the

connectionist formulation of an AC/DC circuit:

0 ¼ Rxgð�CZþ hÞ� dxX

0 ¼ Rygð�AX�DZþ hÞ� dyY

0 ¼ Rzgð�BY þ hÞ� dzZ

9

>

=

>

;

)

)

X� ¼ �Rgð�C�Rgð�BY� þ hÞþ hÞÞ
¼ �RFðY�Þ

Y� ¼ �Rgð�A�Rgð�C�Rgð�BY� þ hÞþ hÞ�D�Rgð�BY� þ hÞþ hÞ
¼ �RGðY�Þ

Z� ¼ �Rgð�BY� þ hÞ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(34)

Again, FðY is monotonically increasing (F0ðYÞ � 0; 8Y ), since it is the composition of two

monotonically decreasing functions (g is increasing with respect to u, but decreasing with

respect to X, Y and Z). Depending on the strength of the back reaction—which is given by

the magnitude of parameter D in the connectionist model formulation (Appendix 1—figure

6A)—we will have one or three steady states (Appendix 1—figure 6C). This is in agreement

with our general analysis above.

We will now show that the characteristic equation is the same in both cases. Once this is

established, it follows that the same types of steady states occur in both model formulations.

Therefore, the dynamical regimes revealed by our general analysis also apply in the

connectionist case. Let us look at the associated Jacobian

�dx 0 �gx

�gyx �dy �gyz

0 �gz �dz

2

6

4

3

7

5
(35)

where

q½Rxgð�CZþ hÞ� dxX�
qZ

¼ dRxgðuÞ
du

du

dZ

¼ dRxgðuÞ
du

dð�CZþ hÞ
dZ

¼ gxð�CÞ ¼�gx<0

(36)

q½Rzgð�BY þ hÞ� dzZ�
qY

¼ dRzgðuÞ
du

du

dY

¼ dRzgðuÞ
du

dð�BY þ hÞ
dY

¼ gzð�BÞ ¼�gz<0

(37)

q½Rygð�AX�DZþ hÞ� dyY�
qX

¼ dRygðuÞ
du

qu

qX

¼ dRygðuÞ
du

qð�AX�DZþ hÞ
qX

¼ gyxð�AÞ ¼�gyx<0

(38)

q½Rygð�AX�DZþ hÞ� dyY�
qZ

¼ dRygðuÞ
du

qu

qZ

¼ dRygðuÞ
du

qð�AX�DZþ hÞ
qZ

¼ gyzð�DÞ ¼�gyz<0:

(39)

If we now assume that dx ¼ dy ¼ dz ¼ d, we have the same characteristic equation for the

connectionist formulation as in the general case (see Equation 23):
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�d�l 0 �gx

�gyx �d�l �gyz

0 �gz �d�l

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ 0 (40)

This demonstrates that the results of the analysis of a general AC/DC circuit are still valid

when the AC/DC circuit is formulated as a connectionist model. Since the characteristic

equation is the same in both cases, the dynamical repertoire will be equivalent as well.

Verd et al. eLife 2019;8:e42832. DOI: https://doi.org/10.7554/eLife.42832 40 of 40

Research article Computational and Systems Biology Developmental Biology

https://doi.org/10.7554/eLife.42832

