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Deep neural networks outperform human expert's capacity in
characterizing bioleaching bacterial biofilm composition
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A B S T R A C T

Background: Deep neural networks have been successfully applied to diverse fields of computer vision.
However, they only outperform human capacities in a few cases.
Methods: The ability of deep neural networks versus human experts to classify microscopy images was
tested on biofilm colonization patterns formed on sulfide minerals composed of up to three different
bioleaching bacterial species attached to chalcopyrite sample particles.
Results: A low number of microscopy images per category (<600) was sufficient for highly efficient
computational analysis of the biofilm's bacterial composition. The use of deep neural networks reached
an accuracy of classification of �90% compared to �50% for human experts.
Conclusions: Deep neural networks outperform human experts’ capacity in characterizing bacterial
biofilm composition involved in the degradation of chalcopyrite. This approach provides an alternative to
standard, time-consuming biochemical methods.
© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

“Biomining” is an industrial process that employs micro-
organisms for the recovery of valuable metals from sulfidic ores
[1,2]. Dissolution of metal sulfides, such as the copper mineral
chalcopyrite, is catalyzed by microbial oxidation of ferrous iron
that provides ferric ions for the chemical oxidation of metal
sulfides. This regenerates ferrous ions and a cycle between
chemical and biological reactions occurs. In addition, sulfur-
oxidizing acidophiles assist the mineral degradation process by
producing sulfuric acid from inorganic sulfur compounds. Bio-
mining is less harmful to the environment than conventional metal
* Corresponding author.
E-mail address: antoine.buetti@lnu.se (A. Buetti-Dinh).

1 Equal contribution.

https://doi.org/10.1016/j.btre.2019.e00321
2215-017X/© 2019 The Author. Published by Elsevier B.V. This is an open access article un
recovery processes [3] and therefore, it is important to further
optimize this method.

Biofilms are communities of microorganisms embedded in a
self-generated matrix of extracellular polymeric substances (EPS).
This microbial lifestyle confers several advantages compared to
free-living planktonic cells, such as water retention, protection
against stresses, providing nutritional requirements, etc. [4].
Biofilm-forming microorganisms are crucial in commercial heap
biomining operations, in which they partly determine the initial
metal sulfide dissolution rate [1,5,6]. Acidophilic microbes have
differing abilities to generate energy from the conversion of the
mineral components under moderately thermophilic temper-
atures. Acidithiobacillus caldus is an obligate chemolithoautotro-
phic sulfur oxidizer that thrives at pH 2.5 [7,8]. Leptospirillum
ferriphilum is a ferrous iron oxidizing autotroph that is often the
dominant iron-oxidizer in biomining environments at extremely
low pH (1.3–1.6) and high redox potential conditions [9].
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Sulfobacillus thermosulfidooxidans is a mixotroph that primarily
oxidizes iron but is also capable of oxidizing sulfur compounds at
higher pH conditions compared to other acidophiles [10,11]. The
interplay of species in mixed community biofilms affects metal
dissolution rates and therefore, biofilms consisting of acidophilic
microbial consortia are important to understand and optimize
during metal dissolution.

Epifluorescence microscopy (EFM) can be used in biomining
applications to study biofilm structure and spatial distribution of
cells on mineral sulfides [12–14]. In combination with nucleic acid
dyes that label bacterial species, it enables the detection of specific
groups of microorganisms attached to metal sulfide surfaces
[15–17]. This allows to evaluate the extent of bacterial colonization
on chalcopyrite mineral grains and to visualize the biofilm
morphology [18,17].

Machine learning is a field of computer science that enables
computers to process and learn from data without being explicitly
programmed. Convolutional neural networks (CNNs) are a category
of deep neural networks that are able to make predictions in areas
such as image recognition and classification. A CNN consists of an
input and an output layer, as well as multiple hidden layers that carry
out the following tasks: (i) Convolutional layers emulate the
response of an individual neuron to visual stimuli and applies a
convolution operation to the input, passing the result to the next
layer. (ii) Pooling layers combine the outputs of neuron clusters at
one layer into a single neuron in the next layer. (iii) Fully connected
layers connect every neuron in one layer to every neuron in another
layer (Fig. 1). Altogether, this workflow allows fitting multiple
parameters of a CNN upon training with a set of images and then the
trained CNN is used to classify new images and infer the category
they belong to. These neural networks have proven successful in
many different real-life case studies and applications, including
identifying faces [19], detecting objects [20], and assisting self-
driving cars [21]. However, while deep learning is commonly applied
to diverse fields of computer vision and easing biological image
processing in different fields of biology [22], it only rarely outper-
forms humans in image classification [23,24].

In this study, we used CNNs trained with a low number of EFM
images representing biofilms of different bacterial compositions,
and compared the performance of CNNs versus human experts in
correctly classifying new images.

2. Materials and methods

2.1. Microbial species cultivation

EFM pictures were taken of biofilm grown strains of A. caldus
DSM 8584 [25],L. ferriphilum DSM 14647 [26], and S. thermosulfi-
dooxidans DSM 9293 [27]. Bacteria were grown in sterile
Fig. 1. CNN workflow showing how an input image is analyzed by a CNN where image fe
pooling and finally resulting into classification (output layer) of the different microbia
Mackintosh basal salt (MAC) medium [28] with soluble electron
donors for inoculation of chalcopyrite cultures. For L. ferriphilum,
4 g/L iron(II)-ions were provided as FeSO4�7H2O. Precipitation of
ferric salts was prevented by addition of sulfuric acid to maintain
the pH in the range of 1.6–1.8. A. caldus and S. thermosulfidooxidans
were pre-cultured using 0.9 g/L potassium tetrathionate (K2S4O6).
The medium for S. thermosulfidooxidans was supplemented with
0.02% yeast extract (YE) and 0.1 g/L iron(II)-ions [29]. Cells were
harvested by centrifugation at 11,270g for 10 min, washed in sterile
medium, and inoculated at an initial cell density of 107 cells/mL to
chalcopyrite cultures in 300-mL-Erlenmeyer flasks with 150 mL
MAC medium and 2% (wt/vol) chalcopyrite grains (50–100 mm
grain size). Equal proportions of cells of each species were used in
mixed cultures. All strains were cultivated on a rotary shaker at
37 �C and 150 rpm.

2.2. Microscopy sample preparation

About 25 mg of mineral grain particle samples were withdrawn
from mineral cultures using a flame-sterilized spatula and
incubated in 1 mL sterile MAC medium (pH 1.8) with 4%
formaldehyde at room temperature for 1 hour for fixation of
mineral-attached cells. This was followed by two washing steps
with water and subsequently with 1 mL phosphate-buffered saline
(PBS). Samples were stored at �20 �C in 50% ethanol in PBS.
Mineral particles were incubated for 10 min in 200 mL of an
aqueous solution of 0.01% 40,6-diamidine-20-phenylindole dihy-
drochloride (DAPI) in 2% formaldehyde. Before and after staining of
attached cells, mineral grains were washed with 1 mL PBS. Mineral
particles were mounted on 10-well diagnostic glass slides (10-well,
6.7 mm; Thermo Scientific) using a glycerol-based mounting
medium (CitiFluor AF2) and 22- by 50-mm cover glasses [30].

2.3. High-throughput epifluorescence microscopy

Microscopy images were obtained using the EFM platform
AxioImager M2m (Zeiss) equipped with a motorized microscopy
stage (IM SCAN 130 � 85 – DC 1 mm, Märzhäuser Wetzlar) and a
AxioCam MRm camera. This setup was used to generate sets of
images for different acidophile microbial mixtures. Each image
represented the bacteria stained on mineral particles in an area of
450 � 335 mm (see Fig. 2 and images in the Supplementary
Material section “Test For Humans”). Automated acquisition
allowed to image between 180 and 504 images per category
composed of a different combination of bacterial species that were
then used to train deep neural networks [30]. For all categories,
data augmentation was used by simple random image duplication
to obtain the same number of images (504) for each category used
for deep neural networks training.
atures are detected in the convolutional layer followed by processing of maximum
l species in the biofilm.



Fig. 2. Example of EFM images representing the different biofilm categories. The leaching mixtures were composed of A. caldus (A), L. ferriphilum (L), and S.
thermosulfidooxidans (S) that were used as pure or mixed cultures, resulting in the following categories: A, L, S, AS, LS, and ASL.
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2.4. Deep learning application

TensorFlow [31,32], developed by Google, is one of the most
recent deep learning frameworks and provides state-of-the-art
implementations to build CNNs. Briefly, the software is written in C
++ and offers interfaces to Python. A suite of visualization tools,
called TensorBoard, is included within TensorFlow that allows
visualization of networks in a web browser and to monitor the
training progress. The CNN training was carried out with Tensor-
Flow v1.6 in <10 h on an Intel Core i5 2.0 GHz computer (with 4
CPU cores) but the procedure can be shortened by parallelizing the
network training on GPUs (code and images are available in
Supplementary Material section “TensorFlow code and microscopy
images”). In order to account for variation in accuracy of the
algorithm and the effect of over-fitting, resampling was carried out
where the same procedure was applied to a different division of the
images into training and testing sets (see Supplementary Material
section “Deep Learning Resampling”).

2.5. Deep learning versus human expert performance

TensorFlow-based deep neural networks were trained on less
than 600 microscopy images (after data augmentation) per
experimental category (each category represented by a different
microbial composition of the leaching mixture, each grown on the
same mineral substrate and under same conditions). The leaching
mixtures were composed of A. caldus (A), L. ferriphilum (L), and S.
thermosulfidooxidans (S) that were used as pure or mixed cultures,
resulting in the following categories: A, L, S, AS, LS, and ASL. The
category AL (see examples in Supplementary Material section
“Example of AL Images”) was not processed because of the
insufficient images at disposition for CNN training compared to the
other categories and therefore was omitted in the present results.
Deep neural networks were subsequently trained on the different
categories and their ability to correctly assign new images was
tested on a subset of 100 images per category that were not
included in the training set. The training performance progress is
shown in Supplementary Material section “Deep Learning
Performance vs. Amount of Training Data”. Further, the same
approach was applied to human subjects in order to compare the
performance of neural networks versus humans in their ability to
distinguish biofilms of different bacterial composition, and classify
them according to their category based on visual features. Human
subjects (n = 20; all experienced in work related to microbial
bioleaching) were questioned once by a custom-built double-blind
test (see Supplementary Material section “Test For Humans”). The
test included a training set of images (70 images per category),
followed by a test section where subjects were asked to classify 10
unknown images belonging to the same categories as the training
set, which corresponded to the same image dataset used for the
deep neural network training. The “AS” category was not selected
by the random procedure generating the double-blind test for
human experts and therefore, it was omitted in the present results
(the accuracy of deep learning for identifying “AS” was 81%).

3. Results and discussion

3.1. Deep neural networks can identify characteristic biofilm patterns

Deep neural networks applied to our bioleaching experiments
correctly deduced the species or combination of species in a
biofilm of unknown composition. Moreover, the neural networks
achieved an accuracy of 92.8% compared to 51.5% by the human
experts consensus (Fig. 3; expected accuracy by random guessing
was approximately 17%, and the best human expert performance
was of 80% (see Supplementary Material section “Human Expert's
Performance”), deep neural networks performance with samples
devoid of bacteria was 16.67%, stdev = 2.87%, CV = 0.17% (see
Supplementary Material section “Negative Control”)). For example,
the deep neural network correctly classified 97 images out of 100
belonging to the category “A”, while misclassifying three of them
to either “SL” or “S” (Fig. 3). Surprisingly, the “SAL” category was
poorly classified by humans (13% accurate), but was the second-
best guessed category by neural networks (95% accurate). In
comparison, the best performance of deep neural networks for
image analysis in another biological area was approximately 72%



Fig. 3. Deep neural networks (A) versus human experts’ (B) ability in predicting the species composition of bacterial biofilms. The matrices indicate the share of images
correctly deduced in the diagonal line (shaded grey) and categories the misclassified images were assigned are shown in the horizontal plane.
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correct for classification of skin cancers compared to approxi-
mately 66% for expert dermatologists [23]. This does not imply
superiority of the method presented in this study, but might be
related to the nature of the analyzed images.

While it is difficult to determine the image features used by
deep neural networks that lead to a correct decision [22], the
following features were mentioned by human experts as decisive
factors for classification (see Fig. 2 and images in the Supplemen-
tary Material section “Test For Humans”): (i) Cellular shape, in
particular for the distinction between “S” having longer-shaped
cells compared to “A” and “L” plus “A” was identified based on a
slightly smaller size than “L”. (ii) Abundance of “L” cells imaged
compared to the other categories. (iii) Increased “A” cell clusters in
the colonization pattern compared to “L” and “S” being more
sparsely distributed. (iv) Poor attachment of “A” cells compared to
the other species. (v) The brightness of images representing “L”.
The reasons listed above partially account for the outcome of
human experts’ best performances, in particular concerning the
classification of “S”. However, it does not explain the major source
of confusion between the categories “SAL” and “SL” among human
experts that was not encountered in the deep learning evaluation.

3.2. Potential of CNNs for the characterization of biofilm colonization
pattern images

CNNs were trained on microscopy images of different bacterial
compositions and their ability to correctly classify new images was
tested and compared to human expert performance. This applica-
tion demonstrated that deep learning enabled image classification
based on recognition of attachment patterns, which are cryptic to
human perception. Moreover, our results were achieved with a
small training set (between 180 and 504 images per category, on
504 images per category after data augmentation) compared to
applications of equivalent performance (e.g.,129,000 images in Ref.
[23], 2 millions in Ref. [33]). Finally, the proposed methodology is
not limited to a specific experimental setup and therefore
represents a method of choice for microscopy imaging-based
quantification in environmental microbiology beyond the field of
biomining.

3.3. Limitations

One limitation of this study was represented by the low number
of human testing subjects that were not stratified into different
categories (e.g., experts, non-experts, etc.). Therefore, a reduced
number of subjects familiar to the field (termed “experts”, whose
expertise relied on their working experience related to microscopy
imaging of bacterial biofilms and bioleaching research for at least
eight months) were included, assuming that they would perform
better than subjects external to the field and that inclusion of the
non-experts would not improve the information. A further
limitation is the unclear character of the determining features
that the CNNs used to classify images. However, this common issue
relates to all applications of deep neural networks processing a
large amount of data [22]. Finally, the bioleaching bacteria of our
experimental setup form simpler biofilms in comparison to other
environments [4] and the presented method might have limited
performances when applied to other environmental samples with
a higher species diversity than typical, low-diversity bioleaching
environments.

4. Conclusions

Deep neural networks were trained on a reduced set of
microscopy images of microbial biofilms composed of different
bacterial bioleaching species colonizing chalcopyrite particles. The
performance of deep neural networks in correctly classifying new
images was compared to human experts’ ability in performing the
same task based on the same training set. Deep neural networks
showed superior performance compared to human experts and
were able to predict the presence of microbial species or
combination thereof in a biofilm of unknown composition. This
allowed to measure important features of biofilm development
under different experimental conditions by imaging only. There-
fore, this provides an efficient alternative to standard and time-
consuming biochemical methods, such as qPCR, which may be
biased by nonhomogeneous cell lysis during mineral sulfide
samples preparation [30]. Biofilms are important in biomining due
to ferric attack on the mineral and high concentrations of ferric
accumulate in the EPS. Therefore, studies of biofilm can help
optimize the bioleaching process. This methodology opens the way
to efficient evaluation of high-throughput microscopy imaging in
the field of mineral biofilm leaching, and is applicable beyond the
presented experimental setup.
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