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Intestine microbiota is tightly associated with host health status. Increasing studies have
focused on assessing how host intestine microbiota is affected by biotic factors but
ignored abiotic factors. Here, we aimed to understand the effects of salinity on shrimp
intestine microbiota, by comparing the differences of intestine bacterial signatures of
shrimp under low-salinity (LS) and high-salinity (HS) culture conditions. Our results
found that intestine core bacterial taxa of shrimp under LS and HS culture conditions
were different and that under HS contained more opportunistic pathogen species.
Notably, compared with LS culture conditions, opportunistic pathogens (e.g., Vibrio
species) were enriched in shrimp intestine under HS. Network analysis revealed that
shrimp under HS culture conditions exhibited less connected and lower competitive
intestine bacterial interspecies interactions compared with LS. In addition, under HS
culture conditions, several opportunistic pathogens were identified as keystone species
of intestine bacterial network in shrimp. Furthermore, the ecological drift process played
a more important role in the intestine bacterial assembly of shrimp under HS culture
conditions than that under LS. These above traits regarding the intestine microbiota
of shrimp under HS culture conditions might lead to host at a higher risk of disease.
Collectively, this work aids our understanding of the effects of salinity on shrimp intestine
microbiota and helps for shrimp culture.

Keywords: intestine microorganism, microbial assembly, shrimp, salinity, disease

INTRODUCTION

Intestine microbiota has fundamental roles in maintaining host health status (Hooper and Gordon,
2001; Boulangé et al., 2016). In this regard, it is important to determine the microbial signature of
host intestines and their influencing factors. For aquatic animals, numerous diseases are linked
with the dysbiosis of host intestine microbiota (Li et al., 2017; Dai et al., 2020; Huang et al.,
2020). Extensive studies have shown that the intestine microbiota of aquatic animals is strongly
affected by diet composition, trophic level, and developmental stage (Rungrassamee et al., 2013;

Frontiers in Microbiology | www.frontiersin.org 1 November 2020 | Volume 11 | Article 589164

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2020.589164
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2020.589164
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2020.589164&domain=pdf&date_stamp=2020-11-16
https://www.frontiersin.org/articles/10.3389/fmicb.2020.589164/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-589164 November 10, 2020 Time: 15:59 # 2

Hou et al. Salinity Affect Shrimp Intestine Microbiota

Yan et al., 2016; Xiong et al., 2017; Liu et al., 2018; Walburn et al.,
2019). These studies have primarily focused on assessing how
the intestine microbiota of aquatic animals is affected by biotic
factors but ignored abiotic factors. So far, research into the effects
of abiotic factors on the intestine microbiota of aquatic animals
has just begun. Some studies have shown that the intestine
microbiota of aquatic animals is significantly affected by the
salinity, ammonia, and temperature of rearing water (Sullam
et al., 2012; Cornejo-Granados et al., 2018; Huang et al., 2018).
Aquatic animals live in the water habitat with environmental
conditions (e.g., salinity, temperature) are constantly experience
changes, and whether these abiotic factors can influence on
host intestine microbiota, causing further adverse effects on host
health status, remains unknown.

Pacific white shrimp (Litopenaeus vannamei), as a euryhaline
specie, is present in a wide range of aquatic habitats and has
become one of the most profitable aquaculture species in the
word (FAO, 2016). However, the frequent occurrence of shrimp
bacterial diseases, such as early mortality syndrome (EMS), acute
hepatopancreatic necrosis disease (AHPND), hepatopancreas
necrosis syndrome (HPNS), and white feces syndrome (WFS),
has led to enormous economic losses every year worldwide
(Sriurairatana et al., 2014; Lee et al., 2015; Choi et al., 2016;
Huang et al., 2016; Xiong et al., 2017). In fact, the occurrence
of L. vannamei bacterial diseases is closely associated with
the obvious shifts in host intestine microbiota (Zhu et al.,
2016; Hou et al., 2018; Huang et al., 2020; Zeng et al., 2020).
Salinity is a very important abiotic factor affecting the intestine
bacterial signatures (Zhang et al., 2016) and health status (Ponce-
Palafox et al., 1997) of L. vannamei. It has been proposed
that shrimp culturing under low salinity conditions is one way
to counteracting disease problems and increasing production
(Valencia-Castañeda et al., 2018). Accordingly, it is essential to
explore what signatures of L. vannamei intestine microbiota
are affected by salinity and whether this effect is related to the
occurrence of the host disease.

The present study aims to explore the differences of the
bacterial signatures in shrimp intestine under relative lower
salinity (LS) and relative higher salinity (HS) culture conditions
with the following questions: (i) What are the differences of
the bacterial signatures in shrimp intestine under LS and HS
culture conditions? (ii) What ecological processes shape the
bacterial assembly of shrimp intestine under LS and HS culture
conditions? We also provide the first attempt to elucidate the
relationship between intestine bacterial signatures of shrimp
under LS and HS culture conditions and the risk of host
disease outbreaks. Our findings could provide a reference for
the study of abiotic factors affecting the intestine microbiota
of aquatic animals and help us establish the healthy culture
strategies for shrimp.

MATERIALS AND METHODS

Sample Collection
Two hundred seven shrimps were collected from Guangdong,
Hainan, Guangxi, and Fujian provinces in China. The sampled

shrimp culture ponds were of similar size (∼3,300 m2), water
depth (∼1.5 m), and shrimp stocking density (the culturing
began with a stocking of ∼200,000 shrimp larvae in each
pond) (Supplementary Table S1). All shrimps were 60 days
old, and the body average length was 10 cm. The salinity
of rearing water (measured on site using a YSI handheld
multiparameter instrument, Model YSI 380, YSI Incorporated,
OH, United States) corresponding to 120 and 87 (from 40 and 29
culture ponds, respectively) shrimps is in 0h < salinity ≤ 5h
and 5h < salinity < 10h groups (corresponding to LS and
HS groups, according to Hou et al. (2017); Supplementary
Table S1). Each shrimp intestine sample was aseptically dissected
and placed in a 2-mL sterile centrifuge tube containing
PBS. All shrimp intestine samples were stored at −80◦C
until DNA extraction.

DNA Extraction, PCR Amplification, and
Illumina MiSeq Sequencing
Shrimp intestine genomic DNA was extracted by a PowerFecal
DNA Isolation Kit (Mobio, Carlsbad, CA, United States)
following the manufacturer’s instruction. The V3–V4 regions
of the bacterial 16S rRNA gene were amplified using the
primers 338F and 806R. PCR was performed in 50-µL
reactions, with each containing 50 ng of purified DNA
as a template, and the following thermocycling conditions
were used: 25 cycles of denaturation at 95◦C for 30 s,
annealing at 55◦C for 30 s, and extension at 72◦C for 45 s,
with a final elongation at 72◦C for 10 min. Each sample
was pooled and purified using a PCR fragment purification
kit (Qiagen, GmbH, Hilden, Germany). Equimolar amounts
of amplicons from each sample were pooled and then
sequenced using a MiSeq 2 × 300 bp platform (Illumina, San
Diego, CA, United States) by Majorbio Bio-Pharm Technology
Co., Ltd. (Shanghai, China). The original MiSeq 16S rRNA
sequence data supporting the findings of this study have been
deposited in the NCBI BioProject database under the accession
number PRJNA545396.

The paired-end sequences were merged using FLASH (Magoč
and Salzberg, 2011) and then processed following the quantitative
insights into microbial ecology pipeline (QIIME version 1.9.0)
(Caporaso et al., 2010). In short, sequences with ambiguous
bases or truncations at any site for more than three consecutive
bases and receiving a Phred quality score (Q) <20 were
removed. Subsequently, chimeric sequences were removed using
the UCHIME algorithm (Edgar et al., 2011). The bacterial
phylotypes were identified using UCLUST (Edgar, 2010) and
classified into operational taxonomic units (OTUs) at a 97%
cutoff. The most abundant sequence from each OTU was selected
as a representative and was taxonomically assigned to a closed
reference genome using the RDP Classifier algorithm1 (Silva
SSU database 128), enabling a close relative to be identified
for each OTU. The α-diversity estimates were calculated
by analyzing the observed species using QIIME (Version
1.9.0). Core taxa provide information on microorganisms was
putatively identified important in the host intestine, and core

1http://rdp.cme.msu.edu/
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taxa were identified via the following criteria: core OTUs in
the LS and HS groups were those present in ≥90% (Qin
et al., 2010; Ainsworth et al., 2015) of 120 or 87 intestine
samples, respectively.

Ecological Process Analysis
We used the mean nearest taxon distance (MNTD) measure
to determine which processes govern the shrimp intestine
bacterial assembly. To evaluate the degree of non-random
phylogenetic relatedness, the “standardized effect size” of the
phylogenetic community structure (ses.MNTD) was calculated
for MNTD by determining the difference between phylogenetic
distances in the observed communities vs. those measured
for the null communities (999 randomizations), which was
divided by the standard deviation of the phylogenetic distances
in distribution (Kembel et al., 2010). These analyses were
implemented in the R (Ver 3.3.2) environment using the
package “Picante” (R Core Team, 2015). Similarly, the mean
distance between each taxon and its nearest neighbor (β-MNTD)
between a given pair of samples was computed by random
shuffling of OTUs and their abundances across phylogenetic
tips, which reflects the dissimilarity between the bacterial
communities (Stegen et al., 2013). The difference between the
observed β-MNTD and the mean of the null distribution
is referred to as the β-NTI. The fractions of all β-NTI
values that were > 2 or < −2 denote the relative influences
of heterogeneous and homogeneous selection, respectively
(Vellend, 2010). The β-NTI values in combination with the
Bray–Curtis distance (based on the Raup–Crick distance, RCBray)
was further used to quantify the contributions of major
ecological processes that determine bacterial assembly in the
shrimp intestine. Both of the β-NTI and RCBray values were
used to estimate the contributions of homogenizing dispersal
and dispersal limitation. That is, the fractions of pairwise
comparisons with |β-NTI| < 2 but RCBray > 0.95 or < −0.95
were used to estimate the relative importance of dispersal
limitation or homogenizing dispersal processes, respectively
(Stegen et al., 2013). The fraction of pairwise comparisons
with |β-NTI| < 2 and |RCBray| < 0.95 represented the
component of compositional turnover governed by the ecological
drift process (Stegen et al., 2015). Among these processes,
selection or ecological drift is unambiguously deterministic or
stochastic (Chase et al., 2011; Vellend et al., 2014), whereas
dispersal can be either deterministic, stochastic, or both
(Hanson et al., 2012).

Statistical Analysis
Partial least squares discrimination analysis (PLS-DA) was
performed to assess the bacterial similarity based on the Bray–
Curtis distance. Then, the relationships between bacterial OTUs
in the LS and HS groups were studied using Venn analysis.
Welch’s t-test was used to compare the bacterial diversity indices
and differentially abundant taxa (at OTU or genus level) between
the two groups, and then the Sidak was used for multiple
test correction. Further, we evaluated the extent of bacterial
interspecies interactions of shrimp intestine in the two groups

using an open-accessible pipeline2 (Deng et al., 2012). To quantify
the interspecies interactions, a set of topological properties
were calculated, including the average path length, clustering
coefficient, and co-occurrences (Mej, 2003), and the resulting
network was visualized via Cytoscape 3.6.1.

RESULTS

Bacterial Diversity of Shrimp Intestine in
the LS and HS Groups
We recovered 9,932,526 high-quality sequences, and after
subsampling 29,499 sequences per sample, 6,106,293 sequences
were retained (Supplementary Table S2). A total of 5,957
intestine bacterial OTUs of shrimp were identified in this study,
among which 4,630 and 5,636 OTUs were identified in the LS and
HS groups, respectively (Figure 1A). Among these OTUs, 4,309
were shared between the two groups, while 321 and 1,327 were
only in the LS and HS groups, respectively (Figure 1A), revealing
that the OTU number in the two groups exhibited a high level
of variation. Then, the α-diversity indices were calculated using
the rarefaction curves at the OTU level at a sequencing depth
of 29,499 with 1,000 iterations, where Shannon, Simpson, Ace,
and Chao indices were stable (Supplementary Figure S1). These
α-diversity indices in the LS group were slightly higher than in
the HS group, but Welch’s t-test results indicated that there was
no significant (P > 0.05) difference between the two compared
groups (Supplementary Table S3). For the β-diversity, the PLS-
DA results showed a marked variation in the shrimp intestine
bacterial structures in the two groups (Figure 1B).

Core Bacterial Taxa of Shrimp Intestine
in the LS and HS Groups
The core taxa of shrimp intestine bacterial communities in
the two groups were identified based on the frequency of
OTU occurrence. Forty-three and 65 OTUs were identified
as the core OTUs in the LS and HS groups, accounting
for 56.76 and 76.70% of all intestine bacterial sequences
obtained, respectively (Figure 2). At the phylum level, the
intestine core bacterial OTUs of shrimp in the LS group
were Proteobacteria, Cyanobacteria, Actinobacteria, Chloroflexi,
Tenericutes, Bacteroidetes, Fusobacteria, and Verrucomicrobia
(Figure 2A), while those observed for the HS group included
Proteobacteria, Cyanobacteria, Actinobacteria, Saccharibacteria,
Bacteroidetes, Fusobacteria, Chloroflexi, Tenericutes, Firmicutes,
Verrucomicrobia, and Planctomycetes (Figure 2B). Thus, the
intestine core taxa of shrimp in the two groups were distinct
from each other. In addition, Vibrio OTU4739 and Vibrio
OTU5086 were identified as core OTUs in the LS group, while
Vibrio OTU5086, Vibrio OTU4739, Candidatus Bacilloplasma
OTU725, Vibrio OTU5173, Vibrio OTU69, Vibrio OTU5511,
Vibrio OTU1341, Vibrio OTU688, and Vibrio OTU815 were
identified as core OTUs in the HS group (Supplementary
Table S4), showing that the core taxa under HS culture conditions
included more opportunistic pathogen species.

2http://ieg2.ou.edu/MENA
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FIGURE 1 | Compare the bacterial diversity of shrimp intestine in the LS and HS groups. (A) Schematic drawing showing the detected shrimp intestine bacterial
OTUs found in the LS and HS groups using the Venn analysis. There were 4,309 OTUs shared between the two groups, while 321 and 1,327 OTUs were only in the
LS and HS groups, respectively. (B) The PLS-DA of the bacterial community structure of shrimp intestine in the LS and HS groups based on the Bray–Curtis
distance, and the results showed marked differences in the two groups.

FIGURE 2 | Abundance and composition of core OTUs of shrimp intestine in the LS and HS groups. (A) Forty-three OTUs were identified as the core OTUs in the LS
group, accounting for 56.76% of all intestine bacterial sequences obtained, which belonged to Proteobacteria, Cyanobacteria, Actinobacteria, Chloroflexi,
Tenericutes, Bacteroidetes, Fusobacteria, and Verrucomicrobia. (B) Sixty-five OTUs were identified as the core OTUs in the HS group, accounting for 76.70% of all
intestine bacterial sequences obtained, which belonged to Proteobacteria, Cyanobacteria, Actinobacteria, Saccharibacteria, Bacteroidetes, Fusobacteria,
Chloroflexi, Tenericutes, Firmicutes, Verrucomicrobia, and Planctomycetes.

Opportunistic Pathogens Enriched in
Shrimp Intestine in the HS Group
To compare the intestine bacterial taxonomic compositions of
shrimp in the two groups, we assessed their bacterial profiles at
the phylum and genus levels. At the phylum level, Proteobacteria,
Cyanobacteria, Tenericutes, Bacteroidetes, Firmicutes,

Fusobacteria, Chloroflexi, Actinobacteria, Saccharibacteria,
and Verrucomicrobia were the 10 most abundant phyla in
shrimp intestine (Figure 3A). At the genus level, Vibrio,
Photobacterium, Candidatus Bacilloplasma, Shewanella,
Spongiimonas, Synechococcus, Aeromonas, Rhodobacter,
Propionigenium, and Pseudomonas were the 10 most abundant
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FIGURE 3 | Bacterial profiles of shrimp intestine in the LS and HS groups. Relative abundance of phyla (A) and genera (B) in the LS and HS groups. Proteobacteria,
Cyanobacteria, Tenericutes, Bacteroidetes, Firmicutes, Fusobacteria, Chloroflexi, Actinobacteria, Saccharibacteria, and Verrucomicrobia were the 10 most abundant
phyla in shrimp intestine, while Vibrio, Photobacterium, Candidatus Bacilloplasma, Shewanella, Spongiimonas, Synechococcus, Aeromonas, Rhodobacter,
Propionigenium, and Pseudomonas were the 10 most abundant genera, with the relative abundances of these genera varying between the two groups.

genera in shrimp intestine, with the relative abundances of these
genera varying between the two groups (Figure 3B). Welch’s
t-test results further showed that the relative abundances of the
10 genera and 17 OTUs were significant differences (P < 0.05
in all cases) between the two groups. The relative abundances
of Vibrio, Propionigenium, Spongiimonas, and Synechococcus
were overrepresented in the HS group, whereas those of
Roseomonas, Rhodobacter, Aeromonas, Pseudomonas, Snowella,
and Fusibacter were higher in the LS group (Figure 4A). At
the OTU level, the relative abundances of Vibrio OTU5173,
unclassified OTU5515, unclassified OTU518, Vibrio OTU1341,
unclassified OTU5907, Propionigenium OTU658, Vibrio OTU69,
Synechococcus OTU516, unclassified OTU1686, Vibrio OTU5086,
and Spongiimonas OTU5851 were overrepresented in the HS
group. In contrast, the relative abundances of Rhodobacter
OTU2735, unclassified OTU1921, unclassified OTU2916,
Aeromonas OTU5959, unclassified OTU2727, and Shewanella
OTU4428 were higher in the LS group (Figure 4B). Interestingly,
Vibrio OTU5173, Vibrio OTU1341, Vibrio OTU69, and Vibrio
OTU5086 were core OTUs and overrepresented in the HS
group (Figure 4B).

Opportunistic Pathogens Are Keystone
Species of Shrimp Intestine Interspecies
Interactions in the HS Group
To investigate whether salinity significantly affected the intestine
bacterial co-association networks of shrimp, the OTU table was
split into two datasets (the bacterial OTUs in the two groups)
to quantify the interspecies interactions. Network analysis results

suggested that the average degree indices of shrimp intestine
bacterial communities were 17.40 and 16.34, while the average
clustering coefficient index values of 0.58 and 0.59 but graph
density index values of 0.34 and 0.22 were observed in the
LS and HS groups, respectively (Supplementary Table S5),
revealing that the shrimp intestine bacterial network was more
complex and better connected in the LS group. Moreover, the
observed co-associations were predominantly negative, and the
relative negative co-occurrences were 97.40 and 89.35% in the
LS and HS groups, respectively (Figure 5), indicating obviously
higher interspecies competitive activities of the shrimp intestine
bacterial community in the LS group.

Additionally, Vibrio OTU64, Vibrio OTU815, and
Pseudomonas OTU2874 (degree = 49, 44, and 41, respectively)
were keystone species (higher degree nodes were reported as
keystone species) that had numerous neighbors in the HS group,
while Vibrio OTU5173, Vibrio OTU4739, Vibrio OTU5086,
Vibrio OTU1341, and Vibrio OTU69 (degree = 2, 1, 1, 1, and 1)
had only a few neighbors in the HS group network (Figure 5B).
Interestingly, Vibrio OTU815 (a keystone species), Vibrio
OTU5173, Vibrio OTU4739, Vibrio OTU1341, Vibrio OTU69,
and Vibrio OTU5086 were also identified as shrimp intestine
core OTUs in the HS group (Figure 5B and Supplementary
Table S6), with Vibrio OTU5173, Vibrio OTU1341, Vibrio
OTU69, and Vibrio OTU5086 being overrepresented in this
group (Figure 4B). Further, most of the neighbors in the
bacterial co-association network negatively interacted with
Vibrio OTU64, Vibrio OTU815, and Pseudomonas OTU2874
from shrimp intestine in the HS group (Figure 5B). Thus, in
the HS group, some opportunistic pathogens (especially Vibrio
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FIGURE 4 | Bacterial taxonomic comparison of shrimp intestine in the LS and HS groups. Welch’s t-test results showed that the relative abundances of the 10
genera (A) and 17 OTUs (B) had significant differences between the LS and HS groups (∗P < 0.05, ∗∗P < 0.01).

OTU815) are keystone species involved in bacterial interspecies
interactions of shrimp intestine.

Ecological Processes Governing the
Shrimp Intestine Bacterial Assembly
The relative contributions of major ecological processes were
quantified to evaluate the shrimp intestine bacterial assembly in
the two groups. The results showed that approximately half of
the observed variation was attributable to dispersal limitation
(45.87%) and homogeneous selection (42.18%) processes in the
LS group, while the drift process contributed to only 10.91%
variation (Figure 6A). In the HS group, over one-third of the
variation was attributed to homogeneous selection (44.51%)
and dispersal limitation (34.40%) processes, while the ecological
drift process contributed to 20.24% of the observed variation
(Figure 6B). By contrast, the contributions of homogenizing
dispersal and heterogeneous selection processes were much less

pronounced for shrimp intestine bacterial communities in the
two groups (Figure 6). Importantly, these findings indicated that
the relative contribution of ecological drift processes that govern
the shrimp intestine bacterial community in the HS group was
higher than in the LS group.

DISCUSSION

The intestine microbiota of shrimp is increasingly recognized
to facilitate host health, and its influencing factors have been
extensively studied. To the best of our knowledge, the intestine
microbiota of shrimp is not only affected by biotic factors (Burns
et al., 2016; Dai et al., 2017; Zeng et al., 2017) but also by
abiotic factors (e.g., salinity and temperature) (Zhang et al., 2016;
Huang et al., 2018). Our study reinforced the evidence that the
shrimp intestine bacterial communities are influenced by the
salinity of rearing water, with marked variations observed of
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FIGURE 5 | Bacterial co-association network of shrimp intestine in the LS and HS groups. Shrimp intestine bacterial interspecies interactions in the LS (A) and HS
(B) groups. Each node represents a bacterial OTU. The colors of nodes indicate OTUs affiliated to different phyla. A blue edge indicates a positive interaction
between two individual nodes, whereas a red edge indicates a negative interaction.

FIGURE 6 | Ecological process analyses on shrimp intestine bacterial assembly in the LS and HS groups. (A) Approximately half of the observed variation was
attributed to dispersal limitation and homogeneous selection processes in the LS group, while the drift process contributed to only 10.91% variation. (B) Over
one-third of the variation was attributed to homogeneous selection and dispersal limitation processes in the HS group, while the ecological drift process contributed
to 20.24% of the observed variation.

taxonomic composition, core taxa, and interspecies interactions
under different salinity culture conditions. Similarly, there was
a study found that the most important biological factor in
structuring the shrimp intestine microbiota was the marine
and freshwater environment, and the freshwater showed higher
bacterial diversity than marine shrimps (Cornejo-Granados
et al., 2018). In addition, other studies also indicated that
strong influences of salinity on the taxonomic composition
and interspecies interactions of intestinal microbiota in other
aquatic animals, such as fish and crayfish (Zhang et al., 2016;
Liu et al., 2020). Thus, salinity affects the intestine microbiota
of a wide variety of aquatic animals. In addition, we identified
the indicative bacterial taxa of shrimp intestine under LS and
HS culture conditions and found that the relative abundances
of 17 bacterial OTUs in shrimp intestine were significantly
different under LS and HS culture conditions. Especially, some

opportunistic pathogens (especially some Vibrio species) were
enriched in shrimp intestine under HS culture conditions. It is
worth noting that these opportunistic pathogens identified as
being enriched in host intestine were generally accompanied by
shrimp bacterial disease outbreaks, as shown in previous works
by our lab and others (Xiong et al., 2017; Huang et al., 2020).

Based on the recent progress, it is apparent that the specific
microbes present in intestines are selected for by hosts (Burns
et al., 2016). Depending on the environment in which the host
lives, the specific microbes selected by the host intestine will
be different (Mortzfeld et al., 2016). Thus, our study raises an
important question: what specific microbes are being selected
for in shrimp intestine under different salinity conditions?
To address this concern, we compared the intestine core
bacterial taxa compositions of shrimp cultured under LS and
HS conditions and found that different core bacterial taxa were
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selected by shrimp intestine. For the host, intestine core microbial
taxa may be acquired early in life, and because they make
substantial contributions to basic intestine microbial functions
(Shade and Handelsman, 2012), they may be actively retained and
managed by hosts (Franzosa et al., 2015). Generally, intestine core
microbial taxa are considered beneficial to the host health (Walter
and Ley, 2011). However, our study found that the intestine
core taxa of shrimp under HS culture conditions contained
more opportunistic pathogen species. A possible reason may
explain such observations: to improve host fitness, hosts must
recruit suitable microbial taxa that perform a variety of functions
(McFall-Ngai et al., 2013), and the colonization of bacteria
in intestines from external environments occurs as a result
of deterministic processes (Xiong et al., 2018), but stochastic
processes also promote the establishment and success of external
microbial taxa, including both symbionts and opportunistic
pathogens (Mallon et al., 2015). A previous research has found
that the increased importance of the ecological drift process
in the shrimp intestine microbiota promotes the acquisition of
opportunistic pathogens (Zhu et al., 2016). In our study, a much
greater contribution of the ecological drift process governing the
shrimp intestine bacterial assembly was also observed under HS
than LS culture conditions, potentially explaining why so many
opportunistic pathogen species were part of the core taxa and
enriched in shrimp intestine under HS culture conditions.

Additionally, the complexity of microbial interspecies
interactions in host intestine is closely associated with
community functional potential (Riva et al., 2017). More
importantly, the co-occurrence equilibrium of intestine
microbiota may provide an index for evaluating the risk of host
disease (Xiong et al., 2018). In this study, intestine bacterial
interspecies interactions of shrimp under LS culture conditions
were more complex and better connected than those observed
under HS culture conditions. In particular, under HS culture
conditions, some opportunistic pathogens were keystone species
and played important roles in intestine bacterial interspecies
interactions of shrimp. These traits suggested to some extent that
shrimp cultured under HS culture conditions may be at high risk
of disease. Moreover, we observed that most of all the neighbors
of bacterial interspecies interactions in shrimp intestine
negatively interacted with opportunistic pathogens under HS
culture conditions. A potential reason for this observation is
that the resistance to pathogen colonization is mediated by
multiple microbial taxa that interact in a context-dependent
manner (Schubert et al., 2015). However, in the host intestine,
the opportunistic pathogens can create ecological niches
that facilitate their expansion and advantages to outcompete
commensals (Thiennimitr et al., 2011; Mallon et al., 2015). These
abilities may explain why some opportunistic pathogens were
keystone species of intestine bacterial interspecies interactions of
shrimp under HS culture conditions.

CONCLUSION

This study aimed to understand what signatures of shrimp
intestine microbiota are affected by salinity and whether this

effect is related to risk of host disease outbreaks, by comparing
the intestine microbiota of shrimp under LS and HS culture
conditions. Our findings illustrated that intestine core bacterial
taxa of shrimp under HS culture conditions contained more
opportunistic pathogen species and that some of them were
enriched. The potential reason was that the ecological drift
process plays a more important role in the intestine bacterial
assembly of shrimp under HS culture conditions than under LS
culture conditions. In addition, under HS culture conditions,
several opportunistic pathogens were keystone species of
bacterial interspecies interactions in shrimp intestine. These
results suggested that shrimp under HS culture conditions may
be at a higher risk of disease outbreaks. Collectively, our study
provides ecological insights for understanding the effects of
salinity on shrimp intestine microbiota and contributes to the
establishment of healthy shrimp culture strategies.
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