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A B S T R A C T

BACKGROUND: Spinal cord atrophy occurs early in the multiple sclerosis (MS) disease course, is closely related to physical
disability, and is a putative neuroprotective therapeutic outcome measure.
OBJECTIVE: This pilot study explored glatiramer acetate (GA)’s effect on spinal cord volume in patients with relapsing-
remitting MS (RRMS).
METHODS: Fifteen patients receiving daily subcutaneous GA were prospectively followed. At baseline, age was 43.6 ±
7.4 years, Expanded Disability Status Scale (EDSS) score was 1.4 ± 1.5, timed 25-foot walk (T25FW) was 4.7 ± 1.1 seconds,
and time on GA was 2.1 ± 3.1 years. Healthy controls (n = 10) with similar age and sex to the patients were also enrolled. The
spinal cord was imaged at baseline and one year later with 3T magnetic resonance imaging. An active surface method measured
the C1–C7 spinal cord volume from which we calculated the normalized area.
RESULTS: The spinal cord area showed no significant change in the MS group over one year (P = .19). Furthermore, the change
in the spinal cord area did not differ significantly between the MS and control groups over one year (P = .26). In the MS group,
the EDSS score (P = .44) and T25FW (P = .92) did not change significantly on-study.
CONCLUSION: In this pilot study of RRMS, GA therapy was not associated with any ongoing spinal cord atrophy or any
difference in the one-year rate of spinal cord area change versus healthy controls. These results paralleled the lack of clinical
worsening and may reflect a treatment effect of GA. Further studies are needed to confirm these preliminary findings.
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Introduction
Spinal cord atrophy is present in multiple sclerosis (MS) early
in the disease course and is a major contributor to physi-
cal disability.1–4 Improvements in magnetic resonance imaging
(MRI) technology, both in scan acquisition and segmentation
techniques, have led to a growing interest in the measurement
of spinal cord atrophy to assess disease progression and treat-
ment effects.1,4–8 However, few studies to date have assessed
the effects of MS disease-modifying therapy (DMT) on spinal
cord atrophy.1,9–12 Yet, there is increasing evidence to suggest
that brain and spinal cord MS involvement are independent
from each other1,13–16 and provide complementary information
about disease severity and treatment effects.17

Glatiramer acetate (GA), given subcutaneously, is an ap-
proved DMT for MS that has been shown to reduce relapse
rates, decrease cerebral MRI-defined lesion load and activ-
ity, and limit increases in physical disability.18 While a few
MS studies have demonstrated a reduction in brain atrophy in
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patients receiving GA,19–22 its effect on spinal cord atrophy has
not been studied. Our study explored the one-year effect of GA
treatment on cervical spinal cord volume.

Methods
Subjects

Our hospital’s institutional review board approved this study.
Participants gave written informed consent. The participant’s
medical record was examined, followed by a telephone inter-
view to determine suitability to enter the study. We excluded
those with a history of major medical, neurologic, or neuropsy-
chiatric disorders; current or prior history of substance abuse; or
any condition that precluded MRI. Subjects were also excluded
if they had congenital or acquired spinal canal narrowing on
MRI scans to avoid any confounding myelopathic effects on
cord volume. All patients with MS had not experienced a re-
lapse or corticosteroid use within the four weeks before study
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Table 1. Clinical and MRI Data in Patients with Multiple Sclerosis and
Healthy Controls at Baseline and One-Year Follow-Up

Patients Controls

Number of subjects 15 10
Age (years)† 43.6 ± 7.4 45.1 ± 5.7
Range 27.4 - 55.2 31.9 - 49.4
Women, n (%)†† 13 (87%) 8 (80%)

Expanded Disability
Status Scale score*

Baseline 1.4 ± 1.5 –
Follow-up 1.2 ± 1.7 –

Timed 25-foot walk (seconds)**

Baseline 4.7 ± 1.1 –
Follow-up 4.9 ± 1.0 –

Cervical spinal cord
cross-sectional
area (mm2)

Baseline 60.0 ± 9.9 61.3 ± 6.9
Follow-up 61.6 ± 9.7 64.8 ± 8.6

Change in
cross-sectional area
(mm2)***

1.6 ± 4.5 3.5 ± 3.9

Note: Data are mean ± SD except as noted.
†P = .495; ††P = 1.0
*P = .44 (baseline vs. follow-up); **P = .92 (baseline vs. follow-up); ***P = .26.

entry and had initiated GA therapy (20 mg/day subcutaneously)
within the 10 years before study entry. Total enrollment was
25 subjects: 15 with relapsing-remitting MS (RRMS)
(13 women) and 10 healthy controls (8 women). Recruitment
age was (mean ± SD) 43.6 ± 7.4 years for the MS group and
45.1 ± 5.7 years for healthy controls. There was no statistically
significant difference in age and sex distribution between the
two groups (P > .05, Table 1). An MS specialist neurologist
performed clinical examinations every six months, and pro-
vided routine clinical care during the observation period. At
baseline, patients had a disease duration (time since first symp-
toms) of 7.5 ± 7.2 years; the time on GA was 2.1 ± 3.1 years.
Baseline Expanded Disability Status Scale (EDSS) scores and
timed 25-foot walk (T25FW) values are noted in Table 1.

MRI Acquisition

All subjects underwent cervical spinal cord imaging on the same
3T scanner with a consistent acquisition protocol throughout the
study. Spine MRI was performed with an eight-channel phased
array coil at 20-mT/m maximal gradient strength at baseline
and one year later. Spinal axial T2 fast spin-echo images cov-
ered the whole spinal cord and had the following parameters:
field-of-view (FOV), 24 × 19 cm; matrix size, 256 × 256; sec-
tion thickness, 3 mm with no gap; repitition time (TR), 6,116.66
ms; echo time (TE), 110.24 ms; echo-train length, 12; number
of signal intensity averages, 2; flip angle, 90°; and voxel size,
.937 × .937 × 3 mm.

MRI Analysis

MRI scans were transferred to our laboratory where anal-
ysis was performed using the Jim software package (Ver-
sion 7.0, Xinapse Systems, Northants, United Kingdom;
www.xinapse.com). Analysis was performed by two experi-
enced observers who were unaware of clinical information.

Spinal cord measurements were obtained from the C1–C7
vertebral levels, using a semiautomated pipeline. The cord con-
tour was first determined using a highly reproducible active sur-
face tool.5 Sagittal reconstructed images were cross-referenced
to the axial images to allow precise identification of vertebral
levels. Manual adjustments were applied where necessary to as-
sure accurate cord contours. The final cervical (C1–C7) spinal
cord cross-sectional area was obtained by dividing the total vol-
ume by the number of axial slices. This method of normaliza-
tion is based on our previous work.23 The mean cross-sectional
area obtained in our laboratory by this T2-derived technique
shows high intrarater and interrater reliability, with coefficients
of variation of .66% and .99%, respectively.24

In addition, the same trained observers assessed the number
of spinal cord lesions in each subject. These data are provided
for descriptive purposes only.

Statistical Analysis

On-study one-year change in spinal cord area was compared
between the MS and NC groups using the exact Wilcoxon rank
sum test. In the MS group, on-study change in EDSS and T25W
was tested using the Wilcoxon signed rank test. Between group
age was compared with the exact Wilcoxon rank sum test and
sex was compared with a Fisher’s exact test. A P < .05 was
considered statistically significant.

Results
There was no statistically significant difference in the on-study
change in spinal cord area between the MS and control groups
over one year. The mean change in spinal cord area was 1.6 ±
4.5 mm2 in patients with MS and 3.5 ± 3.9 mm2 in the control
group (P = .26) (Table 1, Fig 1).

Regarding disability measures, there was no statistically
significant difference in EDSS scores between baseline and

Fig 1. Spinal cord change in both groups over one year. Changes in
cervical spinal cord cross-sectional area (one-year follow-up minus
baseline) in healthy controls (HC) and patients with multiple sclerosis
(MS). Boxplots are presented with diamonds representing means,
lines representing medians, areas extending from lower to upper
quartiles, and whiskers extending to minima and maxima. The mean
change in spinal cord area was 1.6 ± 4.5 mm2 with 95% confidence
interval (−.9, 4.1) in MS, and 3.5 ± 3.9 mm2 with 95% confidence
interval (.7, 6.3) in HC (P = .26).
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Fig 2. Sample images; MRI-defined spinal cord lesion versus nor-
mal appearing spinal cord. Representative T2-weighted 3T MRI
scans are shown. (A) A hyperintense lesion (arrows) indicating a cer-
vical spinal cord lesion (at the C4 vertebral level) is seen in the axial
and sagittal planes of a 50-year-old woman with relapsing-remitting
MS (disease duration = 16 years, Expanded Disability Status Scale
score = 0, timed 25-foot walk = 4.6 seconds). (B) 31-year-old woman,
healthy control, with no lesions (axial image shown from the C4
vertebral level).

one-year follow-up in the MS group (1.4 ± 1.5 vs. 1.2 ± 1.7,
P = .44). Similarly, there were no statistically significant on-
study changes in T25FW (4.7 ± 1.1 vs. 4.9 ± 1.0 seconds, P =
.92) (Table 1).

The number of lesions per patient in the whole spinal cord
was .40 ± .82 (range 0–2) at baseline, and .46 ± .82 (range
0–2) at follow-up (Fig 2). Most of the MS subjects (73%) were
free of lesions at both baseline and follow-up scans. No spinal
cord lesions were detected in the healthy controls at either the
baseline or one-year time point.

Discussion
We report the results of a pilot study investigating the
one-year effect on cervical spinal cord volume of GA treatment
in patients with RRMS. This was a “real-world” study with no
untreated comparison patient group available for comparison.
This reflects the widespread usage and availability of numerous
DMTs for RRMS. Atrophy was not detected in patients over
one year and there was no difference in their spinal cord area
change during the year as compared to healthy controls. These
findings may represent a protective effect of GA in prevent-
ing spinal cord atrophy and neurodegeneration. Although this
inference is not definitive because of the lack of a control un-
treated MS group, our study provides valuable information, as
few studies have examined spinal cord atrophy in response to
treatment in RRMS.

Previous studies have shown a partial but significant treat-
ment effect on brain atrophy in MS patients treated with

GA.19–22 Such an effect can be demonstrated fairly consistently
in placebo-controlled phase III studies of a range of DMTs in
patients with RRMS.22 In terms of the potential effect of GA on
spinal cord atrophy, Shipova et al25 have shown significantly
less cervical spinal cord atrophy in MS patients treated with
GA versus those on interferon beta treatment. In their study,
spinal cord atrophy measurement was based on the linear size
of spinal cord on sagittal sections at the level of the inferior
margin of the C2 vertebral body.

Similarly, in animal studies, GA treatment was associ-
ated with an increase in myelinated axons and decreased
microglial/macrophage activation and T-cell infiltration in an
experimental allergic encephalomyelitis (EAE) model. More-
over, there were fewer amyloid precursor protein positive ax-
ons in the spinal cord of GA-treated versus untreated EAE mice,
suggesting reduced axonal degeneration.26 Other mechanistic
studies have suggested that GA-reactive Th2 lymphocytes may
have anti-inflammatory, neuroprotective, and bystander sup-
pressive effects.18 GA treatment is hypothesized to exert its
neuroprotective effect, in part, by upregulating brain-derived
neurotrophic factor (BDNF).27

A controversy exists regarding the time of appearance of
spinal cord atrophy in the disease course of MS. While some
studies have shown spinal cord atrophy early in the course of
the disease including in patients with their first symptoms of
demyelination or early stages of RRMS,3,28–31 others have not
confirmed these findings and contend that spinal cord atrophy
does not appear in MS until later stages of RRMS or in the sec-
ondary progressive phase of the disease.1,5,8,23,32 Furthermore,
the presence of inflammation and edema, particularly in the
early stages of MS, may mask spinal cord atrophy. This lack
of sensitivity to early spinal cord atrophy in MS may be poten-
tially overcome by focusing on gray matter (instead of whole
spinal cord) volume loss.7 Hence, it is possible that our findings
may have been limited by methodological issues. In addition,
the patient characteristics of our sample presented a potential
sensitivity bias, owing to the mild disability, and lack of spinal
cord lesions in many of the patients, despite their advanced age
and disease duration.

In terms of our technical approach, we obtained normalized
spinal cord areas using a highly reproducible semiautomated
segmentation tool. This segmentation approach was applied
to 2-dimensional images given their availability and our prior
demonstration that these images were highly reproducible and
sensitive to disease-specific effects in assessing cord volume.24

Several groups have used high-resolution 3-dimensional
images13,33–35 and fully automated segmentation pipelines6,8,36

to measure spinal cord volume, which we did not employ in
this study. Hence, it is possible that our MRI approach, both on
the basis of scan acquisition and postprocessing technique, may
have lacked the precision to detect ongoing spinal cord atrophy.

Conclusion
In this pilot study of patients with RRMS, GA therapy was
not associated with any significant ongoing spinal cord atrophy
over one year. There was also no significant difference in the
one-year rate of spinal cord area change compared to healthy
controls. These results paralleled the lack of clinical worsening
and may reflect a treatment effect of GA. However, further
studies, addressing a range of methodologic issues and patient
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characteristics, and a larger sample size, are needed to confirm
these preliminary findings.
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