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Objective: To identify the potential biomarkers for predicting depression in diabetes

mellitus using support vector machine to analyze routine biochemical tests and vital signs

between two groups: subjects with both diabetes mellitus and depression, and subjects

with diabetes mellitus alone.

Methods: Electronic medical records upon admission and biochemical tests and vital

signs of 135 patients with both diabetes mellitus and depression and 187 patients with

diabetes mellitus alone were identified for this retrospective study. After matching on

factors of age and sex, the two groups (n = 72 for each group) were classified by

the recursive feature elimination-based support vector machine, of which, the training

data, validation data, and testing data were split for ranking the parameters, determine

the optimal parameters, and assess classification performance. The biomarkers were

identified by 10-fold cross validation.

Results: The experimental results identified 8 predictive biomarkers with classification

accuracy of 78%. The 8 biomarkers are magnesium, cholesterol, AST/ALT, percentage

of monocytes, bilirubin indirect, triglyceride, lactic dehydrogenase, and diastolic blood

pressure. Receiver operating characteristic curve analysis was also adopted with area

under the curve being 0.72.

Conclusions: Some biochemical parameters may be potential biomarkers to predict

depression among the subjects with diabetes mellitus.

Keywords: diabetes mellitus, depression, support vector machine, biomarkers, machine learning method

INTRODUCTION

Diabetes mellitus is a chronic illness affecting about 347 million people worldwide in 2017, and
this number is expected to increase more than half by 2035 (1, 2). The disease will also lead to
emotional distress other than physical symptoms and impose psychosocial impacts on life quality,
which complicates its management.

Depression and diabetes mellitus are common comorbid conditions (3). A meta-analysis
reported that patients with diabetes mellitus more than doubled the odds of developing depression
(3). Another study described that depression was highly prevalent, affecting ∼26% of the patients
with diabetes mellitus (4). In addition, depression was found to be associated with a greater number
of complications of diabetes mellitus (5). Furthermore, depression itself is a disabling disease and
imposes a significant impact on life quality by undermining physical health (6) and impairing
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cognitive functions (7). Therefore, it is not surprising that
diabetes mellitus comorbidity with depression is associated with
higher morbidity and mortality rates, decreased compliance with
treatment, poorer functionality, poor glycemic control, and more
expenditure on use to health services (7–12). A prospective study
involving more than 4,000 patients having diabetes mellitus with
comorbidity of depression reported a higher risk of developing
macrovascular complications, even when variables such as the
type of treatment and the existed history of complications before
the study were controlled (13). This highlights the severity of
diabetes mellitus in comorbidity with depression and the need
to treat both conditions concurrently.

Comorbid depression in diabetes mellitus might be
considered not as the result of mental problem only, but
more important, as an early sign of a multi-systemic disorder.
Thus, medical monitoring is an important component of case
assessment. The diagnosis of depression mainly depends on
doctors’ clinical experience and scale. The lack of objective
indicators, the strong subjective consciousness of doctors and
patients, and the avoidance or denial in some symptoms due
to patients’ insufficient understanding of the disease interfere
with the accuracy of scale score; and this may affect the correct
diagnosis of the disease (14–16). Therefore, it is particularly
important to identify objective indicators of depression diagnosis
and establish scientific diagnostic methods. Nonetheless, very
few approaches have been proposed to facilitate early prediction
depression in patients having diabetes mellitus because objective
indicators of laboratory examinations are rare.

Recently, machine learning algorithms have been widely used
in the medical sciences. It was reported that machine learning
algorithms in combination with smartphone-based data will
be a new approach to classify affective states accurately in
bipolar disorder (17). In addition, machine learning methods
may be used to predict treatment effect of electroconvulsive
therapy (ECT) (18), cognitive behavioral therapy (CBT) (19), and
clozapine (20); or to help diagnostic clarification (21). According
to Kim et al., comprehensive machine-learning methods that
adopt supervised classification and appropriate feature selection
methods that have interaction with the classifier show particular
advantages in predicting complicated disorders with multi-facet
etiology such as depression (22). Support Vector Machine (SVM)
is a method of machine learning and is of great significance in
accurately identifying depression among patients with diabetes
mellitus in clinical practice. This method provides insights
for understanding the underlying pathological mechanisms
of depression.

Previous studies have reported a high accuracy of over 80%
in differentiating patients with depression from healthy controls,
using machine learning methods to analyze heart rate variability
(HRV) and/or proteinmarkers (22, 23). Nevertheless, the existing
extraction procedures of parameters are usually complex. For
example, Kuang et al. (23) need to examine the 64 features of
HRV in the Ewing test including the different states—resting,
valsalva, deep breathing, and standing states. By contrast, our
study was much simpler in that only easy-to-obtain routine
biochemical tests and vital signs of patients were needed. By
SVM, the best executing classification system can be set up with

a small number of parameters that are selected from a variety of
biochemical tests and vital signs.

To address this need, we proposed using SVM to identify
potential prediction biomarkers for depression in patients with
diabetes mellitus.

MATERIALS AND METHODS

Data Acquisition
Biochemical tests and vital signs were obtained from electronic
medical records of admissions inWest China Hospital of Sichuan
University between January 1, 2011 and October 31, 2016. A
total of 322 patients were divided into two groups: 135 with both
diabetes mellitus and depression (comorbidity group), and 187
with diabetes mellitus alone (DM group). Specifically, the DM
group was diagnosed using the ICD - 10 categories E10.x - E14.x,
and the depression in comorbidity group was diagnosed using
the ICD - 10 categories F32.x and F33.x. To avoid confounding,
patients with other diseases or of non-Han ethnicities were
excluded. Each department had different biochemical parameters
checked as appropriate, and we analyzed the same biochemical
parameters for both groups (Table 1). Written informed consent
had been obtained from all patients, and the Institutional Ethics
Committee of Sichuan University approved this study.

Data Processing
To detect whether biochemical tests and vital signs can function
as markers for predicting depression in diabetes mellitus, a RFE-
SVM algorithm was adopted to identify the markers and assess
the classification performance (Figure 1).

Before applying the machine learning method to identify
predictive markers, propensity score matching (PSM) analysis
was performed because age and sex differed significantly between
the DM and comorbidity groups. After the matching analysis, the
experimental data were split into training data, validation data,
and testing data with the proportion of 1/2, 1/4, 1/4 to obtain
feature ranking, determine the optimal features, and assess the
classification performance. Specifically, the implementation of
the machine learning can be summarized as follows:

① Determine the feature ranking by recursive feature
elimination-based SVM on the training data. The experiments
were repeated 1,000 times with 10-fold cross validation.

② Train a SVM classification model on the training data using
the liblinear toolbox, and determine the most predictive features
using the evaluation data based on the feature ranking obtained
above. The feature that rankedNo. 1 was first used to optimize the
model, and the performance was evaluated by the validation data.
Then, the feature that rankedNo. 2 was combined to optimize the
model and to compare the performance with the previous one. If
the performance of the latter classifier was worse than the former,
the feature that ranked No. 2 would be removed. In this way, only
the features that could increase the classification accuracy were
remained, and finally we obtained 8 biomarkers (Figure 2).

③ Train the classification model on the training data with
the selected 8 biomarkers, and assess the performance on the
testing data by the measurements of accuracy, AUC, sensitivity,
and specificity.
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TABLE 1 | The 52 biochemical tests and 5 vital signs.

52 biochemical tests and 5 vital signs

1 Red blood count (RBC) 14 Acidophil absolute value 27 High-density lipoprotein cholesterol

(HDL-C)

40 Glutamyl transpeptidase

2 Hemoglobin (HGB) 15 Basophilic cell absolute value 28 Low-density lipoprotein cholesterol

(LDL-C)

41 Blood urea nitrogen

3 Mean cell hemoglobin

concentration (MCHC)

16 Creatine kinase (CK) 29 Total protein 42 Sodium

4 Platelet count (PLT) 17 Lactic dehydrogenase (LDH) 30 Albumin (A) 43 Potassium

5 White blood cell count

(WBC)

18 Total bilirubin 31 Globulin (G) 44 Chlorine

6 Percentage of neutrophils 19 Direct bilirubin 32 A/G 45 Anion gap

7 Percentage of lymphocytes 20 Bilirubin indirect 33 Creatinine 46 Serum cyscatin-c

8 Percentage of monocytes 21 Hydroxybutyrate dehydrogenase 34 Uric acid 47 Hydroxybutyric acid

9 Eosinophil percentage 22 Triglyceride 35 Aspartate aminotransferase (AST) 48 Urine RBC

10 Basophil percentage 23 Cholesterol 36 Alanine aminotransferase (ALT) 49 Urine WBC

11 Absolute value of

neutrophils

24 Calcium 37 AST/ALT 50 Urine conductivity

12 Absolute value of the

lymphocyte

25 Magnesium 38 Alkaline phosphatase (ALP) 51 Urine specific gravity

13 Absolute value of the

monocytes

26 Phosphorus 39 Glucose 52 Urine potential of hydrogen (U-PH)

1 Body temperature 3 Respiration 5 Diastolic blood pressure

2 Pulse 4 Systolic blood pressure

FIGURE 1 | The flowchart of data processing.

Statistical Analysis
Statistical analysis was performed using SPSS 20.0. Two-
sample t-test and chi-squared test were used for comparison
between groups. Propensity score matching (PSM) analysis was
performed for matching age and sex. Statistical significance was
set at P < 0.05 for both tests.

RESULTS

Table 1 showed analyzed 52 biochemical tests and 5 vital signs for
both groups, including red blood count (RBC), acidophil absolute
value, high-density lipoprotein cholesterol (HDL-C), glutamyl

transpeptidase, hemoglobin (HGB), basophilic cell absolute
value, low-density lipoprotein cholesterol (LDL-C), blood
urea nitrogen, mean cell hemoglobin concentration (MCHC),
creatine kinase (CK), total protein, sodium, platelet count
(PLT), lactic dehydrogenase (LDH), albumin (A), potassium,
white blood cell count (WBC), total bilirubin, globulin (G),
chlorine, percentage of neutrophils, direct bilirubin, A/G, anion
gap, percentage of lymphocytes, bilirubin indirect, creatinine,
serum cyscatin-c, percentage of monocytes, hydroxybutyrate
dehydrogenase, uric acid, hydroxybutyric acid, eosinophil
percentage, triglyceride, aspartate aminotransferase (AST), urine
RBC, basophil percentage, cholesterol, alanine aminotransferase
(ALT), urine WBC, absolute value of neutrophils, calcium,
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FIGURE 2 | The procedure of feature selection on the evaluation data.

AST/ALT, urine conductivity, absolute value of the lymphocyte,
magnesium, alkaline phosphatase (ALP), urine specific gravity,
absolute value of the monocytes, phosphorus, glucose, urine
potential of hydrogen (U-PH), body temperature, respiration,
diastolic blood pressure, Pulse, and systolic blood pressure.

In this retrospective study, medical records upon admission
of 322 patients were selected. After the matching analysis,
there are 72 samples in the DM group and the comorbidity
group, respectively. Demographic characteristics of the DM
group (n = 72) and the comorbidity group (n = 72, F32.x:
106 and F33.x: 29) were summarized (Table 2). The mean
(SD) age of subjects was 56.13 (7.98) years in the DM group
and 54.93 (7.62) years in the comorbidity group. There were
not different between two groups on age and sex (male:
31, respectively). Eight features were computed in 10-fold
cross-validation experiments, repeated 1,000 times with SVM,
including magnesium, cholesterol, AST/ALT, percentage of
monocytes, bilirubin indirect, triglyceride, lactic dehydrogenase
(LDH), and diastolic blood pressure (Table 2).

The performance of classification of both groups reached 83%
for sensitivity, 72% for specificity, 78% for accuracy, and 0.72 for
AUC based on ROC analysis (Figure 3).

DISCUSSION

In this retrospective study, we found 8 important depression
biomarkers using SVM. These biomarkers are magnesium,
cholesterol, AST/ALT, percentage of monocytes, bilirubin
indirect, triglyceride, lactic dehydrogenase, and diastolic blood
pressure, which differentiate depression in patients with diabetes
mellitus at an overall classification accuracy of 78%. Eight
identified factors imply that modulation of the inflammatory,
immune, energy metabolism, and lipid metabolism pathways

TABLE 2 | Demographics and biomarkers of experimental results of 144 diabetes

mellitus patients with and without depression.

DM group Comorbidity Statistics P

(n = 72) group (n = 72)

Sex Male (n = 31) Male (n = 31) 0.00 1.00

Age 56.13 ± 7.98 54.93 ± 7.62 0.92 0.36

Magnesium 0.84 ± 0.08 0.88 ± 0.12 −2.86 0.005

Cholesterol 4.25 ± 0.57 4.71 ± 0.95 −3.57 <0.001

AST/ALT 1.03 ± 0.38 0.97 ± 0.36 1.00 0.32

Percentage of monocytes 5.38 ± 1.58 5.80 ± 1.46 −1.65 0.10

Bilirubin indirect 7.31 ± 2.94 8.54 ± 4.59 −1.92 0.06

Triglyceride 1.40 ± 0.62 1.82 ± 1.43 −2.30 0.02

lactic dehydrogenase (LDH) 165.63 ± 27.78 155.07 ± 47.87 1.62 0.11

Diastolic blood pressure 77.81 ± 10.77 78.87 ± 9.32 −0.63 0.53

were mainly involved in the pathophysiology of depression in
patients with diabetes mellitus.

We found four biomarkers involved in inflammatory and
immune pathway including magnesium, AST/ALT, percentage of
monocytes, and bilirubin indirect. Depression often comorbid
with diabetes, metabolic disorders and other diseases, and
is associated with inflammatory and oxidative stress (24).
Type 2 diabetes usually begins with insulin resistance, and
a relationship between depression and insulin resistance also
exists (25). Diabetes can cause a rise in blood sugar and
insulin levels and has an effect on inflammation that may
contribute to depression. Recent studies have shown that
oxidative stress may enhance induction of HO-1 expression,
which may result in insulin resistance and insufficiency (26, 27).
It is clear that increased oxidative stress may lead to insulin

Frontiers in Psychiatry | www.frontiersin.org 4 November 2021 | Volume 12 | Article 731220

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Song et al. Depressive Biomarkers in Diabetes Mellitus

FIGURE 3 | ROC curve analysis with AUC value.

resistance and impose an impact on insulin secretion in patients
having depressive disorder (27). One study demonstrated that
reducing inflammation through non-drug treatments such as
psychological interventions, physical exercises, and meditation
can play a role in preventing depression (28). Magnesium
has received great concern over its potential role in the
pathophysiology of depression (29–31). Many studies support
the hypothesis that inflammatory cytokines are important
factors in the pathogenesis of MDD (32). Auffray et al.
suggested that monocytes mediate fundamental regulatory and
effector functions in immune inflammatory responses (33).
Previous study have indicated that MDD patients with elevated
serum TNF-α and IL-1β levels display marked alterations in
circulating monocytes and exhibit a systemic proinflammatory
state compared to healthy controls (34). Additionally, studies
have shown that the percentage of monocytes decreased by
imipramine treatment can be enhanced by stress exposure
(35). New evidence shows that antidepressant treatment can
reduce inflammation and improve mitochondrial dysfunction in
patients with depression (36, 37). Also, studies have indicated
that increased ALT levels were an independent predictor of
depression onset (38).

We also found one biomarker potentially related to energy
metabolism. The biomarker is lactic dehydrogenase. It is
responsible for the conversion of lactic acid to pyruvic acid,
an important step in the production of cellular energy (39).
Kato et al. found that healthy nurses’ depressive symptoms
shown onCES-D under the stressful conditions were significantly

negatively correlations with lactate dehydrogenase activities (r
= −0.29, p = 0.0065) (40). We observed that patients with
both diabetes mellitus and depression had lower concentrations
of lactic dehydrogenase compared to those with diabetes alone.
In another study, Ivana Perić et al. showed an increase in
lactate dehydrogenase (LDH) levels after Tianeptine treatment
in stressed rats (41). After antidepressant treatment, LDH level
is increased and depression was alleviated, suggesting that
LDH may be related to the pathological basis of depression
(41). Additionally, we found some other biomarkers that
may be related to lipid metabolism, including cholesterol and
triglyceride. Clinical and experimental evidence has suggested
that plasma lipids might be an important factor in the
pathophysiological mechanisms related to depression (42).
Higher level of cholesterol was observed in patients with
depression than in controls (27, 43). In agreement with this
finding, increased levels of cholesterol were found to be
associated with comorbidity of diabetes mellitus and depression
in our study. A recent study has analyzed 230 metabolic
markers and reported a clear and unique profile of circulating
lipid metabolites related to depression (44). Bot et al. has
found that depression is associated with higher triglyceride
(44), which is consistent with our results in this study. A
previous study has shown that activation of the proinflammatory
response results in a decrease in HDL cholesterol and
phospholipids, as well as an increase in TG mediated by
compensatory production and accumulation of phospholipid-
rich VLDL (45).
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Depression is common in patients with diabetes, and there is a
bidirectional association between diabetes and depression. Many
mechanisms are considered to be involved in the link between
depression and diabetes, including HPA axis dysregulation,
immune and inflammatory mechanisms, brain insulin resistance,
circadian rhythm dysregulation, shared genetic factors and more
(46). For example, the immune system has also been implicated
in the co-occurrence of depression and diabetes. Monocytes in
the peripheral blood are the most important cells in the innate
system, which produce cytokines involved in the development
of inflammation in patients with diabetes (47). Previous study
have shown that imbalances in Mg2+ status can increase insulin
resistance, inhibit translocation of glucose transporter type 4,
induce oxidative stress, affect lipid metabolism, and impair
the antioxidant system of endothelial cells, thus promoting
the progression of DM (48). Additionally, lactate metabolic
pathways are important for understanding the pathogenesis
of diabetes. It has been reported that pyruvate is reduced to
lactate in the cytoplasm by lactate dehydrogenase without oxygen
consumption, and excess lactate is generated in diabetes (49).
Hildrum et al. found that patients with anxiety and depression
had higher diastolic blood pressure at 11-year follow-up in these
populations, but presented lower diastolic blood pressure at 22-
year follow-up, which may be related to antidepressants (50).
Trento found that self-management education improved blood
pressure in patients with type 2 diabetes (51). These factors are
also present in patients with depression.

Changes in triglyceride, AST, ALT, bilirubin indirect, lactic
dehydrogenase, and cholesterol etc. in blood are not specific to
depression and may be present in other psychiatric disorders
such as eating disorders (52), schizophrenia (53, 54), and
bipolar disorder (55, 56). Researchers suggested that a single
biomarker often lacks in sensitivity and specificity (27) and
thus may not well-distinguish depression from other diseases.
Monitoring changes in multiple factor levels will provide a
more comprehensive and accurate assessment, which can help us
better understand the disease status and characteristics of specific
diseases. Although the model of multiple biomarkers is more
conducive for the diagnosis of diseases, it is usually used in the
diagnosis of cancer instead of nervous system diseases (57, 58).
Our study is advantageous in that laboratory biochemical indexes
are routine examinations in clinical settings, which could be
obtained with minimal invasiveness, maximal convenience, and
low cost, thus having a great potential for wider clinical access
andmore efficient population screening. Because the biochemical
tests of the two groups were not identical, the different ones
were deleted. The lack of biochemical tests as variables in SVM
learning affected accuracy, which is one limitation of the present
study. Second, the parameters chosen retrospectively instead of

consecutively were inadequate and included only those that were
clinically applicable. This may have caused an enrollment bias
and an erroneous classification by the algorithm. This is one of
the major methodological limitations of the present study, which
should be remedied in future investigations using a prospective
and consecutive design.

In conclusion (1) SVM can facilitate clinical diagnosis of
depression in patients with diabetes mellitus using commonly
available laboratory parameters. (2) Eight potential biomarkers
were identified for depression diagnosis in patients with
diabetes mellitus.
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