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Hyperreflective foci (HRF) is a term coined to depict hyperreflective dots or roundish lesions within retinal layers visualized
through optical coherence tomography (OCT). Histopathological correlates of HRF are not univocal, spacing from migrating
retinal pigment epithelium cells, lipid-laden macrophages, microglial cells, and extravasated proteinaceous or lipid material.
Despite this, HRF can be considered OCT biomarkers for disease progression, treatment response, and prognosis in several retinal
diseases, including diabetic macular edema, age-related macular degeneration (AMD), retinal vascular occlusions, and inherited
retinal dystrophies. (e structural features and topographic location of HRF guide the interpretation of their significance in
different pathological conditions. (e presence of HRF less than 30 μmwith reflectivity comparable to the retinal nerve fiber layer
in the absence of posterior shadowing in diabetic macular edema indicates an inflammatory phenotype with a better response to
steroidal treatment. In AMD, HRF overlying drusen are associated with the development of macular neovascularization, while
parafoveal drusen and HRF predispose to macular atrophy. (us, HRF can be considered a key biomarker in several common
retinal diseases. (eir recognition and critical interpretation via multimodal imaging are vital to support clinical strategies
and management.

1. Introduction

(e advent of optical coherence tomography (OCT) has
dramatically changed the comprehension of pathophysio-
logical mechanisms underlying retinal disease by detecting
novel structural alterations in vivo [1]. (e term “hyper-
reflective foci (HRF)” was coined to describe any hyper-
reflective lesion, focal or dotted in appearance, visualized on
OCT at any retinal layer [2]. However, the clinicopatho-
logical correlate of HRF remains uncertain, ranging from
lipid extravasation in diabetic macular edema (DME) [2],
migrating retinal pigment epithelium (RPE) cells,

macrophages/microglia in AMD [3–5], and degenerated
photoreceptor cells [6].

(e presence of HRF has revealed prognostic and clinical
implications in several retinal diseases [7–12] and has
influenced the evaluation of treatment response in DME
[13,14]. In particular, HRF have been hypothesized to
represent microglial cells when responding to specific
morphometric criteria visible on OCT B-scans. (eir
characterization has improved the recognition of a pre-
ponderant inflammatory component that drives the man-
agement and treatment response of DME [15–18]. Beyond
the established role of HRF as biomarkers in DME, their
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recognition and evaluation in various other retinal disorders
might lead to a change in management, treatment, and
prognosis.

(e present study aims to provide an overview of the
existing literature on HRF as OCT biomarkers associated
with disease progression, treatment response, and prognosis
of several retinal disorders, including DME, AMD retinal
vein occlusion, retinal dystrophies, and uveitis.

2. Methods

A literature search of the Medline database was performed
using the term “hyperreflective foci” for articles published in
English, last accessed on 9th December 2020. (e articles
selected described the clinical and prognostic implications of
intraretinal and choroidal HRF detected in retinal diseases.
Of 212 publications, 119 manuscripts published between
2005 and 2020 are reported in this narrative literature re-
view. Reference lists of the selected manuscripts were also
analyzed to retrieve other relevant studies.

3. Diabetic Retinopathy

3.1. Origin and Morphometry of Hyperreflective Foci. (e
presence of HRF in treatment-naı̈ve DMEwas first described
by Bolz et al. [2] as hyperreflective dots distributed
throughout all the retinal layers, often within the septae
between cystoid spaces, or confluent lesions located in the
outer retinal layers, or focal deposits within the vascular wall
of microaneurysms. (ese hyperreflective lesions were be-
lieved to represent extravasated protein and/or lipid de-
posits, precursors of hard exudates, that tended to resorb
along with intraretinal fluid after laser treatment [2,19,20].

Another theory hypothesized that HRF were lipid-laden
macrophages migrating into cystoid spaces as a consequence
of blood-retinal barrier (BRB) breakdown [21,22]. However,
with the introduction of OCT angiography (OCTA), it was
noticed that some HRF presented decorrelation signals,
possibly an expression of morphological changes in
microglia/macrophages or intracellular organelles contain-
ing highly reflective material [23]. Glial cell proliferation
represents one of the main alterations in diabetic retinop-
athy, and the role of microglia is essential to maintain retinal
homeostasis and the inflammatory response [24].

Suspended scattering particles in motion (SSPiM) is a
novel OCTA feature characterized by a flow artifact pro-
duced by moving material within cystic spaces possibly due
to large molecules such as serum proteins and albumin
permeated through the retinal interstitium [25]. SSPiM is
closely related to the number of HRF and is considered the
product of severe inner BRB breakdown. Accordingly,
hyperreflective cystoid spaces, detected either on OCT
B-scans or OCTA, often co-localize with HRF [25,26].

Combinedmultimodal analysis showed that HRFmainly
occupy the outer nuclear layer (ONL) and outer plexiform
layer (OPL) with distribution of the smallest foci in the inner
nuclear layer (INL) and inner plexiform layer (IPL) and
posterior shadowing caused by larger foci [27]. (e iden-
tification of HRF on OCT B-scans demonstrated high

interobserver reproducibility, comparable to other retinal
OCT features detected in DME such as intraretinal fluid,
diffuse retinal edema, subretinal fluid, and vitreomacular
traction [28].

HRF cannot be identified with clinical examination
because of their small size and axial thickness, and appro-
priate imaging resolution is necessary for their recognition.
It was hypothesized that the foci gradually tend to grow and
coalescence into visible lesions as hard exudates [27]. On
near-infrared autofluorescence (NIR-AF), a patchy hyper-
hypoautofluorescent signal described as a mosaic pattern
was associated with the presence of HRF in the outer retinal
layers and external limiting membrane (ELM) disruption
and was considered a biomarker of photoreceptor damage
[29]. Likewise, a granular appearance on both short-wave-
length fundus autofluorescence (FAF) and NIR-AF was
associated with the presence of HRF and visual impairment
[29].

Interestingly, Lee et al. [30] demonstrated that the CD14
proinflammatory cytokine expressed by microglia, mono-
cytes, and macrophages correlated with HRF, located in the
inner retina, and diffuse edema. A nonobese diabetic mice
model showed that proinflammatory cytokines induced both
vitreal and retinal HRF and upregulated microglia cells [31].

(e distinction between inflammatory HRF and other
subtypes of hyperreflective material (i.e., retinal exudates,
hemorrhages, and microaneurysms) on OCT B-scans in-
clude location within the inner retina, size ≤30 μm, absence
of posterior shadowing, and reflectivity similar to the retinal
nerve fiber layer (Figure 1) [15,32,33]. Indeed, in a recent
international consensus, these morphological characteristics
were incorporated as the diagnostic criteria for HRF [17].

3.2. Clinical and Prognostic Implications of Hyperreflective
Foci in Diabetic Macular Edema. (e amount of HRF
reflects disease severity, exhibiting direct associations with

Figure 1: Spectral-domain optical coherence tomography B-scan
showing the morphological differences between the inflammatory
hyperreflective foci (Inset I is characterized by small size (≤30 μm),
the absence of posterior shadowing, inner and outer retinal lo-
cation, and the reflectivity similar to the retinal nerve fiber layer
(light blue arrows), and other subtypes of hyperreflective material
(Inset II) such as retinal exudates are characterized by preferential
location in the outer retinal layers, size> 30 μm, the presence of
posterior shadowing, and reflectivity similar to the retinal pigment
epithelium (yellow arrowheads)).
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HbA1c values and high levels of total cholesterol, triglyc-
erides, and low-density lipoprotein [34–37]. (e association
with glycometabolic state has been observed even in early
stages of diabetic retinopathy without DME, supporting the
hypothesis of lipid extravasation conceivable in subjects with
poor glycemic control [38,39].

In eyes with DME, HRF located in the outer retinal layers
have been strongly associated with worse visual prognosis,
disruption of the ELM, photoreceptor loss, and worse
prognosis after vitrectomy [6,29,40,41]. An alternative
method of studying the integrity of the photoreceptor-RPE
complex in the so-called “parallelism” supported that HRF
in the outer retinal layers affects photoreceptor layer con-
tinuity. “Parallelism” is a term coined to evaluate retinal
layer integrity through OCT B-scans postprocessing using
dedicated software for imaging analysis. In brief, this pa-
rameter measures how straight the layers are and how
parallel the layers are to each other [42]. (e parallelism
reflected the image complexity and the retinal structural
changes, and it is lower in DME eyes than normal eyes.
Parallelism also indicates the integrity of photoreceptors,
exhibiting a direct association with visual acuity. One of the
main factors affecting the parallelism with a relationship
with photoreceptor integrity and visual function is the
presence of HRF in the outer retinal layers [43,44].

(e number of HRF in the outer retinal layers, as a
predictor of final visual acuity, was associated with different
patterns of DME including diffuse macular edema, cystoid
macular edema, and serous retinal detachment [45]. (e
detection of similar HRF within the choroidal vasculature
also denoted worse disease severity and prognosis [46,47]. In
this regard, treatment-naı̈ve DME with inflammatory bio-
markers (i.e., HRF and serous retinal detachment) showed a
superior anatomical response and fewer injections with a
dexamethasone (DEX) intravitreal implant, even if better
visual acuity was achieved with intravitreal aflibercept. Lens
opacity development explained the lower-than-expected
functional outcome in the DEX group [48]. A theoretical
advantage in favor of a DEX implant as the first-line agent
over anti-VEGF therapy has been hypothesized for DME
with inflammatory biomarkers [17].

Changes in intraretinal HRF distribution during DME
resorption after anti-vascular growth factor (VEGF) treat-
ment included descending migration toward outer retinal
layers, supporting the role of the osmotic gradient in fluid
andmacromolecule clearance [49]. DME with HRF has been
associated with a poorer visual outcome following treatment
with intravitreal steroid and anti-VEGF agents [14]. Clusters
of HRF occupying the central macular area was associated
with worse visual acuity than eyes without HRF clusters
before any treatment, and the functional difference was
maintained following intravitreal ranibizumab and focal
laser therapy for up to 5 years [50].

While the role of HRF in predicting visual outcome of
DME treated with anti-VEGF agents did not reach univocal
conclusions [34,45,51,52], final visual gain resulted evident
in DME eyes managed with DEX implant [13,53]. Treatment
with DEX implant significantly modulated the number of
foci with a reduction maintained up to 12 months of follow-

up [18]. However, the reduction of the number of HRF
located in the outer retina, modulated by anti-VEGF
treatment, improved visual gain [54,55]. (e prognostic role
of HRF has been further corroborated by the higher levels of
both IL-1β and HRF (>10) in refractory DME [56]; likewise,
a high HRF number at baseline is predictive of early re-
currence of DME and a shorter duration of DEX implant
efficacy [57,58]. Patients with DME managed with obser-
vation exhibited a high risk of visual loss in the presence of
DRIL, HRF, and ellipsoid zone disruption at baseline [11].

Evidence of HRF in the foveal region influenced post-
operative visual recovery in eyes with vitreous hemorrhage
due to proliferative diabetic retinopathy [59]. Nevertheless,
their presence seemed to be independent of macular and
peripheral retinal ischemia [60].

Recently, multiple (more than 30 in number) and diffuse
HRF were considered integrant criteria of severity in the
OCT grading proposed for diabetic maculopathy by an
international panel of retinal experts [16].

4. Age-Related Macular Degeneration

4.1. Pathogenesis and Imaging Characterization. Khanifer
et al. first reported HRF in AMD in 2008 [61] and analyzed
drusen ultrastructure with spectral-domain (SD) OCT.

Figure 2: Spectral-domain optical coherence tomography (SD-
OCT) B-scans illustrating hyperreflective foci (HRF) in age-related
macular degeneration (AMD). (a) SD-OCT B-scan of intermediate
AMD demonstrating a large HRF overlying confluent drusen lo-
cated just above the external limiting membrane within the outer
nuclear layer (inset, yellow arrowhead). HRF may represent mi-
grating retinal pigment epithelium cells or a nascent type 3 lesion.
Nascent lesions can be differentiated from type 3 macular neo-
vascularization for the absence of exudative changes, as intraretinal
fluid and cystic changes on OCT B-scans. (b) SD-OCT B-scan
showing a case of macular neovascularization with multiple HRF
located in the subretinal space and outer plexiform layer (inset,
yellow arrowheads), probably of microglial origin, and more in-
terestingly associated with a subretinal lipid globule. (is novel
OCT feature appears as a roundish hyporeflective structure (inset,
purple ellipse) with a characteristic hypertransmission tail (white
arrow), which is originated from a lensing effect produced by a
lipidic content [74].
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Interestingly, the presence of HRF was noted overlying areas
of RPE elevation and often in association with calcified
drusen [61–63].

It was generally believed that HRF represent anteriorly
migrating RPE cells and possible disaggregated photore-
ceptors, as supported by the corresponding pigmentary
changes visible on color photographic images [61,64,65].
However, hyperpigmentation is not detectable in all cases
[61], opening different hypotheses for a non-RPE origin.(e
foci may represent microglia migrating from the inner to the
outer retinal layers engorged by lipid droplets or cholesterol
[3,4]. (is alternative HRF population has variable mor-
phological characteristics such as size, migration, and
clumping. Furthermore, microglial activation was particu-
larly related to neovascular disease as validated through
histopathology [4,66].

HRF located above the external limiting membrane and
ONL/OPL junction, often co-localized with a drusenoid
pigment epithelial detachment (PED), can also represent the
antecedents of type 3 macular neovascularization (MNV), or
the so-called nascent type 3 [67–73]. Nascent type 3 lesions
were described as associated with HRF located within the
ONL, OPL, or INL on OCT B-scans with a detectable flow
signal on OCTA but without evident exudation (e.g.,
intraretinal fluid and microcystic changes) [67]. Figure 2
illustrates the OCT appearance of HRF in the context of
intermediate AMD and MNV [67,74].

Intraretinal HRF from a possible RPE source have been
characterized on clinicopathological correlations as isolated
or grouped pigmented, nucleated RPE cells that shadow
posteriorly on OCT B-scans often associated with hyper-
transmission areas reflecting the atrophic and dissociated
RPE cells [3,75,76]. Different RPE histological phenotypes
corresponding to hyperreflective structures on OCT B-scans
were described [3,75]. Among these phenotypes, the RPE
plume denoted a peculiar OCT feature with a comma-
shaped configuration of HRF, believed to represent grouped
migrating RPE cells within the Henle fiber layer [3,75].

4.2. Clinical Relevance and Prognostic Implications. HRF can
be detected in intermediate to advanced AMD, demon-
strating a predictive role for AMD progression and prog-
nostic value when macular complications occur [77–80].
HRF were associated with disease severity, particularly in
eyes with intermediate AMD, where they tended to increase
in number and density and migrated from the ONL to the
inner retinal layers over time [9,77,81]. In intermediate
AMD, retinal sensitivity assessed through microperimetry
was affected by the presence of HRF that typically co-lo-
calized with alterations of the outer retinal bands and the
RPE [82–84]. HRF represented markers of cellular dys-
function responsible for visual decline before the develop-
ment of macular complications [85]. Hyperreflective specks
(HRS) shared similar features with HRF, appearing as
hyperreflective dots preferentially located in the Henle fiber
andONL associated with visual dysfunction. HRS distinctive
features included smaller diameter, lower reflectivity than
the RPE band, and more uniform size than HRF. Both HRF

and HRS were considered markers of cellular activity, with
HRS representing lipofuscin granules, translocated inwardly
within cone photoreceptors [85].

More interestingly, the increasing number of HRF was
associated with RPE atrophy and considered a precursor of
geographic atrophy [64,77,79]. Several factors have been
implicated in macular atrophy progression, including dru-
sen volume, HRF, HRF within a drusenoid lesion, and
subretinal drusenoid deposits [86,87]. However, HRF rep-
resented the strongest predictor alone for progression to
both central or any geographic atrophy [86,88,89]. In pro-
gression of geographic atrophy, the morphological features
accompanying the presence of HRF were often characterized
by reduced retinal thickness and volume and ONL thinning
[90]. (e distribution of HRF varied according to the
subtype of macular complication. Eyes developing macular
atrophy presented HRF co-localizing with drusen at 0.5mm
eccentricity, not at the foveal center [91]. Deep learning
quantification of HRF in late AMD demonstrated their
spatial localization at the atrophy border, demarcating areas
subject to growth and expansion of existing atrophic lesions.
Furthermore, HRF tended to accumulate in correspondence
to areas developing de novo lesions [92].

Similarly, in eyes with drusenoid PED, the presence of
HRF at baseline and their migration throughout retinal
layers were directly associated with new-onset atrophy [78].
Changes in HRF preceded drusenoid PED collapse, where
migrating RPE cells and subsequent RPE disintegration,
responsible for hypertransmission, accompanied the PED
breakpoint [93].

(e prognostic role of HRF has been proven for pre-
dicting neovascular conversion. Both the presence and HRF
count represented strong predictive biomarkers of neo-
vascular progression [7]. Precursors of type 3 lesions were
typically represented by HRF located in the outer retinal
layers [67,72,94]. One of the possible mechanisms under-
lying neovascular complications was represented by in-
creased choriocapillaris ischemic changes found to be more
severe in eyes with HRF [95]. (e predictive value of HRF
was mostly associated with drusen growth accompanied by
overlying HRF in MNV conversion, suggesting a distinctive
hallmark of neovascular conversion [90,91,96].

In eyes with MNV, HRF were diffusely distributed in the
neurosensory retina and their presence was associated with a
poor visual outcome despite anti-VEGF treatment [97,98].
Anti-VEGF switching from ranibizumab to aflibercept
demonstrated a morphological and functional improve-
ment, including HRF reduction, associated with a decreasing
central subfoveal thickness [8,99,100]. Of note, the presence
of HRF was strongly correlated with intraretinal fluid [101].
HRF detection in neovascular AMD and polypoidal cho-
roidal vasculopathy (PCV) was considered a reliable pre-
dictor of poor visual prognosis after anti-VEGF treatment
[102].

5. Miscellaneous

(e role of HRF has been investigated in other retinal
vascular diseases, including branch retinal vein occlusion
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(BRVO) and central retinal vein occlusion (CRVO). In this
regard, two distinct HRF populations have been identified,
including fine scattered HRF probably related to extrava-
sation of blood constituents and confluent HRF mainly
located in the unaffected areas spared by the retinal oc-
clusion. Confluent HRF were thought to be associated with
the absorption of water and other molecules [103]. While
fine scattered HRF cannot be visualized on fundus photo-
graphic images, confluent HRF were believed to represent
retinal exudates [104]. In retinal vein occlusion, HRF were
topographically scattered along the OPL and the external
limiting membrane [103,105]. Similar to other retinal dis-
eases, a poor visual outcome after anti-VEGF treatment
accompanied the identification of HRF at baseline [104,106].
Furthermore, the use of intravitreal DEX implants might be
privileged in eyes with numerous HRF and long-standing
macular edema secondary to RVO in consideration with the
inflammatory component [107].

Among degenerative retinal diseases, retinitis pigmen-
tosa (RP) revealed HRF with specific topographic distri-
bution and association with disease progression. Eyes with
HRF distributed in the INL denote an early stage of RP with
spared RPE-Bruch’s membrane complex. However, eyes
with HRF in the ONL designate a more advanced disease
characterized by photoreceptor loss and RPE cell migration
and degeneration [108]. RPE cell degeneration in RP eyes
occurs secondary to proliferation, spreading, and migration
of the RPE cells toward the inner retina with bone spicule
formation [109]. (e distribution of HRF is mainly con-
centrated over regions of photoreceptor disruption and
associated with intraocular inflammation, further corrob-
orating the hypothesis of RPE or microglial migration in
response to photoreceptor degeneration (Figure 3) [110].
Similarly, the recognition of choroidal HRF corresponded to
ELM and ellipsoid zone disruption suggesting a migration of
deteriorated photoreceptors and RPE cells from the outer
retina toward the choroid due to a degradation process
[111].

In Stargardt disease, the evidence of choroidal HRF
primarily located in the choriocapillaris and Sattler’s layer
was considered a biomarker of disease severity in terms of

atrophic changes and visual function [112,113]. Further-
more, the concentration of HRF was greater in atrophic
areas measuring less than 5mm2, hypothesizing that HRF
tended to fade with atrophy enlargement [113].

In pathologic myopia, the HRF role has been investi-
gated in myopic choroidal neovascularization and myopic
macular hole [114,115]. HRF appeared to be associated with
the presence of retinal edema, serous neuroretinal detach-
ment, and hemorrhage in myopic choroidal neo-
vascularization. All these signatures indicate an active retinal
exudation, suggesting that HRF represent an additional
indicator of choroidal neovascularization activity [114].
After myopic macular hole repair, the presence of HRF was
associated with a worse visual acuity. (e limited repre-
sentation of HRF after macular hole repair with the inverted
inner limiting membrane (ILM) flap technique was
explained with superior sealing of the retina compartment,
allowing the RPE to recover its pump function effectively
[115].

HRF were recognized in uveitis and intraocular in-
flammatory disorders and were likely presumed to rep-
resent intraretinal exudates, lymphocytic cellular or
clumping of photoreceptors or intraretinal RPE cells when
related to photoreceptor loss [116–119]. In eyes with
uveitic macular edema, HRF were associated with worse
visual acuity [120]. After treatment, the foci decreased in
number and mainly remained located to the inner retina
layers [121].

6. Conclusions

Hyperreflective foci represent a univocal OCT feature re-
vealing several possible histopathological correlates, in-
cluding migrating RPE cells, microglia, precursors of
exudates, or intraretinal neovascularization in the setting of
AMD. HRF represent an important OCT biomarker with
significant clinical and prognostic implications embracing
several common macular diseases. (e detection of HRF of
size ≤30 μm without posterior shadowing and reflectivity
similar to the retinal nerve fiber layer configures the in-
flammatory phenotype in DME that usually responds better
to early intravitreal steroid implant.

Relevance as a biomarker is also observed in AMD,
where the number and distribution of HRF may be
predictors for progression to advanced stages of disease.
(e co-localization of HRF overlying drusen associated
with drusen growth in the foveal center is believed to be a
predictor of neovascular progression. In contrast, a high
concentration of HRF distributed at 0.5mm of eccen-
tricity edging the foveal pit, in the absence of drusen
occupying the foveal center, tends to predispose to
macular atrophy. Moreover, the presence of HRF influ-
ences anti-VEGF treatment response and visual prognosis
of MNV. In conclusion, HRF can be considered a critical
OCT feature with substantial predictive value for disease
progression and treatment response in the principal
macular disorders encountered in routine clinical prac-
tice. (eir prompt recognition and critical interpretation
may guide clinical and therapeutic strategies.

Figure 3: Spectral-domain optical coherence tomography B-scans
showing an illustrative case of retinitis pigmentosa characterized by
both choroidal hyperreflective foci (insets, peach arrowheads) and
intraretinal hyperreflective foci (inset II, light blue arrowheads).
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