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Abstract

The development of new imaging and optogenetics techniques to study the dynamics of

large neuronal circuits is generating datasets of unprecedented volume and complexity,

demanding the development of appropriate analysis tools. We present a comprehensive

computational workflow for the analysis of neuronal population calcium dynamics. The

toolbox includes newly developed algorithms and interactive tools for image pre-processing

and segmentation, estimation of significant single-neuron single-trial signals, mapping

event-related neuronal responses, detection of activity-correlated neuronal clusters, explo-

ration of population dynamics, and analysis of clusters’ features against surrogate control

datasets. The modules are integrated in a modular and versatile processing pipeline, adapt-

able to different needs. The clustering module is capable of detecting flexible, dynamically

activated neuronal assemblies, consistent with the distributed population coding of the

brain. We demonstrate the suitability of the toolbox for a variety of calcium imaging datasets.

The toolbox open-source code, a step-by-step tutorial and a case study dataset are avail-

able at https://github.com/zebrain-lab/Toolbox-Romano-et-al.

This is a PLOS Computational Biology Software paper.

Introduction

Brain function relies on the interaction of large neuronal populations. Anomalies of these

complex neuronal circuits are associated with diverse brain disorders[1]. Therefore, to
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understand brain function both in health and disease, it is necessary to explore the activity

dynamics of neuronal networks. Recent advances in optical methods and optogenetics provide

unprecedented possibilities for functional imaging of large neuronal populations[2–5], and

even whole brains[6,7], with high spatial (e.g., single-neuron) resolution. These imaging data-

sets can be analyzed to reveal the responses of spatially distributed neuronal populations to

sensory, motor, or task variables[5,8–11].

In contrast to the important experimental advances in imaging techniques, computational

analysis tools are still incipient, consisting of processing pipelines that widely vary across labs,

leading to poor standardization[12,13]. Few integrated software packages are currently avail-

able, and they all focus on different aspects of the initial data pre-processing stages of the analy-

sis workflow[14–16]. Nevertheless, the study of large neuronal circuits imposes new challenges

to the processing and analysis of the complex, high-dimensional datasets typically acquired. In

order to make sense of neuronal population dynamics, a popular approach used is based on

statistical methods of dimensionality reduction[17]. These methods project the high-dimen-

sional data into a low-dimensional space that preserves or reveals underlying features of the

data. Remarkably, they have been applied to expose organizing principles of neuronal net-

works dynamics[18–20] and to detect neuronal assemblies[9,21–23]. The identification of neu-

ronal assemblies (i.e., neuronal subsets that show correlated activity) is a significant step

towards a systemic understanding of neuronal circuits, since they can reflect functional pro-

cessing modules[2]. Importantly, neuronal assemblies are not rigid structures with unique

functions. On the contrary, they are dynamic, multifunctional, adaptive and overlapping units

[3]. For instance, a neuronal assembly could perform a computation at a given time, but at a

different time point, a subgroup of this assembly could be part of a different assembly with a

different functional role. Hence, neurons could belong to multiple assemblies (i.e., non-exclu-

sive assemblies) and play diverse roles in different brain processes. Indeed, it is in neuronal

assemblies’ flexible and distributed nature wherein lies one of the major difficulties in identify-

ing them[4].

For a recent study, we developed an algorithm to characterize the spatio-temporal structure

of neuronal activity patterns observed in large neuronal populations imaged using two-photon

microscopy[9]. The framework applies dimensionality reduction and clustering techniques for

the analysis of calcium imaging datasets, outperforming other traditional algorithms in the

effective detection of neuronal assemblies embedded within neuronal networks[9]. This

method is able to detect non-exclusive assemblies that are engaged and disengaged on a

moment-to-moment basis, compatible with the distributed and dynamic nature of brain pro-

cessing[24].

Here, we present a computational toolbox that integrates this method for detecting neuro-

nal assemblies into a complete data processing pipeline designed for the comprehensive analy-

sis of fluorescence imaging data, from the raw images to interpretable results on neuronal

population dynamic. It consists of modules for video pre-processing, morphological image

segmentation into regions of interest (ROIs) corresponding to single neurons, extraction of

fluorescence signals, analysis of ROI responses to stimulus and/or behavioral variables, detec-

tion of assemblies of ROIs, exploratory analysis of network dynamics and the automatic gener-

ation of surrogate shuffled datasets to act as controls for statistical purposes. Typically, the full

protocol can be completed on a workstation computer in ~1 hour, depending on the size of

the dataset.

The different processing algorithms that we now implement in this toolbox have been pre-

viously used in studies for the analysis of in vivo imaging data from zebrafish larvae expressing

genetically encoded calcium indicators (GCaMPs)[7,9,10,25,26]. Here, we demonstrate that

our integrated toolbox can be successfully applied for the analysis of the fluorescent dynamics
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of different calcium reporters, in different animal models and brain regions, for single-plane

and multi-plane volumetric imaging, and for different imaging approaches, including large-

field two-photon microscopy and single and two-photon light-sheet imaging. Moreover, we

show that the module for detecting assemblies is remarkably efficient in finding biologically

meaningful assemblies in datasets of whole-brain light-sheet imaging in zebrafish larvae, con-

sisting of more than 40,000 ROIs. These examples demonstrate that the analysis framework

implemented in this toolbox can effectively shed light on the neuronal interactions that under-

lie brain computations.

Design and implementation

Ethics statement

All protocols used in this study were approved by Le Comité d’Éthique pour l’Expérimentation

Animale Charles Darwin (038393.03).

Overview

Analytical demands vary greatly depending on the scientific questions and the nature of the

datasets. Therefore, the pipeline is organized in flexible sub-modules that can be bypassed,

replaced or used in a stand-alone manner, by allowing the user to import and integrate data

and/or results from other preferred methods at different critical points along the pipeline. We

provide the source Matlab code for the toolbox, along with a detailed tutorial[27] and a raw

imaging dataset for a hands-on case study, to guide users in the utilization of the toolbox and

demonstrate its capabilities.

The workflow of the toolbox includes five main modules (Fig 1). The first pre-processing

module contains sub-modules for: 1) smooth registration; 2) automatic detection and interac-

tive manual curation of motion artifacts; 3) morphological single-neuron ROIs; 4) automatic

detection of significant fluorescence events associated with neuronal calcium transients. The

second module allows: 1) the characterization of neuronal responses (i.e., tuning curves) with

respect to an experimental variable; 2) mapping the spatial topography of these responses, set-

ting appropriate color mappings to efficiently visualize the response features across the imaged

optical plane. The third module performs the detection of neuronal assemblies through differ-

ent methods, including that which we recently introduced[9]. The fourth module is intended

for exploratory analysis of these assemblies. It contains sub-modules for: 1) interactive explora-

tion of the assemblies’ spatio-temporal organization; 2) visualization of assemblies’ activity in

relation to experimental contexts and/or events (e.g., sensory stimulation, behavioral events,

etc.). The fifth and final module allows for the creation of surrogate control assemblies, useful

for statistical comparison against the original assemblies’ features (spatial, functional, etc). We

now briefly describe the most important modules (for further details see S1 Text and the

accompanying preprint[27]). A comparison to other available methods is discussed in S2 Text.

ROI segmentation

The toolbox uses digital image processing techniques to perform morphology-based image

segmentation, in order to discriminate between the ROIs that correspond to individual cells

from the signal of other cells and the surrounding neuropil. Alternatively, if the imaging spatial

resolution is not appropriate for single-neuron segmentation, the toolbox can automatically

implement a customizable hexagonal grid of ROIs (e.g., S1A Fig), or the module’s GUI can

also be used to manually draw the desired ROIs, or import predefined ROIs. For simplicity, we
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Fig 1. Overview of the toolbox workflow. Colored boxes indicate the processing modules (color code in top

left corner). Dashed boxes correspond to optional procedures. Tutorial step numbers related to each

procedure are indicated in the bottom-right corner of each box. Single-headed thin and thick arrows

respectively depict the processing-pipeline flow, and the option to import pre-analyzed data from other

methods into the stand-alone modules of the pipeline.

https://doi.org/10.1371/journal.pcbi.1005526.g001
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interchangeably use the terms “ROI” and “neuron” throughout the text, except otherwise

stated.

Synthetic calcium dyes label neurons rather uniformly. On the other hand, genetically

encoded calcium reporters are typically expressed in the cytosol, and can be excluded from

nuclei or not. Imaging neurons where the reporter is found exclusively in the cytosol results in

characteristic ring-shaped fluorescent labeling. When the reporter is present in nuclei, imaging

results in uniformly filled spots. Therefore, this sub-module allows the user to specify the kind

of fluorescent labeling used (i.e., labeled nuclei or not), switching between algorithms tailored

to detect ROIs in either of these two conditions. These algorithms are described in S1 Text.

The automatic detection of ROIs is performed in a few simple and interactive steps in the GUI.

First, the image of the optical plane is spatially normalized (see S1 Text for description). Then,

two thresholds, cell center and neuropil border thresholds (thrsoma and thrneuropil, respectively)

must be set to obtain the automatically detected ROIs. The GUI then allows the user to curate

the resultant ROIs. For this, a series of ROI morphological criteria (area, fluorescent intensity,

and perimeter circularity) can be applied to rapidly filter undesired ROIs. Finally, the GUI

allows the user to manually add, delete or modify the ROIs.

Correction of neuropil fluorescence contamination and calculation of ΔF/

F0

The toolbox calculates the relative fluorescence variation (ΔF/F0) of each ROI, based on a few

experimental parameters that the user must set. It involves performing an (optional) signal

correction from neuropil fluorescence contamination, a data sanity test (see S1 Text for

description), and the detection of the baseline ROI fluorescence.

Microscopy techniques are continuously improving in resolution power. However, even

two-photon fluorescence microscopy has relatively limited resolution (especially axially).

Thus, the neuropil fluorescence signal can substantially contaminate the somatic signal[28,29]

so that Fmeasured = Fsoma + α Fneuropil. To overcome this, the module allows the user to set the

parameter α so as to subtract a local perisomatic neuropil signal from the measured signal[11].

However, the appropriate value of α is still a matter of debate[12].

For the calculation of the ΔF/F0 of the ROIs, the user can choose to estimate F0 in two

ways: i) use the average ROI fluorescence in a user-selected time window (typically, a time win-

dow immediately before a particular experimental event, e.g. sensory stimulation, animal

movement, etc.); ii) use an estimation of the slow fluorescence baseline fluctuations (Fsmooth),

which are unrelated to the faster calcium transients associated with neuronal activations (S1B

and S1C Fig).

Significant fluorescence transients

This sub-module automatically infers which fluorescence transients are significantly associated

with neuronal activations. A few options are available, and users can choose the inference pro-

cedure that best suits their imaging experiments. Alternatively, the user can import results

from alternative methods[30,31], if preferred.

The toolbox allows for the estimation of the baseline fluorescence noise scale (σ) using two

options: 1) by fitting a Gaussian model to the negative ΔF/F0 fluctuations of each ROI (i.e.,

those below baseline, which are not related to calcium transients and hence are due to mea-

surement noise; S1D Fig) and estimating the standard deviations of the baseline Gaussian pro-

cess; 2) by estimating the standard deviations of the ROI’s ΔF/F0 traces, after excluding the

largest ΔF/F0 excursions (which should represent the calcium-transient peaks). Finally, we

provide two options for performing the inference of significant transients. The user can choose
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a straightforward Static threshold method that uses a fixed fluorescence threshold for each

ROI. Only those fluorescence excursions that exceed a multiple of the ROI’s are considered

significant. Alternatively, the user can adopt a Dynamic threshold method that exploits the

estimated model of the underlying noise and applies a non-static threshold that depends on

both the ROI’s σ and the fluorescence decay kinetics of the calcium reporter. This method was

previously described in detail[9]. Briefly, it implements a Bayesian odds ratio framework that

analyzes fluorescence transitions across imaging frames. It labels as significant those transi-

tions whose dynamics meet two conditions: i) they cannot be explained by the underlying fluo-

rescence noise, according to a user-selected confidence threshold; ii) they are compatible with

the reporter’s τ. Finally, the module automatically displays the ΔF/F0 traces and the significant

transients.

Analysis of responses

If desired, this module can be used in a stand-alone manner, independent of the previous

modules of the processing pipeline, since the user can import ΔF/F0 and ROIs obtained using

other procedures (see Fig 1).

The user first needs to provide timing information corresponding to the events of interest

(e.g., the time of the stimulus), and the module automatically isolates, regroups and displays

the event-locked single-trial and average calcium events. Significant fluorescence transients

will be highlighted, allowing for the evaluation of ROI activations at the single-trial level. To

plot the spatial topography of ROI responses, the module uses a hue-saturation-value (HSV)

colormap, where hue represents the variable value vpeak that corresponds to the tuning curve

peak (the ROI “preferred” variable value), saturation depicts the tuning width around vpeak

(the ROI specificity for vpeak), and value represents the actual ΔF/F0 value at vpeak (ΔF/F0peak;

the ROI response amplitude). To make intuitive sense of the HSV color code, there must be a

continuous parametric relation between the user-provided variable being mapped and the

experimental event (e.g., the frequency of an auditory stimulus when mapping tonotopicity,

the position of a visual stimulus when mapping retinotopicity, etc.). In some cases, the distri-

bution of ROI response intensities may be highly skewed (a few very strong responses domi-

nating a set of weaker ones). This can hinder the appropriate visualization of the data, if the

full range of responses is represented without any color rescaling procedure. Therefore, the

module allows clipping (to flatten signals that exceed a threshold) and offset of the saturation

and value, improving data interpretability. Moreover, the user can choose to inversely relate

ΔF/F0peak to a transparency channel, which smooths out the weak and noisier responses,

highlighting the most significant ones.

Assemblies

This module can also be used as a stand-alone module independent of the previous processing

pipeline (see Fig 1). To define the assemblies, the module can detect correlated ROIs by taking

into account the unfiltered ΔF/F0 traces or by focusing only on the significant ΔF/F0 tran-

sients. Furthermore, it can be used to analyze single-plane or multi-plane volumetric imaging

experiments.

This module applies three different clustering algorithms: i) PCA-promax clustering; ii) k-

means clustering; iii) hierarchical clustering. Both ii and iii are standards and widely used clus-

tering methods[32,33], and i was characterized and described in detail in Romano et al. 2015.

Here we give a brief outline of the PCA-promax approach (for a longer description and discus-

sion about the available methods for the detection of neuronal assemblies see S2 Text).

A toolbox for the analysis of calcium imaging of neuronal populations
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The PCA-promax implements a fully automated method that searches for ROIs with corre-

lated calcium dynamics. Since a given ROI could belong to more than one functional group

(assemblies), the PCA-promax is tailored to define non-exclusive ROI assemblies (i.e., it allows

for potential overlap between the detected clusters), in contrast to classic k-means and hierar-

chical clustering. The procedure relies on previously proposed techniques[23,34]. Briefly, it

consists of two processing steps. First, it z-scores the activity of each ROI and reduces the

dimensionality of the complete z-scored dataset of ROI activities through principal component

analysis (PCA). The initial z-scoring homogenizes the variance across ROIs, allowing PCA to

reveal the global structure of ROI activity covariance. To define the assemblies, it then uses a

second algorithm to partition this space of reduced dimensionality, by means of non-orthogo-

nal factor rotation, promax[35]. This latter step extends the simpler PCA-clustering method

[34] to non-exclusive assemblies.

Dataset dimensionality reduction is obtained by only keeping principal components (PCs)

with eigenvalues greater than λmax, a theoretical lower bound to the eigenvalues of informative

PCs given by the Marčenko–Pastur distribution[34,36] (Eq 1)

l ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffi
N=T

p
Þ
2
þ N2=3 ð1Þ

where N and T are the number of ROIs and imaging frames, respectively.

Since we are looking for non-exclusive assemblies, we relax the PCA orthogonality condi-

tion[23]. Therefore, to delineate the assemblies, the algorithm works on a space of obliquely

rotated components (promax), that sparsely concentrates the PC loadings along non-orthogo-

nal rotated PCs. Hence, after standardizing the loadings on rotated PCs by means of a z-score,

a given ROI is included in a particular assembly if its z-scored loading on that rotated PC

exceeds a threshold value. This threshold is easily estimated as the first minima in the distribu-

tion of z-scored maximal ROI loadings (defined by the user). The algorithm then merges clus-

ters determined by two rotated unitary PCs if the dot product of the latter exceeds 0.6 (i.e.,

clusters with highly similar neuronal compositions). As a final constraint, only significantly

correlated and synchronous clusters are kept (p< 0.05, compared to shuffled assemblies).

Finally, to assess statistical significance of the assemblies’ features, the toolbox allows com-

paring the obtained assemblies against a set of surrogate control assemblies. For this, it allows

pooling user-defined neuron features into artificial surrogate assemblies (e.g., the average neu-

ronal activation frequencies, the neuronal tuning curves, neuronal phenotypes, pair-wise activ-

ity correlations, pair-wise topographical distances, etc.), and compare it to the pooling of the

original assemblies. Certainly, the choice of control datasets that serve as null models will

depend on the particular scientific question being statistically tested. We focused on two par-

ticular kinds of control datasets. We preserve the imaged fluorescence dynamics of all ROIs,

and regroup ROIs according to: i) surrogate shuffled assemblies (where the ROIs of any given

original assembly are randomized); ii) surrogate assemblies that preserve the original assem-

blies’ spatial features (i.e., conserving the distribution of the relative pair-wise physical dis-

tances between ROIs in the original assemblies).

Results

Given the large scope of the pipeline, here we focus on the typically obtained results of the

most relevant processing stages. The processing of all datasets was performed according to the

tutorial provided.

As described in the tutorial, the initial data pre-processing consisted in registering in-plane

x-y drifts of the imaged optical section, followed by the automatic detection of movement-
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related imaging artifacts. Then, the toolbox was used to automatic detection and interactive

manual curation of morphological single-neuron ROIs, as explained next.

Segmentation in single-neuron ROIs

As expected, the success of this module depends on the image’s spatial resolution, the anatomy

of the imaged region, and the cellular labeling by the fluorescent reporter. Here, we demon-

strate that it can successfully process remarkably different datasets.

We provide 5 examples of single-neuron ROI detection performance obtained with two-

photon imaging: i) for an injected synthetic dye that labels the entire volume of the neurons

(OGB-1 AM) in mouse visual cortex[37] (Fig 2A; dataset pvc-10 from crcns.org); ii) for

mCherry-labeled nuclei in a GCaMP6s imaging experiment obtained by viral injections in the

mouse somatosensory cortex[11,38] (Fig 2B; dataset ssc-1 from crcns.org); iii) for large-field

imaging of nuclei-excluded GCaMP3 in transgenic zebrafish larvae (Fig 2C); iv) for a prepara-

tion similar to iii but imaging a smaller field (the provided case study); and v) an example of

single-neuron ROI detection in single-photon high-acquisition rate (100 Hz) light-sheet imag-

ing of a transgenic zebrafish expressing GCaMP5 (see Fig 2D). These examples illustrate the

algorithm’s performance in settings that differ markedly in the density of neuronal labeling

(examples iv and i being the most and less dense, respectively), and with imaging techniques of

different spatial resolution and acquisition rates (two-photon laser scanning and single-photon

light-sheet microscopies).

For both mouse cortical datasets (Fig 2A and 2B) it took less than 5 mins to obtain 149 and

505 ROIs, respectively. For the large-field dataset in zebrafish (2178 ROIs), it took ~10 mins

(Fig 2C). Finally, for the light-sheet imaging dataset we obtained 438 ROIs in less than 10 mins

(Fig 2D). Typically, we obtained a>85–90% success rate in automatically detecting ROIs cor-

responding to single neurons, depending on imaging quality. For the present examples, after

setting the parameters for ROI segmentation and filtering, we had to curate 8% of the ROIs for

the case study, 9% for both mouse cortical datasets (Fig 2A and 2B), while for the large-field

zebrafish dataset, 8% of the ROIs were curated (Fig 2C). For the single-plane single-photon

light-sheet imaging dataset shown in Fig 2D, we had to curate 15% of the ROIs, due to the

lower spatial resolution of this technique. Since simultaneous multi-plane light-sheet imaging

does not guarantee single-neuron resolution, we used an array of hexagonal ROIs.

Detection of fluorescence transients related to neuronal activity

To correct from neuropil fluorescence contamination, for each ROI, the corresponding local

neuropil signal is automatically obtained from a circular area with a 20 μm radius that sur-

rounds the ROI in question and excludes all other ROIs (Fig 3A). Neuropil subtraction is par-

ticularly important when imaging loosely scattered neurons surrounded by neuropil (e.g., Fig

2A and 2B). Indeed, signal contamination from the neuropil can notably affect the measure-

ment of the correlations between the neuronal fluorescence time courses (Fig 3B–3E).

The inference of significant ΔF/F0 transients can be applied to a variety of imaging condi-

tions (Fig 2). To infer the statistical significance of fluorescence transients, the algorithm

implemented in the toolbox considers that any event in the fluorescence time series data

belongs to either a neuronal activity process or to an underlying noisy baseline. Thus, the

toolbox first performs a key step for this inference, which is the estimation of the ROIs’ fluores-

cence noise levels (i.e. the baseline fluorescence noise scale σ). With this estimate, the

toolbox can detect significant transients, by imposing a static fluorescence threshold based on

the ROI’s σ, or, alternatively, using a simple dynamic threshold that analyzes fluorescence tran-

sitions, depending on both the ROI’s σ and the biophysics of the imaged calcium indicator.

A toolbox for the analysis of calcium imaging of neuronal populations
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Fig 2. Detection of ROIs corresponding to single neurons. Four examples from different animal models,

brain regions, imaging techniques and calcium indicators. Left: imaged optical planes. Perimeters of correct

and incorrect automatically detected ROIs are shown in green and red, respectively. Yellow perimeters,

detected ROIs that had to be manually curated, or undetected but manually drawn. Right: representative ΔF/

F0 traces (black) and significant fluorescent transients detected (red). (A) Mouse primary visual cortex bolus

injected with OGB-1 AM (two-photon imaging, 256x256 pixels, 30 Hz sampling rate). Data from Scholl et al

A toolbox for the analysis of calcium imaging of neuronal populations
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The latter method imposes stronger constraints to the data, but is more robust against false

positives. Therefore, it is particularly useful for imaging conditions associated with lower sig-

nal-to-noise ratios (SNR; e.g., when imaging large fields with low-intensity excitation light).

For the mouse cortical data (Fig 2A and 2B), the ROIs’ baseline noise σ was estimated with

the Gaussian model, and the significance of fluorescence transients was inferred with the

Dynamic threshold method with the appropriate τ of the calcium reporters. For the light-sheet

imaging datasets in Figs 2D and 8, σ was also estimated with the Gaussian model, but due to

the large size of the datasets, significant transients were obtained with the faster Static thresh-

old method.

We quantified the toolbox performance in detecting neuronal activity from imaging data.

For this, we applied the dynamic threshold method to a dataset[28,39] consisting of simulta-

neous imaging and loose-seal cell-attached recordings in GCaMP6f expressing neurons (37

recordings from 11 different neurons; Fig 4; dataset cai-1 from crcns.org). Using this ground-

truth data, we observed that the significant fluorescence transients inferred by the algorithm

correlated well with the firing rate of the neurons (r = 0.44±5; top panel in Fig 4B). This is com-

parable to the best performance obtained by more complex spike-inference algorithms applied

to the slower GCaMP6s signal (compared to that of GCaMP6f), albeit imaged in more chal-

lenging conditions[40]. Moreover, 90±9% of all the recorded spikes, and 63±28% of the single

spikes (spikes separated to other spikes by at least 1 s), were related to a significant calcium

transient (bottom panel in Fig 4B). Overall, this suggests that, when imaging calcium reporters

with fast kinetics (e.g., GCaMP6f), the toolbox can confidently detect in an unsupervised man-

ner significant fluorescence transients related to action potentials, without the need for train-

ing data or more complex and supervised inference algorithms.

Analysis of neuronal responses

Several studies aim to relate neuronal activity to experimental events (e.g., sensory stimulation,

behavioral response, etc.). Indeed, imaging is particularly suited for revealing the spatial

distribution of neuronal responses (i.e., topographic sensory/behavioral functional maps),

which may be crucial to understand brain coding strategies. The toolbox allows associating

ROI fluorescence responses with a given experimental variable (provided by the user), and

visually displays them on the imaged optical plane to assess their topographical organization.

To illustrate the capabilities of the response-analysis module, we present the results

obtained with two different datasets. The first one is the case study included in the

toolbox tutorial (Fig 5A–5E). For this case study, GCaMP3 was imaged to monitor the

responses of the zebrafish optic tectum to visual stimulation consisting of 3 trials of 4˚ light

spots presented at different azimuths of the visual field (-45˚ to 45˚ in 5˚ steps, 0˚ represents

[37]. Segmentation was performed with the “labeled nuclei” and “bigger ROI” options, and we set parameters

“local contrast” to ~20 for spatial normalization of the image, thrneuropil and thrsoma to ~0.45 and ~0.095,

respectively, and “minimal ROI area” to 18 pixels. (B) Mouse somatosensory cortex, where nuclei of

excitatory neurons are transgenically labeled with mCherry (two-photon imaging, 256x256 pixels, 7 Hz

sampling rate). Calcium dynamics monitored with GCaMP6s. Data from Peron et al[11,38]. Parameters used:

“labeled nuclei” and “bigger ROI” options, “local contrast” ~43, thrneuropil ~0.15, thrsoma ~0.08, and “minimal

ROI area” set to 15 pixels. (C) Transgenic zebrafish larva pan-neuronally expressing GCaMP3 (two-photon

imaging, 512x256 pixels, 1 Hz sampling rate). Parameters used: “unlabeled nuclei” and “smaller ROI options”,

“local contrast” ~10, thrneuropil ~0.15, thrsoma ~0.01, “minimal” and “maximal ROI areas” set to 7 and 40 pixels,

and “minimal” and “maximal circularity” to ~0.48 and ~1.7. (D) Right hemisphere of the optic tectum of a

transgenic zebrafish larva pan-neuronally expressing GCaMP5 (single-photon light-sheet imaging, 232x242

pixels, 100 Hz sampling rate). Parameters used: “unlabeled nuclei” and “smaller ROI options”, “local contrast”

~20, thrneuropil ~0.15, thrsoma ~0.01, “minimal ROI areas” set to 8 pixels.

https://doi.org/10.1371/journal.pcbi.1005526.g002
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Fig 3. Correction of neuropil fluorescence contamination. (A) Left: optical plane imaged with two-photon microscopy

of the mouse somatosensory cortex (same data as Fig 2B). Right: examples of the detected ROIs (red) and their circular

perisomatic masks used to calculate the local neuropil signals (white). Perisomatic masks are overlapping, but each ROI

is associated with a single circular mask. Black holes inside the perisomatic masks are other detected ROIs not included

in the local neuropil signal calculation. (B) Left: raw fluorescence traces obtained with the perisomatic masks shown in A
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directly in front of the larva). Event-locked single-trial and trial-averaged ROI ΔF/F0 responses

are automatically displayed (see Fig 5D and 5E), allowing the interactive exploration of any

ROI of interest. Moreover, the information in these trial responses is also summarized by cal-

culating the “tuning curves” of each ROI. For this purpose, the module plots the trial-averaged

ROI ΔF/F0 responses as a function of the experimental variable (see bottom right panels in

Fig 5D and 5E). Finally, these ROI tuning curves are color-coded and superimposed on the

imaged optical plane, using the hue-saturation-value (HSV) colormap described in Design and

Implementation (see Fig 5C). We observe that neighboring visual-field positions are mapped

on neighboring positions in the optic tectum, reflecting the tectum’s functional retinotopic

map[41,42] (Fig 5C). To improve the visualization of the topography of responses, we used the

GUI (Fig 5B) to clip and offset the saturation and value channels (compare Fig 5A and 5C).

The second dataset used was obtained through multi-plane light-sheet imaging, where the

activity of>40,000 simultaneously monitored ROIs were sampled at 2.1 Hz in a GCaMP5-ex-

pressing transgenic zebrafish larva. Since fast volumetric light-sheet imaging does not guaran-

tee single-neuron resolution, we used arrays of hexagonal ROIs covering the totality of each of

the 40 optical planes imaged (separated by steps of 5 μm). Every 20 min, the larva was visually

stimulated using whole-field gratings capable of inducing optomotor response (OMR; in

(neuropil signal). Right: pair-wise correlation matrix for the signals shown in the left. Note the high temporal correlation

across the traces. (C) Same as B, for the raw fluorescence traces of the ROIs shown in A (somata). (D) Same as C, for

the corrected ROI fluorescence traces, obtained by subtracting the traces shown in B from the corresponding traces

shown in C, with α = 0.9. Note the reduction in the temporal correlations, compared to those found in C, despite the small

changes of the individual fluorescence traces. (E) Relationship between the pair-wise correlations shown in C and D.

https://doi.org/10.1371/journal.pcbi.1005526.g003

Fig 4. Toolbox performance in inferring neuronal activity from calcium imaging data. (A) Two examples with different signal-to-noise ratios (SNRs)

from different neurons in the cai-1 ground-truth dataset[28,39]. For each example, we show: top, GCaMP6f ΔF/F0 traces (black) and the significant

fluorescent transients detected by the module (red); bottom, ticks representing the simultaneously recorded spikes (those associated with a significant

calcium event are highlighted in red; asterisks mark single spikes); middle, spiking rate of the neuron calculated by temporally convolving spikes with a

Gaussian filter of σ = 20 ms. Imaging was performed at 60 Hz. A spike was considered as associated with a significant calcium event if it was followed by an

event of significant fluorescence within 40 ms (GCaMP6f rise time τpeak = 45± 4 ms, for 1 spike[28]). Significant transients were calculated with default

toolbox parameters in Dynamic threshold mode, with a GCaMP6f τdecay = 250 ms[28]. (B) Boxplot summary of performance for all recordings (n = 37). Top:

coefficients obtained when correlating the spiking rates with the raw fluorescence traces or with the ΔF/F0 traces of significant transients (where non-

significant fluctuations were set to 0). Bottom: Percentage of “detected” spikes (i.e., those associated with a significant calcium event), for all recorded spikes

or for single spikes only.

https://doi.org/10.1371/journal.pcbi.1005526.g004
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Fig 5. User interface screenshots of the calculated neuronal responses associated with experimental

events. (A-E) Responses to visual stimulations with light spots at different azimuth angles of the larva’s visual

field (two-photon imaging of a GCaMP3-expressing zebrafish larva). (A) ROIs are colored with an HSV color
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which larva turn and swim to follow the whole-field motion). The gratings moved in different

directions (-60˚, 0˚, 60˚ and 180˚, where the angle indicates the difference between the larva’s

heading direction and the direction of the moving grating; 24 trials of 10 s per moving direc-

tion). Using the response-analysis module, we automatically computed the spatial distribution

of ROI responses, observing a bilaterally symmetric group of ROIs located in the hindbrain,

tuned to stimuli that elicit OMR in opposite directions (gratings moving at 60˚ and -60˚),

revealing brain regions whose activations are related to the sensorimotor transformation (Fig

5F and S1 Video).

Detection of neuronal assemblies

The analysis of responses associated with particular experimental events, as those illustrated in

the previous section, can provide insights into neuronal functioning. This is a kind of super-

vised analysis that requires explicit timing information in order to calculate the event-locked

ROI responses. Nevertheless, the analysis of the activity dynamics of neuronal populations can

also reveal organizational principles in an automatic and unsupervised manner. Here, we

focus on the unsupervised detection of neuronal assemblies (i.e., clusters of ROIs with similar

activity dynamics)

For the detection of neuronal assemblies in the case study of the tutorial, we used the PCA-

promax method. We chose to manually select the single input parameter required by the pro-

gram, the zMax threshold (Fig 6A). Examples of the spatial topographies of the detected

assemblies are shown in Fig 6B, which reveal a majority of spatially compact neuronal clusters.

Remarkably, displaying these assemblies color-coded according to their spatial centroid posi-

tion (Fig 6C and 6D), clearly recapitulates the functional retinotopic map of the optic tectum

(Fig 5C). As explained before, this dataset consists of tectal light-spot-induced neuronal

responses. Thus, this demonstrates that the clustering procedure is capable of exposing the

functionally relevant spatial organization of tectal responses, without any information on the

timing of the stimulation.

We applied the same PCA-promax procedure on the mouse somatosensory cortex

GCaMP6s-imaging dataset (the same of Fig 2B). In this experiment, the superficial barrel cor-

tex was imaged while the mouse performed a single-whisker object localization task. Activity

fluctuations along the experiment were limited to<5% of total neuronal population imaged

(1025 neurons), however, clustering neurons according to their activities revealed the coordi-

nated activation of several sets of neurons Fig 7). Interestingly, one of these neuronal assem-

blies (assembly #11) consisted of a group of correlated neurons that was responsive to the

mouse contacting the whisker with the object. Apart from detecting this group of functionally

code representing their preferred azimuth angle (Peak mapping parameter; hue), azimuth selectivity (Tuning

width; saturation) and average response at preferred azimuth (Response strength; value). Due to the skewed

distribution of the responses, only a few responsive ROIs can be visualized. (B) Offsetting and clipping of the

saturation and value channels to improve visualization. Black, original values used in A; red, rescaled values

used in C. (C) Same data shown in A, but with the rescaled channel ranges. After this step, the retinotopic

organization of the optic tectum becomes evident. (D and E) Screenshots of the responses of two ROIs

selected by clicking on Select ROI in c. Average (black) and single-trial (gray) ΔF/F0 responses are organized

according to the stimulus values, where significant trial responses are shown in red. Bottom right, tuning

curves of the ROIs. Black, mean response; gray patch, standard error. Note how the responsive but less

selective ROI in e is shown with a more whitish color code (low saturation). (F) Responses to visual

stimulations with gratings moving in angular directions, monitored by volumetric light-sheet single-photon

imaging of a GCaMP5-expressing zebrafish larva. Responses are displayed in HSV color code over the

maximal intensity projection of all imaged optical sections. Note that, while the tectal neuropil indiscriminately

responds to all directions (whitish ROIs), a pair of bilaterally symmetric group of ROIs in the hindbrain

responds selectively to either 60˚ or -60˚ (see S1 Video for volumetric distribution of responses).

https://doi.org/10.1371/journal.pcbi.1005526.g005

A toolbox for the analysis of calcium imaging of neuronal populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005526 June 7, 2017 14 / 23

https://doi.org/10.1371/journal.pcbi.1005526.g005
https://doi.org/10.1371/journal.pcbi.1005526


Fig 6. Detection of neuronal assemblies for the case study. (A) Screenshot for the selection of the zMax

threshold to determine the neuronal composition of the assemblies. After setting the smooth parameter with

the slider (top-right), the threshold is chosen with a mouse click on the graph of the density distribution (red

arrow). (B) Screenshot showing the topography of 3 representative assemblies (out of 42). ROIs that belong

to each assembly are labeled in yellow. (C) Screenshot of two user-defined anatomical axes (see tutorial)

over which assemblies will be spatially organized. Each curve is automatically colored so that the combined

curves reproduce the hue gradient used in Fig 5A and 5C. The chosen curves span the rostro-caudal

retinotopic axis of each tectal hemisphere. (D) Screenshot of the figure obtained displaying the spatial

organization of the assemblies along the selected axes. Assemblies’ ROIs are colored according to the

defined axis (i.e., the position of the assemblies’ spatial centroid with respect to the defined axis). The

comparison with Fig 5C confirms that assemblies reproduce the tectal retinotopic functional map.

https://doi.org/10.1371/journal.pcbi.1005526.g006
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related neurons, the clustering algorithm also exposed the ongoing concerted activity of other

assemblies along the task, that may convey additional contextual or task-related signals.

This kind of analysis can also be performed in large-scale activity data. In Fig 8 and S2 and

S3 Videos, we illustrate the result of using the PCA-promax method to detect assemblies in a

brain-wide light-sheet imaging dataset, and compare it to the k-means clustering. The algo-

rithm revealed several bilaterally symmetric assemblies and unilateral assemblies with their

corresponding contralateral counterparts. In particular, we observed a symmetric pair of

assemblies distributed over the pre-tectum and the anterior and caudal hindbrain (Fig 8D and

S2 Video), whose activities were tightly related to experimental events (OMR-inducing visual

stimulation; Fig 8I), stressing their relevance. In agreement with recent findings[43,44], this

particular assembly was also apparent when averaging ROI responses during OMR stimulation

(Fig 5F and S1 Video), but the average-response map was much noisier and less anatomically

defined than the assemblies found through activity clustering. Moreover, we also found topo-

graphically precise clusters that were missed by averaging ROI responses to visual stimulation,

Fig 7. Detection of neuronal assemblies in the mouse barrel cortex. Top: raster plot of the z-scored ΔF/

F0 of 277 neurons distributed in 37 assemblies, from the total imaged population of 1025 neurons. Neurons

are sorted and color-coded according to the assembly to which they belong to (color bar on the right). Black

trace on top, fluctuations of the number of active neurons in the total imaged population; Black trace on the

left, average neuronal responses to a whisker-object contact. Bottom: activation dynamics of the detected

assemblies, color-coded as in the raster plot. Vertical dotted lines indicate moments of whisker-object contact.

Note that activations of assembly #11 are associated with contacts, and episodes of activity sequentially

progressing through assemblies (marked by gray boxes).

https://doi.org/10.1371/journal.pcbi.1005526.g007
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Fig 8. Neuronal assemblies obtained using whole-brain light-sheet imaging in zebrafish reveals the spatial

structure of brain activity. A GCaMP5-expressing larva was volumetrically scanned with fast multi-plane single-

photon light-sheet microscopy. Due to the lack of single-neuron resolution in this imaging dataset, a grid of 9 μm-

diameter hexagons was imposed over each imaged optical plane. (A-F) Some of the ROI assemblies found with the

PCA-promax method, displayed over the maximal intensity projection of all imaged optical sections (for individual
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like a symmetric pair of assemblies comprising the midbrain torus semicircularis, along with

its octavolateral (lateral line and acoustic) afferences from the hindbrain (Fig 8B).

These examples illustrate the capability of PCA-promax clustering to expose the biologically

relevant spatio-temporal organization of high-dimensional datasets, going beyond the analysis

of trial-averaged responses by allowing the study of single-trial population dynamics.

Finally, when validating results obtained from large multidimensional datasets, the use of

appropriate control surrogate datasets is critical. As an example, since neighboring neurons

tend to be more highly correlated, we asked if the spatially compact assemblies of the optic tec-

tum case study were the result of simply grouping nearby neurons. We demonstrate that this is

not the case, since we found that compared to Topographical surrogate assemblies, the assem-

blies of the optic tectum do not show any particular trend in the average activity level of their

component ROIs (Fig 9B), but they do significantly group correlated ROIs (Fig 9C). This

example allows the user to further validate the clustering results, which effectively groups cor-

related ROIs, without showing a bias for the most active ones (a common concern in clustering

procedures).

optical sections see S2 Video). (A-D) Pairs of symmetric unilateral assemblies. (E-F) Single bilaterally symmetric

assemblies. (G) All ROI assemblies found with the PCA-promax approach, displayed over the maximal intensity

projection of all imaged optical sections (for individual optical sections see S3 Video). Assemblies are colored

according to the similarity of their activity dynamics (the more temporally correlated, the more similar the color of the

assemblies). This color code was also used in the previous panels (except for the assembly pair shown in c, which

was colored differently to facilitate visualization). (H) Same as G, but for assemblies found using k-means, color-

coded according to the similarity of their activity dynamics. To allow for a comparison between G and H, the

dimensionality of the dataset was reduced through PCA before clustering (otherwise, clustering did not converge).

Note how this clustering reveals assemblies whose spatial organization is roughly consistent with those shown in G,

but exposes a much less biologically relevant fine structure. (I) Single-trial activation dynamics of the assemblies

shown in D during one of the blocks of visual stimulation. Periods of moving-grating stimulation are labeled in red,

angles indicate the grating’s moving directions. Note that both assemblies are activated by this OMR-inducing

stimulation, with the bluish and greenish assemblies preferring 60˚ and -60˚, respectively.

https://doi.org/10.1371/journal.pcbi.1005526.g008

Fig 9. Comparison of specific features of the assemblies with those of surrogate controls. (A) Spatial layouts of a given assembly

detected in the optic tectum case study, and of one example of a Random surrogate assembly (RSA, where an equal number of ROIs are

randomly placed) and a Topographical surrogate assembly (TSA, where ROIs are placed preserving the inter-ROI distances of the original

assembly). (B) The normalized frequency histogram of average ROI activity levels (mean significant ΔF/F0 per imaging frame) obtained for

ROIs included in assemblies (top) and those included in TSAs. (C) Same as B, but for the ROI activity correlations (pair-wise Pearson

correlation coefficient).

https://doi.org/10.1371/journal.pcbi.1005526.g009
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Availability and future directions

The toolbox is an open-source project freely available to the community. It was developed

under Matlab and verified to run properly through a variety of versions, from R2010a up to

2015b. It requires the Matlab’s Curve Fitting, Image Processing, Statistics and Machine Learn-

ing, and Parallel Computing toolboxes. The source code can be downloaded, together with a

detailed tutorial[27] and a case study dataset, from https://github.com/zebrain-lab/Toolbox-

Romano-et-al. Data analyzed here includes the case study included in the toolbox, and datasets

downloaded from https://crcns.org/data-sets/ssc/ssc-1, https://crcns.org/data-sets/vc/pvc-10

and https://crcns.org/data-sets/methods/cai-1. The pipeline can be run on any desktop com-

puter, but we recommend multicore computers for shorter computing times, as several algo-

rithms allow for parallelization. For analysis of large light-sheet imaging dataset, we used a

computer cluster of 328 CPUs based on an HTCondor parallelization system. Imaging videos

of long experiments can result in file sizes of several gigabytes (GB), and therefore we recom-

mend 64-bit architectures with at least 12 GB of RAM. We also recommend screen resolutions

of at least 1280x800 pixels for a better experience with the GUI.

While calcium indicators have become the standard for imaging neuronal activity, geneti-

cally encoded voltage indicators (GEVIs) are a promising technology [45,46], despite impor-

tant constraints on the technique[12]. In principle, the toolbox could be extended without

difficulty to allow the analysis of imaging data using GEVIs. Furthermore, clustering of large

multivariate datasets is a complex mathematical problem. The PCA-promax method for

detecting assemblies relies on PCA, which implements linear data transformations. Thus, in

the future the toolbox could be supplemented with other measures of activity similarity to bet-

ter capture non-linear neuronal activity correlations, like manifold learning algorithms[47,48]

and network theory[49]. Nevertheless, new mathematical techniques to address this issue are

eagerly awaited, since unsupervised faithful learning of non-linear interdependencies across

large neuronal populations is an extremely challenging task that remains unresolved.

Supporting information

S1 Text. Further details on the toolbox.

(PDF)

S2 Text. Comparison to other methods.

(PDF)

S3 Text. Installation instructions for the toolbox.

(PDF)

S1 Fig. Pre-processing fluorescence dynamics. (A) Red, hexagonal grid of 6 mm-diameter,

over an imaged optical section of optic tectum of a zebrafish larva pan-neuronally expressing

GCaMP3. The region covered by the grid is defined with a user-drawn mask. (B) Left, raw

fluorescence of a ROI (black) and the estimated Fsmooth. Right, ΔF/F0 obtained using Fsmooth as

F0. Note how slow fluctuations are removed, producing a stable ΔF/F0. (C) Zoom of A. Note

how follows slow fluorescence variations, ignoring the fast, neuronal activity related fluores-

cence transients. (D) Estimation of the baseline fluorescence noise (σ) of a ROI. Black, normal-

ized histogram of the ROI’s ΔF/F0; red, Gaussian fit to the negative fluorescence ΔF/F0.

(PDF)

S2 Fig. Mapping of responses to HSV color-code. (A) Schema illustrating the definition of

the hue, saturation and value to visually represent ROI responses in a color-code. Left, ROI

tuning curve. Arrows indicate the particular hue, saturation and value of this ROI. Right,
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colorbars representing the range of hue, saturation and value for all the imaged ROIs. Arrows

indicate the color-code parameters for the ROI tuning curve shown in the left. (B) Display of

neuronal responses only representing preferred stimulus (i.e., the peak mapping parameter).

Same as Fig 5, but disabling saturation and value channels, thus only representing preferred

stimulus on the hue channel. The noisier image obtained underscores the utility of additionally

representing the neuronal selectivity and response strength.

(PDF)

S1 Video. Volumetric distribution of ROI responses shown in Fig 5F. The axial projection

of all the ROI responses is initially displayed, followed by each one of the 40 imaged optical

planes (plane depths are indicated in lower right corners).

(MP4)

S2 Video. Volumetric distribution of example assemblies shown in Fig 8A–8F. Assemblies

obtained with the PCA-promax algorithm. For each panel, the corresponding axial projection

of the example assemblies is initially displayed, followed by their layout over each one of the 40

imaged optical planes (plane depths are indicated in lower right corners).

(MP4)

S3 Video. Volumetric distribution of all the assemblies shown in Fig 8G. Assemblies

obtained with the PCA-promax algorithm. The axial projection of all the assemblies found in

the dataset is initially displayed, followed by each one of the 40 imaged optical planes (plane

depths are indicated in lower right corners).

(MP4)
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