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Abstract

We report complex phenomena arising among financial analysts, who gather information

and generate investment advice, and elucidate them with the help of a theoretical model.

Understanding how analysts form their forecasts is important in better understanding the

financial market. Carrying out big-data analysis of the analyst forecast data from I/B/E/S for

nearly thirty years, we find skew distributions as evidence for emergence of complexity, and

show how information asymmetry or disparity affects financial analysts’ forming their fore-

casts. Here regulations, information dissemination throughout a fiscal year, and interactions

among financial analysts are regarded as the proxy for a lower level of information disparity.

It is found that financial analysts with better access to information display contrasting behav-

iors: a few analysts become bolder and issue forecasts independent of other forecasts while

the majority of analysts issue more accurate forecasts and flock to each other. Main body of

our sample of optimistic forecasts fits a log-normal distribution, with the tail displaying a

power law. Based on the Yule process, we propose a model for the dynamics of issuing fore-

casts, incorporating interactions between analysts. Explaining nicely empirical data on ana-

lyst forecasts, this provides an appealing instance of understanding social phenomena in

the perspective of complex systems.

Introduction

The twentieth century witnessed exponential growth in equity capital markets as more coun-

tries opened their securities exchanges and as the barrier to accessing capital markets became

lower for the average household. In a rapidly growing capital market, one of the important

players is the sell-side analyst, who provides valuable information on the issuers of securities,

i.e., the firms. Sell-side analysts issue regular reports that summarize the future outlook of the

business of a firm and forecast the performance, which includes forecasts on earnings per

share (EPS), revenue, operating income, cash flow, and other accounting measures for both
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quarterly and annual performance. Analysts use financial statements, management communi-

cation [1], and detailed voluntary disclosure from the firms [2] as their information source for

producing forecasts. Analyst forecasts on the accounting performance of firms are heavily fol-

lowed and monitored by both company management and market participants, because

accounting performance is the basis for forming expectations for future stock prices [3]. Due

to their importance to the financial markets, analyst forecasts have long been of interest to

scholars in finance and accounting.

So far, the vast majority of studies on analyst forecasts have focused on analyst consensus,

which is either the mean or the median of non-stale analyst forecasts, i.e., existing but not too

old (usually issued within last 90 days) forecasts [4–11]. Some other studies have focused on

the volatility or dispersion of analyst forecasts [12–16]. It is known that analyst forecasts tend

to be optimistic in the beginning and become lower towards the year-end [17].

There has been little interest in the outliers, or the tail distribution of analyst forecasts.

While the location of the distribution is undoubtedly meaningful for understanding the views

of sell-side analysts, the tails of the distribution also signal important messages. Regarding the

analyst forecasts that deviate from the mass, Hong and collaborators [18, 19] found that inex-

perienced analysts are less likely to deviate from consensus with optimistic views relative to

their more reputable counterparts. Put differently, this implies that if there is a positive outlier

in analyst consensus, it may come from more reputable analysts. They argue that inexperi-

enced or less reputable analysts are more liable to face problems with their jobs when their

bold (more extreme) forecasts turn out to be wrong. In other words, unknown analysts are

likely to be fired if they make forecasts that are different from others and turn out to be wrong.

Recently, Du, Yu, and Yu [20] studied the most extreme outlier of the forecasts during the

year, to find that the outlier triggers future earnings management by the company

management.

In this work, we ask if complexity emerges in the collective behavior of analyst forecasts,

particularly, among outliers of optimistic analyst forecasts. Complexity in general stands for

large variability of the macroscopic behavior displayed by a many-particle system, consisting

of many elements [21]. In such a system, appropriate interactions between elements can give

rise to characteristic collective properties of the whole system, which may not be reduced

directly to the properties of individual constituents. The appearance of such macroscopic

behavior is thus called emergence. Even if (microscopic) interactions between elements are

rather simple, the emergent (macroscopic) behavior can be very rich and diverse [22]. In

our system, consisting of analysts as its elements, herding behavior emerges, as is evident

from their forecasts. While actions of analysts do not necessarily delineate complexity, the

whole system nevertheless exhibits such herding behavior and associated complexity. To

investigate how forecasts form complex herding, we treat the forecasts as the product of small

action rules (micromotives) of individual analysts and regard complexity as macrobehavior

[23, 24].

We focus on optimistic forecasts because analyst optimism is a well-documented practice,

and analysts are known to walk down their forecasts towards the end of a fiscal year [17].

Note that complexity is different from “analyst herding” reported in traditional accounting

and finance literature [25]: while the latter refers to the tendency of analysts to issue forecasts

that are simply closer to the mean of existing forecasts, complexity may arise from the ten-

dency to issue forecasts distributed not only in the main body but also in the tail of optimistic

forecasts.

Our study attempts to answer the following questions: Does complexity emerge in forecasts

by major analysts (those issuing forecasts in the main body) or extreme analysts (those issuing

forecasts in the tail of the forecast distribution); how are the forecasts tied to each other; what
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are the effects of the business cycle on analysts’ forecasts; does the emergent complexity change

over time; what are the underlying factors for the changes; and is there any relation between

the behavior of all analysts and that of extreme analysts? In this study, we employ complex sys-

tem analysis to address these questions. Recently, more economists attempted to understand

social phenomena by applying methods of statistical physics used for describing complexity

[26–28]. Further, recent studies introduced statistical methodology to better explain the tail

behavior of financial markets [29]. These methods allow us to characterize economic systems

and help us better understand their tail behavior.

To understand the behavior of analyst forecasts, we here consider the Yule process,

described by a master equation. This turns out to allow for the emergence of skew distribu-

tions, including power-law and log-normal distributions. Power-law behavior, a prominent

statistical signature for complexity [30, 31], has been recognized also in complex economic sys-

tems. The power-law exponent is found to be an important and even universal factor in char-

acterizing financial markets, such as stock markets and foreign exchange markets [29, 32–35].

Increasing awareness of the power law has recently spurred attempts to explain emergent char-

acteristics of various economic and social phenomena of complexity [36]. We thus probe the

emergence of power-law as well as log-normal distributions, which serves as a key evidence of

complexity, in analyst forecasts on EPS of publicly traded US firms.

In the following sections, details of the empirical evidence, which is based on the big-data

analysis, are presented. We then provide a theoretical framework, incorporating interactions

between analysts. The proposed model is shown to explain well the complexity observed in the

empirical data on analyst forecasts. Finally, a summary with discussion is given.

Empirical evidence

In this section we present our empirical results based on the analyst forecast error, which mea-

sures the difference between the analyst forecast on EPS and the actual EPS outcome. We scale

the difference by the stock price, to normalize the difference across sample firms.

Analyst forecast data are obtained from the Institutional Brokers’ Estimate System

(I/B/E/S), which reports the EPS forecast value (VALUE) z, date (ANNDATS), and time

(ANNTIMS) of the forecast, along with the brokerage house (ESTIMATOR) and analyst

(ANALYS). I/B/E/S also reports the actual EPS performance (ACTUAL) a of the fiscal year. Our

main variable of analysis is the analyst forecast error

x �
z � a

S
; ð1Þ

which is scaled by the stock price S on the previous trading day. It turns out that a vast majority

of forecast values are greater than the actual EPS performance, reflecting the optimistic views

of most analysts. Accordingly, in this study, we take only observations with positive forecast

errors, to focus on optimistic forecasts, and perform big-data analysis on the I/B/E/S data

spanning nearly thirty years.

Our analysis manifests that the analyst forecast errors display two distinct distributional

patterns: the main body and the tail. In the main body part, defined as forecast errors greater

than zero but smaller than the 95th percentile value, forecast errors follow a log-normal distri-

bution; in the tail part, defined as those larger than the 95th percentile, forecast errors follow a

power-law distribution, where collective behavior among extreme forecast errors is expected

[37]. For the tail, we use precisely 95.0th to 99.7th percentiles of observations to account for

data errors as well as penny stock cases after the 99.8th percentile.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0177071 May 12, 2017 3 / 18

https://doi.org/10.1371/journal.pone.0177071


The distribution of forecast errors in the main body is found to be skewed, and turns out to

fit the log-normal distribution, specified by the probability density function (PDF):

f ðxÞ ¼
1
ffiffiffiffiffiffi
2p
p

sx
exp �

ln x � mð Þ
2

2s2

� �

: ð2Þ

In fitting our sample, we first construct histograms with optimal binwidth for the forecasts

errors in the main body. We then use the maximum likelihood estimation (MLE) method, to

estimate the mean and deviation of the log-normal distribution within the 95% confidence

interval. Fig 1 illustrates the resulting log-normal fit of our sample for calendar year 1993 with

mean μ = −5.46 and deviation σ = 1.94. The forecast errors for other years in our sample, left

out for brevity, also fit log-normal distribution very closely.

To disclose the detailed behavior of the tail, we consider the cumulative distribution func-

tion (CDF) F(x), which is given by the integral of the PDF from −1 to x. The power-law

behavior described by the CDF [29, 37]

1 � FðxÞ � x� a; ð3Þ

corresponds to the PDF f(x) = dF(x)/dx * x − (1+α).

Fig 1. Log-normal fit of the main body part of forecast errors. We fit the main body part of analyst

forecast errors to the log-normal distribution. (The figure is based on non-stale analyst forecast errors on the

last trading day of 1993; main body parts from other calendar years fit log-normal distributions as well.) We

define the main body part as the bottom 95 percent of analyst forecast errors (129202 observations in 1993).

The red line is the fitted log-normal density while blue circles represent the data points. Error bars have been

estimated from the deviation of the data. The fitted parameter values are: location parameter μ = −5.46 and

scale parameter σ = 1.94.

https://doi.org/10.1371/journal.pone.0177071.g001
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Since Eq (3) exhibits a linear relationship in the logarithmic scale, we use the ordinary least

squares (OLS) method to fit the power-law PDF f(x). Constructing an empirical cumulative

distribution from the data on forecast errors in the tail, we use OLS regression to estimate the

exponent α of the power-law distribution. It minimizes the errors between F(x) and the empir-

ical distribution. From Fig 2, we find that the tail of analyst forecast errors indeed fits the

power-law distribution, implying collective behavior among forecast errors. In year 1993, with

16508 forecast errors in the tail, the estimated power-law exponent is α = 1.00 ± 0.01.

The power-law behavior of forecast errors suggests that analyst forecasts are based on the

“principle of least effort” [38, 39]. Specifically, the power-law exponent unity, following Zipf’s

law, implies that information seeking analysts tend to use the most convenient search method

and such extremely optimistic analysts behave collectively. In Theoretical Framework section,

emergence of such skew distributions as log-normal and power-law distributions is explained

by means of controlled growth processes [40].

Yearly pattern in extreme forecast errors

For each year in our sample period, 1984 to 2012, we estimate the power-law exponent α
for analyst forecast errors and obtain the mean value 1.00 with standard deviation 0.15. From

α� 1, we recognize that the tails of the analyst forecast errors follow Zipf’s law [38] in the

whole (sample) period, as presented in Fig 3.

Fig 2. Power-law fit of the tail of forecast errors. We fit the tail part of analyst forecast errors to the power-

law distribution. (The figure is based on non-stale analyst forecast errors on the last trading day of 1993; tail

parts from other calendar years fit power-law distributions as well). Since the power-law distribution in Eq (3)

implies a linear relationship in the logarithmic scale, we use ordinary least squares (OLS) to fit the empirical

cumulative distribution. The red line depicts the fitted power-law distribution while blue circles represent the

data points. In 1993, the power-law exponent approximates unity (α� 1), which indicates that analyst forecast

errors follow Zipf’s law.

https://doi.org/10.1371/journal.pone.0177071.g002
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It is of interest that while most years have α close to unity, in certain years α deviates from

unity by more than one standard deviation. It takes values lower by more than one standard

deviation in years 2000, 2002, 2005, 2007, 2008, and 2009. The lower the value of α is, the

thicker the tail distribution is. This implies that collective behavior is weaker in the above men-

tioned years. In contrast, collective behavior is stronger in years with α higher than unity by

more than one standard deviation: 1985, 1988, and 1992.

Comparing Fig 3 with recession data from National Bureau of Economic Research (NBER),

we notice that the years when α deviates by more than one standard deviation overlap largely

with the recession period in the U.S. This indicates that analysts, facing economic recessions,

tend to either follow extreme opinions (higher α) or reject them (lower α).

It is also broadly accepted that information asymmetry or disparity is more severe during a

recession as the prospects of the economy are more uncertain, and as a consequence, analyst

forecasts are more dispersed than in other periods [41, 42]. Information disparity in the mar-

ket is higher just before an economic recession, as it is in general more difficult to forecast the

future before huge changes take place. Thus the exponent α deviating from unity by more than

one standard deviation is consistent with our intuition that extreme analyst forecasts should

behave differently during a recession compared with a normal period. The relationship

Fig 3. Annual values of the power-law exponent. Blue dots represent annual estimates of the power-law exponent α
from year 1984 to 2012. The annual value of the exponent is estimated by fitting all forecast errors in each calendar year.

The black horizontal line represents the power-law exponent of unity (α = 1), which corresponds to Zipf’s law, while two red/

green dashed lines indicate one/two standard deviations away from Zipf’s law. The vertical line designates year 2000, the

year of “Regulation Fair Disclosure (FD)”, while the shaded periods correspond to NBER recessions.

https://doi.org/10.1371/journal.pone.0177071.g003
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between the recession and the S&P500 index (https://research.stlouisfed.org/fred2/series/

SP500) indeed confirms this intuition [43, 44].

Yet, it is not straightforward to explain the discrepancy between higher and lower values of

α in different recession periods. The year separating the two cases provides us with an impor-

tant clue. Those values deviating largely from unity display sharp contrast in the general trend

before and after 2000: They are higher than the normal values before 2000, but are lower dur-

ing and after 2000. We propose that this is the evidence of a structural break in information

disparity in the U.S. markets. Specifically, in October 2000, the Securities Exchange Commis-

sion (SEC) passed “Regulation Fair Disclosure (FD)”, which requires that all information be

fairly disseminated to the market [45]. This regulation is intended to reduce information dis-

parity in the financial market by allowing equal access to firm information for all market par-

ticipants. Prior to Regulation FD, companies could disclose firm information selectively to

only some of the analysts and participants in the market; the regulation prohibits such selective

disclosure practice. While there are arguments about the actual outcome of the regulation,

some researchers do find improvements in the information environment after the regulation

[46, 47].

When there is higher information disparity, namely, when only some analysts can access

information, it is plausible to expect that those without the information will follow the opin-

ions of those with the information. This mimicking behavior will cause some analysts to issue

forecasts that are closer to extreme forecasts of other sell-side analysts, usually more reputable

ones, giving rise to collective behavior among the outliers of analyst forecasts. Such collective

behavior resulted in higher values of α during recession periods in the years before Regulation

FD. However, when this information disparity weakens in the market, all financial analysts

share the same set of information and there is no need for the sell-side analysts to follow

extreme analyst forecasts. This results in lower values in the years of post-Regulation FD. It

was also claimed that the positive effects of Regulation FD are more pronounced for firms that

suffer from more information disparity (illiquid firms) [46], which is consistent with our find-

ings. We thus conclude that Regulation FD made the information environment more effective

during recessions.

We now test formally our conjecture from Fig 3. We choose the analyst forecast dispersion,

defined as the standard deviation of analyst forecasts, as the proxy for information disparity.

Unlike existing studies adopting the analyst forecast dispersion as the proxy for information

asymmetry at the firm level, we consider the information disparity of the whole market. As

such, we develop a market-wide analyst forecast dispersion for each sample year. We first

scale the forecast dispersion by analyst consensus (mean of analyst forecasts) for each firm

in our sample. The market-wide forecast dispersion is then given by the means of the scaled

forecast dispersions of all companies in our sample. We also adopt the forecaster bias [48] as

the proxy for economic uncertainty, which is in literature found high during the periods of

economic downturn. We use the economic uncertainty as the continuous alternative to the

NBER recession indicator; however, results using the NBER recession indicator are qualita-

tively similar. Table 1 presents regression results of information disparity and the power-law

exponent.

We first test whether information disparity in the stock market measured by the dispersion

in analyst forecasts is statistically associated with economic uncertainty and whether the asso-

ciation has changed significantly since the Regulation FD. Our empirical models describe how

information disparity I is related to economic uncertainty E:

I ¼ c1 þ b1E þ ε1 ð4Þ

Dynamics of analyst forecasts and information disparity
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and

I ¼ c2 þ b2Rþ b3E þ b4R � E þ ε2 ð5Þ

with appropriate constants ci and βi, where R takes into account Regulation FD (R = 0 and 1

for calendar years before and after Regulation FD is introduced, respectively), R � E represents

the interaction of R and E, and εi denotes the error term.

In Model (1), the analyst forecast dispersion is significantly positively associated with eco-

nomic uncertainty, supporting our argument that a higher level of economic uncertainty leads

to a higher level of information disparity in the market. Further, the significantly negative

loading on Regulation FD in Model (2) indicates that information disparity in the stock mar-

ket has generally decreased since Regulation FD put in place. Economic uncertainty still seems

to positively influence information disparity in general. Interestingly, the loading on the inter-

action term of economic uncertainty and regulation is significant and positive. This indicates

that economic uncertainty is more closely linked to information disparity in the stock market

after the introduction of Regulation FD. This is rather intuitive when we understand the

potential sources of information disparity. Specifically, information disparity is caused by at

least two factors: 1) imperfect information disclosure and 2) uncertainty in the market. The

Regulation FD was introduced to reduce information disparity in the stock market by forcing

companies to share information equally among market participants. Thus the Regulation FD

effectively eliminates the first source of information disparity, making uncertainty more influ-

ential in the stock market.

Models (3) to (6) test how information disparity affects estimates of the power-law expo-

nent α. In Fig 3, we observe that the power-law exponent deviates from unity, corresponding

to Zipf’s law, during recessions. Models (3) and (4) employ the absolute deviation from unity,

|α − 1|, and the squared deviation from unity, (α − 1)2, respectively, as the dependent variables

and are thus specified by

a � 1j j ¼ c3 þ b5I þ ε3 ð6Þ

Table 1. Regressions of information disparity and the power-law exponent. Models (1) and (2) test the association of information disparity and economic

uncertainty; Models (3) and (4) test how the power-law exponent α deviates from unity due to information disparity. Models (5) and (6) test how collective

behavior changed after the Regulation FD was introduced. R takes the value unity for years after Regulation FD was introduced and zero otherwise, I is the

proxy for information disparity measured by the scaled forecast dispersion of the market, E is the economic uncertainty measure from Ref. [48] and c is con-

stant. The numbers in parentheses are t-statistics calculated from heteroskedasticity and autocorrelation consistent standard errors according to Newey and

West [49]. ** and *** represent significance at 5% and 1% levels, respectively.

Model (1) (2) (3) (4) (5) (6)

I I |α − 1| (α − 1)2 α α
R −0.148***

(−8.62)

−0.147***
(−5.40)

0.00601

(0.09)

I 0.841***
(3.29)

0.196***
(2.45)

0.832***
(2.64)

E 0.0438**
(2.26)

0.0544***
(4.62)

E � R 0.402***
(9.73)

R � I −1.499***
(−3.00)

c 0.0800***
(6.25)

0.0653***
(9.28)

0.0294

(1.30)

0.00205

(0.28)

1.062***
(89.50)

0.981***
(30.83)

Observations 29 29 29 29 29 29

Adjusted r2 0.077 0.394 0.025 0.002 0.215 0.173

https://doi.org/10.1371/journal.pone.0177071.t001
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and

a � 1ð Þ
2
¼ c4 þ b6I þ ε4; ð7Þ

respectively. As evident from Table 1, in years with higher levels of information disparity, the

power-law exponent deviates more from unity, either upward or downward.

In Models (5) and (6) the level of the power-law exponent is adopted as the dependent vari-

able in the following way:

a ¼ c5 þ b7Rþ ε5 ð8Þ

and

a ¼ c6 þ b8Rþ b9I þ b10R � I þ ε6: ð9Þ

In Model (5), where only the Regulation FD is used as the independent variable, it appears

that the power-law exponent generally becomes smaller after the introduction of Regulation

FD. However, in Model (6), one can clearly see that this is not the case. The Regulation FD

itself does not affect the power-law exponent. Model (6) suggests that the power-law exponent

is unconditionally close to unity, indicated by the constant term 0.98. Furthermore, the power-

law exponent is significantly positively and negatively affected by information disparity before

and after the Regulation FD, respectively (specifically, a unit increase in information disparity

will lead to the increase and decrease in the power-law exponent by 0.83 and 0.67, respec-

tively). These results are consistent with our observation in Fig 3 that analyst forecast errors

follow Zipf’s Law in ordinary years. They are also consistent with our observation during

recessions that analysts tend to herd more in the tail before Regulation FD and more to the

consensus after Regulation FD.

Monthly pattern in extreme forecast errors

Observing that α can take different values over time, we next investigate whether there is any

time-series pattern in α within a given year. Since we use analyst forecasts on annual EPS,

which will be realized after the fiscal year end, analysts forecasts issued earlier in the year suffer

from higher uncertainty than those issued later in the year. Thus the change of the power-law

exponent within a year reflects the change in collective behavior of analysts due to the change

in the informational environment. We first plot in Fig 4 monthly changes of α in eight sample

years, which are selected randomly. It is observed that the majority shows a clear descending

pattern as it approaches the end of a year. (Data for all other years also exhibit qualitatively the

same results, albeit not shown for the sake of readability.) Referring to our previous explana-

tion, the decreasing value of α implies that the collective behavior becomes weaker.

This leads to a counterfactual conclusion: extreme analysts tend to flock less as the year-end

approaches, i.e., as information disparity reduces closer to the year-end, there are fewer uncer-

tainties regarding the outcome of the fiscal year. Analysts have less reason to follow blindly

extreme forecasts by other analysts because all analysts are provided with richer information

about the firms. This result is consistent with our finding in the annual analysis in the previous

section. On the other hand, it is conceivable that better information should lead analysts to

issue similar forecasts closer to the actual outcome.

A key to resolve this discrepancy is to check the cut-off point (95th percentile) of the tail as

our findings for the collective behavior of analyst forecast errors come from the tail. Fig 5

shows the monthly cut-off points in each year. We clearly observe that the cut-off point

decreases as it gets closer to the year-end. This indicates that the distribution of analyst forecast

errors clusters more around zero towards the year-end.
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In other words, we see that analysts lose their collective behavior in the tail, and at the same

time they herd toward the center as time goes by. Overall, Figs 4 and 5 suggest that analyst

forecasts clearly become less biased closer to the year-end and analysts are less likely to follow

blindly extreme forecasts.

Monthly pattern in non-extreme forecast errors

As shown in Fig 1, forecast errors in the main body form a log-normal distribution. To probe

the monthly pattern in non-extreme forecast errors, we fit the monthly data to the log-normal

distribution for each month in calendar year 1993 and examine how the distribution evolves

in time. Investigation of such monthly dynamics of the main body may also help substantiate

the monthly pattern in extreme forecast errors as the pattern of the main body should relate

with that of the tail.

Note that a log-normal distribution has two parameters: location parameter μ correspond-

ing to the mean and scale parameter σ measuring the deviation. If the location parameter is

smaller, the bulk of the distribution locates closer to zero whereas the scale parameter affects

the skewness as well as thickness of the tail. The larger the scale parameter, the more positively

Fig 4. Monthly variations of the power-law exponent by year. Shown are the data in calendar years 1985, 1989, 1992, 1996,

1999, 2003, 2007, and 2012; these sample years have been chosen for the sake of brevity, but the trends in other calendar years are

largely similar to those shown in this figure. The colored circles represent the monthly estimates of the power-law exponent from

March to December in each given year, with error bars estimated from the power-law fit. Lines connecting circles are merely guides to

the eye. There appears a clear descending pattern of the power-law exponent within a year. Namely, the power-law exponent tends

to decrease towards the year-end.

https://doi.org/10.1371/journal.pone.0177071.g004
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skewed and fatter the tail. Namely, the tail is pulled more in the positive direction and becomes

thicker [50] in the main body.

Fig 6 exhibits the monthly change of the two parameters. It is observed that μ reduces line-

arly with time t and that σ increases in proportion to the square root of time: μ = At + μ0 and

s ¼ B
ffiffi
t
p
þ s0 with the slopes A = −(3.2 ± 0.5) × 10−3 and B = (1.5 ± 0.6) × 10−2 from March to

December (with t in units of day). This indicates that the distribution of the main body moves

toward smaller values in each month while becoming fatter in the tail.

Theoretical framework

The fitted distributions can be understood conveniently by the master equation description of

the Yule process, originally proposed to explain growth of particle size [40, 51]. Making use of

the similarities between the particle growth and analysts’ behavior, this approach explains

resulting skew distributions of analyst forecasts, including log-normal as well as power-law

distributions.

In the master equation, the transition rate is constructed from analyst’s forecast updates

and we obtain the evolution equation for the distribution of analyst forecasts. Brown and col-

laborators [52] suggested important information sources or considerations for analysts’ earn-

ings forecasts, which are, in the order of importance, industry knowledge, communication

with management, earnings conference calls, management earnings guidance, quality or

Fig 5. Monthly cut-off points by year. For comparison, the same sample years as those in Fig 4 have been selected. We show

the cut-off points for the tail part of forecast errors (95th percentile of the observations) from March to December in each given

year. The descending trend of cut-off points manifests that the forecast errors converge to zero towards the year-end, which

implies that analysts are becoming more precise in their forecasts.

https://doi.org/10.1371/journal.pone.0177071.g005
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Fig 6. Monthly evolution of (a) the location parameter μ and (b) the scale parameter σ. This figure

presents the monthly changes in μ and σ of the log-normal fit of the main body part of forecast errors in 1993.

As predicted by the model, μ is linear in time and σ is linear with respect to the square root of time (note that

the scale of the horizontal axis is given in the square root of time). Blue dots in (a) and (b) are the estimates of

the location and the scale parameters, respectively; dashed lines in (a) and (b) have the slopes −0.0032 and

0.0148, respectively, per day.

https://doi.org/10.1371/journal.pone.0177071.g006
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reputation of management, recent earnings performance, recent Form 10-K (annual report of

a company’s financial performance required by the SEC) or Form 10-Q (quarterly report), pri-

mary research, other analysts’ earnings forecasts, own stock recommendations, and recent

stock price performance.

While earnings conference calls, management earnings guidance, quality or reputation of

management, recent earnings performance, recent Form 10-K or Form 10-Q, and own stock

recommendations are available only sporadically or quarterly over time, other factors can be

updated more often. In this view, if an analyst does not update the earnings forecast on a par-

ticular day, that analyst is counted issuing the same earnings forecast as the previous day.

Namely, according to the Bayesian inference, we assume that an analyst, when no new infor-

mation is available, would not issue a new forecast.

We thereby consider the forecasts to be evolving elements and the forecast errors to form a

distribution evolving according to forecast updates, which reveals analysts’ behavior. Specifi-

cally, an analyst’s forecast error is viewed as the “size” of the element. The size x grows or

diminishes, namely, the forecast error x changes to x0, when an analyst updates a forecast upon

the arrival of new information; we call this an event.
It is expected that the amount of growth, Δx� x0 − x, depends on the present value x. Based

on the Yule process, we define that Δx is proportional to x: Δx = bx, and write the transition

rate associated with an event in the form

oðx! x0Þ ¼ ld½x0 � ð1þ bÞx�; ð10Þ

where λ is the occurrence rate of events. The growth factor b may be estimated from the aver-

age of the changes of the forecast values in the data, i.e., b = (x0 − x)/x = (z0 − z)/z.

Suppose that there are a total of N forecasts at given time t. The error in each forecast can

change according to the transition rate in Eq 10. Then the time evolution of the probability

P(x1, . . ., xN;t) of the N forecast errors is conveniently described by a master equation [51]. In

terms of the distribution function, relating with the probability P(x1, . . ., xN;t) via

f ðx; tÞ ¼
1

N

Z

dx1 � � � dxN

X

i
dðxi � xÞPðx1; . . . ; xN ; tÞ; ð11Þ

the master equation reduces to the evolution equation

@

@t
f ðx; tÞ ¼ � ðr þ lÞf ðx; tÞ þ

l

1þ b
f

x
1þ b

; t
� �

þ rgðx; tÞ; ð12Þ

where g(x, t) is the distribution function of newly produced forecast errors with the production

rate r. Here production of a forecast is referred to as the issuance of the first forecast on a firm

by an analyst in a given (fiscal) year.

We first consider the case that new forecast errors are produced according to the current

distribution. In this case of self-size production, where the distribution of updated forecast

errors is identical to that of existing forecast errors [g(x, t) = f(x, t)], the solution of the master

equation is given by the log-normal distribution [40]:

f ðx; tÞ ¼
1
ffiffiffiffiffiffi
2p
p

stx
exp �

ln x � mtð Þ
2

2st
2

� �

; ð13Þ
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where the mean and the deviation evolving in time are given by

mt ¼ lt ln ð1þ bÞ þ m0

st ¼
ffiffiffiffiffi
lt
p

ln ð1þ bÞj j þ s0

ð14Þ

with the initial mean μ0 and deviation σ0.

It is remarkable that the empirical fit in Fig 1 exhibits the same form of the log-normal

distribution in Eq 13. In particular, the time evolution is the same, with the identification

A = λ ln(1+b) and B ¼
ffiffiffi
l
p
j ln ð1þ bÞj; this manifests that the analyst forecast indeed grows in

a similar manner to the particle size growth.

Further, the power-law type distribution can also be explained with the same model. Specif-

ically, analysts in the tail are expected to produce new (extreme) forecasts, whose value may

vary within a limited range and are thus more or less uniform. In such a case of uniform-size
production, i.e., g(x, t) = δ(x − x0), the stationary-state solution of Eq 12 is given by the power-

law distribution [40]:

f ðxÞ ¼
r

lbx0

x
x0

� �� ðaþ1Þ

yðx � x0Þ ð15Þ

with the Heaviside step function θ(�), where the power-law exponent depends on the parame-

ters as follows:

a ¼
ln ð1þ r=lÞ

ln ð1þ bÞ
: ð16Þ

Note that the distribution shape of the newly produced forecasts works as a discriminating

factor between the main body and the tail. A log-normal distribution can be well explained if

the distribution of newly produced forecasts are almost identical to that of the existing fore-

casts. On the other hand, if newly produced forecasts are almost uniform, there emerges a

power-law distribution. The proposed model, when appropriate parameters associated with

analyst forecast behaviors are recognized, thus yields distributions for both cases.

For quantitative comparison, we use b = −0.12 ± 0.04, λ = (1.11 ± 0.48) × 10−2, and

r = (5.5 ± 4.4) × 10−3, estimated from empirical data for the main body, to obtain the slopes of

μt and of σt: λ ln(1+b) = −0.0015 ± 0.0008 and
ffiffiffi
l
p
j ln ð1þ bÞj ¼ 0:014� 0:006, respectively.

Within error bars, these values are reasonably consistent with the slopes A and B obtained

from the empirical analysis, which confirms the relevance of our model. As for the tail

part, which exhibits power-law behavior, we obtain the growth factor b = 0.30 ± 0.05, update

rate λ = (9.3 ± 2.6) × 10−3, and production rate r = (5.4 ± 2.0) × 10−3, estimated from empirical

data for the extreme forecasts. Using these parameters in Eq 16 leads to α = 1.8 ± 0.7, which,

albeit demonstrating the emergence of complexity, is appreciably larger than the empirical

value of unity.

To resolve this discrepancy in α, we extend our model to incorporating the effects of sens-

ing other analysts’ forecasts. Such interactions among constituents have never been considered

in the growth problem. We assume that there is a tendency toward reducing the difference

from other forecasts, which leads to the contribution cij(xj − xi) of the jth forecast to the

amount of growth of the ith forecast error. In case that detailed information on cij is not avail-

able, it is rational to avoid any bias. We thus take the uniform interaction strength cij = c/N,

which is least biased and corresponds to the mean-field theory in physics [53], and sum over

j to obtain Dxi ¼ bxi þ c�x, where c/N has been absorbed into b and �x � N � 1
P

jð6¼iÞxj is
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essentially the average forecast error. In consequence, Eq 10 changes into

oðxi ! x0iÞ ¼ ld x0 � ð1þ bÞxi � c�x½ �; ð17Þ

and the ith argument xi of the probability P(x1, . . ., xN;t) is therefore replaced by xi � c�x in the

master equation. In terms of ~xi � xi � c�x, we thus have the same expression, which is to be

integrated over all xi. This can be performed by noting dx1 . . . dxN ¼ J � 1
N d~x1 . . . d~xN , where JN

is the Jacobian determinant of the mapping between x and ~x. Accordingly, the presence of

interactions introduces the Jacobian determinant in the result. Although it is formidable to cal-

culate exactly the N × N determinant, the lowest-order correction may be obtained for weak

interactions (c< 1).

In the case of the stationary (power-law) distribution, which is our concern, Eq 16 is modi-

fied as follows:

aint ¼
ln ð1 � c2=2Þ þ ln ð1þ r=lÞ

ln ð1þ bÞ
: ð18Þ

Empirical data indeed show that analysts in the tail interact with each other. With the mean

growth factor b, the interaction strength is defined according to ziþ1 � zi ¼ bzi þ cið�z � ziÞ,

which leads to c ¼ ½ziþ1 � ð1þ bÞzi�=ð�z � ziÞ with the precalculated value of b. Taking the

average, we thus estimate c� 0.58, although large uncertainty due to strong fluctuations

among analysts apparently restricts the relevance of this mean value. Putting this value into

Eq 18, we obtain αint� 1.1. This value is substantially closer to the empirical value α� 1,

which is remarkable in view of the simple consideration of the interactions.

Discussion

Financial analysts play a substantial role in financial markets as they collect, process, and dis-

seminate valuable information to market participants, especially to retail investors who gener-

ally lack the time and resources to perform research on companies individually. Hence,

whether analyst forecasts offer unbiased information in a timely manner is important. Our

study focuses on the influence of information disparity on the analyst behavior: effects of 1)

Regulation FD, 2) information dissemination throughout a fiscal year, and 3) interactions

among financial analysts.

By dividing optimistic analyst forecast errors into extreme forecasts above the 95th percen-

tile and the remaining non-extreme ones below, we document different analyst forecast behav-

iors in the two groups. The main body of forecast errors fits a log-normal distribution. On the

other hand, the tail of forecast errors follows a power-law distribution with exponent α� 1 in

normal years. During recessions, there are more intensive collective behaviors among extreme

analyst forecasts before Regulation FD, while we observe less collective behavior after Regula-

tion FD.

Carrying out big-data analysis on the time-series of annual power-law exponents, we find

that the power-law exponents of forecast errors are mostly close to unity, exhibiting Zipf’s law.

During the years of economic recessions, the exponents deviate from unity, implying that ana-

lyst forecasts behave differently during the period of high information disparity. Within a year,

the monthly power-law exponent decreases with time, indicating that less collective behavior

comes into play among the extreme forecasts. Further, the cut-off point of the 95th percentile

moves closer to the center towards the year-end, suggesting that more forecasts herd with the

majority. On the other hand, probing the monthly pattern in non-extreme forecasts, we

observe that the corresponding log-normal distribution evolves in accordance with the mean
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and the variation growing linearly in time and proportionally to the square root of time,

respectively.

Making use of the analogy with the growth of particles, we have proposed a theoretical

model for the dynamics of forecasts. It provides a good description, not only qualitatively but

also quantitatively, of such features as the power-law distribution of the tail as well as the log-

normal distribution of the main body, evolving through the mean and the deviation growing

in time. In particular, the model, incorporating interactions between analysts, gives the power-

law exponent in excellent agreement with the empirical result. We thus believe that our theo-

retical model, despite its simplicity, captures the key ingredients relevant to the actual dynam-

ics of analyst forecasts.

These findings shed light on our understanding of how analysts form their forecasts, based

not only on material public information but also on existing forecasts of other analysts; this

influences substantially analyst forecasts. This is more distinct when the level of information

disparity in the market is higher.
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