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Abstract

Motivation: Transposable elements (TEs) in eukaryotes often get inserted into one another, forming sequences that
become a complex mixture of full-length elements and their fragments. The reconstruction of full-length elements
and the order in which they have been inserted is important for genome and transposon evolution studies.
However, the accumulation of mutations and genome rearrangements over evolutionary time makes this process
error-prone and decreases the efficiency of software aiming to recover all nested full-length TEs.

Results: We created software that uses a greedy recursive algorithm to mine increasingly fragmented copies of full-
length LTR retrotransposons in assembled genomes and other sequence data. The software called TE-greedy-nester
considers not only sequence similarity but also the structure of elements. This new tool was tested on a set of nat-
ural and synthetic sequences and its accuracy was compared to similar software. We found TE-greedy-nester to be
superior in a number of parameters, namely computation time and full-length TE recovery in highly nested regions.

Availability and implementation: http://gitlab.fi.muni.cz/lexa/nested.

Contact: lexa@fi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomes of most eukaryotic organisms contain repetitive sequences
present as dispersed repeats created by different classes of transpos-
able elements (TEs) (Kapitonov and Jurka, 1999; Smit, 1999). The
dispersed repeats are produced throughout evolution by the activity
of TEs, often in transposition bursts of various intensities, with
many transposition events happening in a short evolutionary time
frame, such as those after polyploidization events (Hirochika, 1997;
Vicient and Casacuberta, 2017). In genomes with high TE content,
some insertions necessarily result in the fragmentation of another
transposon already present at that particular insertion locus. This
leads to nesting where only the youngest full-length copies can be
recognized by software not accounting for fragmentation. Previous
estimates of TE nesting in plant genomes ranged from no nesting
detected in Physcomitrella patens to 14.3% of TEs fragmented by a
TE insertion in Oryza sativa (Gao et al., 2012). There are many
tools and approaches searching for repeated sequences and their
families (Bergman and Quesneville, 2007; Saha et al., 2008;
Valencia and Girgis, 2019). An exhaustive list has been published in
a recent review (Goerner-Potvin and Bourque, 2018). To discover
nesting, people have come up with strategies to identify transposon

fragments that may have originally been a part of a full-length elem-
ent. Perhaps the most popular is RepeatMasker in its newer version
http://www.repeatmasker.org. It identifies fragments based on se-
quence similarity to a library of known repeats and stitches together
nearby fragments that look like they are continuations of each other
when mapped to a model element. LTRtype (Zeng et al., 2017) iden-
tifies different types of structurally complex LTR retrotransposon
elements as well as the nested configuration of these TEs. The sys-
tem is capable of rapidly scanning large-scale genomic sequences
characterizing eight complex types of LTR retrotransposon elements
in addition to the common configuration of two LTR sequences
positioned around an internal sequence with protein coding regions.
The authors claim the program is able to correctly annotate a large
number of structurally complex elements as well as nested inser-
tions. It includes complex elements, e.g. those made of up to two in-
ternal sequences and three LTRs. REannotate (Pereira, 2008)
processes RepeatMasker annotation for: automated defragmenta-
tion of dispersed repetitive elements; resolution of the temporal
order of insertions in clusters of nested elements; and the estimation
of the age of elements with long terminal repeats. Another special-
ized software tool is TEnest, for untangling nested insertions of LTR
retrotransposons, also using sequence similarity and classification of
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identified repeats into families (Kronmiller and Wise, 2008, 2013).
If nearby fragments belong to the same family, the software will rec-
ognize them as a valid power set and assign them to the same full-
length element, thus establishing a nesting order. Greedier (Li et al.,
2008) is an alignment-based software tool also used to discover
nested insertions of transposons. Stitzer et al. (2019) mentioned a re-
cursive approach of annotating nesting of TEs, although no software
is provided or mentioned in their paper.

All available tools rely heavily on the evaluation of sequence
similarity at some key step but it is evident that the structure of ele-
ments (order of domains and regulatory regions) can help to recon-
struct fragmented elements. Structure-based tools are specifically
available for certain classes of repetitive sequences, such as LTR ret-
rotransposons (Ellinghaus, 2008; McCarthy and McDonald, 2003;
Xu and Wang, 2007), however, none are capable of recognizing
element nesting. Therefore, here, we present an alternative approach
to detect nesting, using structure-based recognition of repetitive
sequences, relying primarily on identification of component features
of a typical transposon and their relative position.

2 Algorithm and implementation

We felt there is a possibility for improvement on TE detection by
combining structure-based tools with a greedy algorithmic approach
that would eliminate all detected TEs from analyzed sequences be-
fore going to the next round of detection. Initial rounds of analysis
would help reconstruct many TEs that were fragmented by insertion
of younger TEs but underwent little other change. Such an approach
is inherently modular, it allows us to use an external, independently
tested tool to detect LTR retrotransposons (or any other classes and
tools in future modifications) and to separate full-length TE detec-
tion from their scoring and establishment of the most likely nesting
order.

Besides developing the TE-greedy-nester (labeled as TE-g-nester
in all figures and tables), we also used the common code base for
creating an application that runs in the opposite direction, to gener-
ate sequences containing nested TEs (‘TE-generator’). The TE-
generator can be used for the limited testing of TE-greedy-nester.
The TE-greedy-nester, TE-generator and other softwares are avail-
able from our GitLab project homepage at https://gitlab.fi.muni.cz/
lexa/nested. It is written in Python and will run on most Unix/Linux
platforms. It requires prior installation of LTR FINDER (Xu and
Wang, 2007), BLAST (Altschul et al., 1990) and GenomeTools
(Gremme et al., 2013). An installation script and a link to an
Ubuntu virtual machine with the latest version installed are
provided.

We have also previously packaged our tools for integration and
easier deployment. A Snakemake pipeline was created to run TE-
greedy-nester on larger datasets and store results of the analysis in
GFF files and also in a relational database http://hedron.fi.muni.cz/
TEDb/index.html. A Linux Mint virtual machine has been created
to enable users not only to work with the above pipeline avoiding
potential installation issues but also to modify it to meet their specif-
ic requirements http://hedron.fi.muni.cz/TE-nester_Mint.zip.

2.1 TE-greedy-nester
Our main goal was to design an application capable of processing
sequences automatically and finding nested TEs in reasonable time.
We needed to address specific problems related to the correct detec-
tion of element nesting. First, while sensitive enough, the procedure
should be resistant to detecting false positives. To this end, we in-
corporate a greedy algorithm that evaluates several possible candi-
dates for full-length TEs but ultimately picks only the best ones,
based on the presence of typical full-length TE sequence features. As
a result, false positives are quite rare initially and may become more
frequent at later stages which, however, can be stopped at that
point. To support precision, we chose to use LTR FINDER (Xu and
Wang, 2007), a TE detection tool that showed low false-positive
results and high precision in our experience as well as recent tests
(Valencia and Girgis, 2019). Another requirement is the ability to

detect deep nesting. In such cases, the oldest elements are barely rec-
ognizable because of ageing and the procedure must allow for
imperfections without compromising the ability to detect the partly
eroded elements.

Several rounds of design produced a procedure according to the
following pseudocode (see alsoFig. 1A) where capitalized terms in
parentheses represent typical components of an LTR retrotrans-
poson, non-coding sequences (LTR, PBS, PPT and TSD) detected by
LTR Finder and conserved protein-coding sequences often called
protein domains (GAG, PROT, RH, RT, INT and CHD) detected
using BLASTX.

Evaluation of full-length TE candidates is done by constructing a

weighted directed graph, where nodes represent required sites in a
full-length element (such as domains, PBS, PPT and TSD) (Fig. 1B).
The program is designed to find a path from the left LTR to the right
LTR, whilst visiting every required node in the correct order
(domains are ordered differently in Gypsy and Copia families, some,
like ENV are family-specific, all components are optional). By
assigning weights to the edges, we prioritize a path that has as com-
plete a structure as possible. At the same time, we allow alternative
paths with respective penalties if there is a missing node, or an incor-
rect order of available nodes. The graph structure is quite universal
and is open for future refinements.

We also need a way to recover various subsequences of the ana-
lyzed sequence, such as the original unfragmented sequences of older
TEs fragmented by nesting and the identified features annotated to
the analyzed sequence. This is achieved by a procedure where the
removed sequences are virtually returned to their positions in the
genome and the coordinates of TEs and their features are adjusted
for the inserted elements. Once all TEs that have been removed in
the first phase are processed, we generate a GFF3 file with coordi-
nates that map to the analyzed sequence. The final GFF output file
can be used to visualize all the identified features with specialized
software, such as Genome Tools Annotation Sketch (Fig. 2)
(Gremme et al., 2013), a genome browser, such as IGV (Robinson
et al., 2011; Thorvaldsdottir et al., 2013), or to extract sequences
for certain features using e.g. bedtools (Quinlan and Hall, 2010). In
addition, the sequences of all TEs detected by TE-greedy-nester are
clipped out of the genomic matrices and stored in FASTA format in
a separate directory.

algorithm TE-greedy-nester is

input: DNA sequences

while changed(export_TEs) ¼ TRUE do

foreach DNA sequence do

with LTR Finder detect module ¼
(LTRsjPBSjPPTjTSD)

save TE

with BLASTX get domain ¼
(GAGjPROTjRHjRTjINTTjCHD)

foreach TE do

hsno_TE ¼ calculate_score(TE, domain,

module)

//using greedy algorithm, scoring graph

save hsno_TE//highest-score_non-overlapping TE

removed_positions ¼ positions(hsno_TE)

move removed_positions to export_TEs

save removed_positions//to adjust export_GFF

export_GFF ¼ adjust(export_GFF, removed_

positions)

output: export_TEs, export_GFF
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2.2 TE-generator
To carry out tests of the software, especially its ability to recover
nested sequences, we used TE-generator, part of the code that is
designed to carry out virtual insertions of TE sequences from a li-

brary into a background sequence. The precise position of each
inserted sequence in the resulting test sequence is recorded, to com-

pare the generated GFF3 file with results of analysis of the same se-
quence by TE-greedy-nester.

3 System and methods

3.1 Testing data
3.1.1 Randomly inserted sequences

A first group of testing sequences was prepared as a random mixture

of full-length sequences from maize. A databases of full-length TEs

were downloaded from Maize TE Database at http://people.oregon
state.edu/�fowlerjo/MaizeRepeatDatabases/uniqueTEDB_1526.
fasta.txt in 2018 and Mips-REdat database at ftp://ftpmips.helm
holtz-muenchen.de/plants/REdat/mipsREdat_9.3p_ALL.fasta.gz
(Nussbaumer et al., 2013) for maize and rice full-length TEs, re-
spectively. The generator module of TE-greedy-nester was used to
generate 10 Mbp sequences with 10 and 90% TE sequence content.
Settings were calculated from average TE length (see
commandsUsed.txt in Supplementary Materials).

3.1.2 Deeply nested sequences (Russian doll/Matryoshka)

To test the depth of nesting discoverable by existing tools, as well as
TE-greedy-nester, we wrote a short program (see file matryoshka.pl)
which creates annotated sequence files with an arbitrary depth of
mutually nested TE elements. It complements TE-generator, which
also creates pockets of multiply nested TEs in the generated se-
quence, however, TE-generator is biased towards shallow nested
sets. Matryoshka is written in Perl (code available in Supplementary
Materials). The program takes a multifasta file of LTR retrotrans-
poson sequences as input, samples it i times (i can be set on the com-
mand line), nesting each consecutive sequence into a random
position of the previously inserted sequence. FASTA and BED files
are written as output. Two sets of sequences containing 20 TEs
taken from either Zea mays TE database (zea_matryoshka.fa) or
O.sativa (oryza_matryoshka.fa) were generated.

3.1.3 Maize adh1 neighborhood sequence

To test TE-greedy-nester on biological sequence which is rich in nested
LTR retrotransposons with known position and annotation, the Z.mays
alcohol dehydrogenase 1 gene (SanMiguel et al., 1998) (adh1-F gene ac-
cession number: AF050457.1) flanked with 150 kbp on both 50 and 30

regions, was analyzed. The maize genome was downloaded from
Phytozome 12.0 https://phytozome.jgi.doe.gov/pz/portal.html (Goodstein
et al., 2012). TE sequences obtained by TE-greedy-nester were anno-
tated using the maize specific retrotransposon database multifasta http://
people.oregonstate.edu/�fowlerjo/MaizeRepeatDatabases/uniqueTEDB_
1526.fasta.txt and BLASTN tool (Altschul et al., 1990). Thereafter, the
GT Annotation Sketch figure from TE-greedy-nester was rearranged fol-
lowing TE orientation given in the study by SanMiguel et al. (1998) as
later adapted by Fedoroff (2012).

3.1.4 Maize sequence (first 2 MB from Chr10)

The second biological sequence from the maize genome,
Chromosome10: 0–2 Mb, was used previously to compare LTRtype,
REannotate and TEnest tools (Zeng et al., 2017). We used this se-
quence to maintain continuity and to obtain reliable data for users
of TE-greedy-nester.

3.2 Testing software and data analysis
Performance of TE-greedy-nester and other software able to detect
TE nesting (TEnest, LTRtype and REannotate) were tested on three
different types of data: (i) synthetic data with known randomly
inserted sequences from maize and rice (TE-generator and matry-
oshka), (ii) thoroughly studied and annotated adh1 locus from maize
and (iii) biological data analyzed by other similar software (2 MB
from maize Chr10).

Fig. 2. An example of TE-greedy-nester output visualized using Annotation Sketch from the Genome Tools (Gremme et al., 2013) software suite (Command: gt sketch out-

put.png example.gff)

Fig. 1. Nesting algorithm essentials. (A) Algorithm overview showing data process-

ing in TE-greedy-nester; (B) Scoring graph structure used to evaluate structural com-

pleteness of LTR retrotransposon candidates (shown as SCORE CANDIDATES in

panel A). Any deviation from prescribed order of structural components (full

arrows) is penalized (dotted arrows)
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Testing on synthetic data was done by comparing GFF files pro-
duced by TE-greedy-nester with TE-generator and matryoshka GFF
files describing the introduced nesting. We calculated the number of

intervals representing TEs that overlap by a predefined percentage
of length on both sides using the python script

compGffs2Generator.py (Supplementary Materials).
Testing on the adh1 locus was done by visual inspection of pub-

lished adh1 annotations (Fedoroff, 2012) and our own visualization
with GT Annotation Sketch.

Testing on biological data was carried out by counting the num-
ber of detected full-length TEs in assembled or partly assembled
genomes of 18 species downloaded from Phytozome or other sour-

ces (where applicable): Arabidopsis thaliana, Arabidopsis lyrata,
Azolla filiculoides, Brachypodium distachion, Chlamydomonas
reinhardtii, Dunaliella salina, Glycine max, Gossypium raimondii,
Lotus japonicus, Medicago truncatula, Micromonas pusilla, Musa
acuminata, O.sativa, P.patens, Populus trichocarpa, Pseudotsuga
menziesii, Solanum lycopersicum and Sorghum bicolor.

To confirm a quality of TEs retrieved by TE-greedy-nester, their

long terminal repeat (LTR) sequences were cut with bedtools pack-
age (Quinlan and Hall, 2010) and subsequently LTR identity was
measured using global alignment by STRETCHER tool (Emboss

6.6.0; Rice et al., 2000).

3.3 Performance measures
Performance measures used here were calculated according to the

formulas used in the study by Ou and Jiang (2018)

Sensitivity ¼ TP=ðTPþ FNÞ
Specificity ¼ TN=ðFPþ TNÞ

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ
Precision ¼ TP=ðTPþ FPÞ

where true positive (TP) stands for matches of coordinates of TE
found by tested tools and corresponding element given by TE-

generator within tolerance 65% of reference TE length at the start
and end positions. Correspondingly, false positive (FP) is a TE with
no match with any TEs in the generated sequences, a false negative

(FN) are TEs which were present in generated sequence and absent
in output GFFs from given tools, true negative (TN) is estimated TE

count from number of bases which are without TE in both GFF
from TE-generator and also from tested tools.

3.4 Speed and RAM performance
Resource utilization of the four different software tools was com-

pared on all the datasets used in this article. For evaluations, the
programs were run on a dedicated Linux machine running no other

job, using the GNU time command to obtain ‘real time’ and ‘max-
imum resident set size’ as an average of three runs. The machine had
12 GB physical RAM, a 4 core Intel i5 CPU. The running process

was monitored for signs of memory swapping and process pruning.

4 Results

We developed the TE-greedy-nester software for finding nested LTR
retrotransposons using a combination of a greedy algorithm and
identification of full-length TEs. In contrast to comparable software
relying mostly on sequence similarity, TE-greedy-nester is based on
identification of structural features of LTR retrotransposons. We
compared the performance of TE-greedy-nester with four other
related software tools. The number of features detected by TE-
greedy-nester on different types of data is reported in Table 1. We
found that TE-greedy-nester detected the highest number of TEs in
all tested sequences in comparison with other examined tools.
Moreover, despite the higher rate of false-positive identification,
TE-greedy-nester also retrieved the highest count of TEs matched
with elements present in annotated sequences (number of TEs
matched, Table 1). To better evaluate the performance of TE-
greedy-nester, we carried out a deeper analysis using both synthetic
and biological data.

4.1 Annotated synthetic data (TE-generator and

matryoshka)
To test TE-greedy-nester on synthetic data, we generated artificial
sequences using TE-generator. The TE-generator sequences had me-
dium levels of nesting. We also prepared sequences with extreme
depth of nesting, only inserting new sequences into previously
inserted ones and call them ‘matryoshka’. After running TE-greedy-
nester on these sequences, we evaluated sensitivity, selectivity, preci-
sion and accuracy (see Section 3). Sensitivity and precision measure
the ability to detect sequences, selectivity measures the ability to re-
ject false positives and accuracy is a combination of both.
Calculated comparative performance values are shown in Figure 3.
While TE-greedy-nester showed higher sensitivity for all available
data, its comparative accuracy gave mixed results, with lower speci-
ficity (higher false-positive rate) on synthetic data with high TE
density (90%) (Fig. 3B). On the other hand, TE-greedy-nester was
superior to all existing software on synthetic data with deep nesting
(matryoshka). While TEnest could compete with TE-greedy-nester
when provided with the proper TE database (maize) (Fig. 3C), TE-
greedy-nester was the only software that could detect deep nesting
correctly on mixed-origin TE data (Fig. 3D), showing an even higher
accuracy on mixed data than maize data. TE-greedy-nester was also
one to two orders of magnitude faster than TEnest on all datasets.

Because the above performance evaluations on annotated data
partly depend on the definition of successful TE identification, we
examined the effect of position tolerance on performance measures
in the same four annotated synthetic datasets (Fig. 4). It can be seen
that low copy datasets, such as matryoshka, produce the same num-
ber of TEs at the lowest used tolerance of 1% (Fig. 4C and D). TE
rich data from TE-generator show an increased TE discovery at
higher tolerance level, most likely as a result of increased false-
positive rate, this was more apparent in sequences with 90% TE
coverage (Fig. 4B) than in those with 10% TE coverage (Fig. 4A).

Table 1. Number of detected or expected full-length LTR retrotransposons by TE-greedy-nester, TEnest, LTRtype and REannotate on natural

(rows 1–2) and artificial (rows 3–6) testing sequences

Sequence name Seq. length (bp) No. of reference TEs No. of TEs found No. of TEs matched (tolerance¼ 0.01)

TE-g-nester TEnest LTRtype REannotate TE-g-nester TEnest LTRtype REannotate

Zm_adh1 302987 21 15 11 7 6 — — — —

Zm_Chr10_2Mb 2000001 — 157 46 60 21 — — — —

Zm_synth_10 10141285 260 78 77 42 30 35 36 24 14

Zm_synth_90 10271500 2329 774 177 250 193 72 15 36 16

Zm_matryoshka_20 120219 20 16 14 2 2 13 11 0 0

Os_synth_10 10190963 100 90 16 6 3 78 6 6 2

Os_synth_90 9562586 900 729 71 44 24 291 1 19 8

Os_matryoshka_20 198560 20 14 4 0 0 1 4 0 0
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While Figure 4 shows the overall performance values of the dif-
ferent tools tested, their abilities to discover nested TEs remain part-
ly hidden in the lump sum numbers. We therefore divided the counts
of identified TEs based on their nesting status, including their nest-
ing level (how many successive nesting events occurred within the
given TE internal region) (Fig. 5). The most striking finding is that
all tools overestimate the number of non-nested elements and under-
estimate the number of nested ones (Fig. 5A and B). TEnest was less
prone to this error in high-density TE data (90% TEs; Fig. 5B), in
accordance with its higher specificity on the same data (Fig. 3B).
LTRtype and REannotate missed more TEs than the other two tools.
Only TEnest and TE-greedy-nester were able to resolve the majority
of the deeply nested matryoshka dataset (Fig. 5C and D). The same
tendency could be seen at different nesting levels in 90% TE-
generator data. TEnest and TE-greedy-nester always had much
higher counts than the other tools at nesting levels II and deeper.
TEnest gave higher counts than TE-greedy-nester at nesting levels IV
and higher, however, most of those above nesting level VI were false
positives (Fig. 5B). The best performance of TE-greedy-nester on
mixed origin matryoshka data (generated with TE sequences from
multiple plant species) observed in Figure 5D can be seen here as
well.

For a better perspective of individual tool performance, we also
show the data from this analysis in the Integrated Genome Browser
(Robinson et al., 2011) (Supplementary Fig. S1). While both TE-
greedy-nester and to a limited extent also TEnest had a tendency to
overestimate certain types of TEs (false positives), in the overall
visualization, TE-greedy-nester results render best the overall density
and nesting depth distribution of TEs along the sequence.

4.2 Biological data
After testing on synthetic data, we applied the compared tools to
biological data, namely (i) the well-studied adh1 region from maize
and (ii) a 2-MB region from maize chromosome 10 used in a previ-
ous comparative study by Zeng et al. (2017).

4.2.1 Adh1 region

TE-greedy-nester as well as the other three compared tools was
tested on the adh1 region in which 21 full-length LTR retrotranspo-
sons (of which 12 are nested) were found by SanMiguel et al.
(1998). TE-greedy-nester detected 15 (7 nested), TEnest detected 11
(1 nested), LTRtype 7 (0 nested) and REannotate 6 (1 nested)
(Fig. 6). Only four of these full-length LTR retrotransposons were
identified by all tools, while six were common for TEnest and TE-
greedy-nester results, as can be seen in Supplementary Figure S2A.

To compare adh1 outputs from TE-greedy-nester with the ori-
ginal SanMiguel report on family level, TEs from TE-greedy-nester
were additionally annotated using maize-specific TE database http://
people.oregonstate.edu/�fowlerjo/MaizeRepeatDatabases/
uniqueTEDB_1526.fasta.txt and a locally installed BLASTN
(Altschul et al., 1990) tool (Supplementary Fig. S3). Although the
TE annotations from TE-greedy-nester and Fedoroff (2012) do not
fully match, we counted 12 families that were correctly recognized
and placed within the segment.

4.2.2 2 MB region of maize Chr10. We used all compared software
tools for an analysis of LTR retrotransposons in the initial 2 MB re-
gion of maize chromosomes 10. The maize genome was chosen be-
cause of its high content of LTR retrotransposons that are often
nested and that it was previously tested by other authors on the
same sequence. The results for this maize segment (Supplementary
Fig. S2B) were in line with results on 90% TE-generator data. TE-
greedy-nester found the most TEs, TEnest was the most conservative
in the number of non-nested TEs and LTRtype and REannotate
were not able to find full-length TEs beyond nesting level I.

4.3 Performance tests
To compare the four evaluated software tools also by computational
performance and requirements, we recorded computation times and
peak physical memory usage on the data described above (Table 2).
TEnest, which performed very well in nesting accuracy tests above,
was the slowest and most memory hungry of the four (worst case
8719 s, 12GB RAM). With the largest datasets, it caused the system
to swap memory and kill processes (shown as >12GB RAM in 2)
resulting also in a steep increase of computation time. Our TE-
greedy-nester was comparable with LTR Type and REannotate in
terms of speed and memory usage (worst case 886 s, 628 MB).
While it performed better with RAM on extremely small datasets.
LTR Type used slightly more RAM (752 MB versus 500–600 MB)
and was also slower to compute the results on small datasets (36s
versus 13–21 s). It should be noted that TEnest was set to use four

Fig. 4. Number of correctly identified TEs as a function of length tolerance by the

four software tools; (A) zea_10%; (B) zea_90%; (C) zea_matryoshka; (D)

oryza_10%, (E) oryza_90% and (F) oryza_matryoshka

Fig. 3. Sensitivity, specificity, accuracy and precision of TE-greedy-nester and com-

parable software on synthetic and biological data; (A) zea_10%; (B) zea_90%; (C)

zea_matryoshka; (D) oryza_10%, (E) oryza_90% and (F) oryza_matryoshka
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processors, while TE-greedy-nester used multithread BLASTX
searches (3 processors). LTR Type and REannotate relied on
RepeatMasker output, however, the time to generate that output

was included and tabulated as well. For further details, please, see
Section 3.

4.4 Plant genomes
Finally, we applied TE-greedy-nester to 18 plant genomes available
mostly from Phytozome (see Section 3) and provide the results in

GFF files (http://hedron.fi.muni.cz/TEgnester/). In Table 3, we show

the classification and the main characteristics of TE nesting in these
18 species. We demonstrated that 96.4% of detected TEs (i.e.
98 187 out of 10 1887), have LTR identity 80% or higher
(Supplementary Fig. S4). TE-greedy-nester also found at least one
protein domain in 29.8–88.4% of identified LTR retrotransposons
in vascular plants but only 0–1.9% in non-vascular plants. The per-
centage of TEs found in nested configuration was between 19.6 and
54% in vascular plants and 0 and 17.6% in non-vascular plants.
The highest nesting rates were observed in S.bicolor and G.max.
The proportion of solo LTRs was higher in eudicots and algae (e.g.
Solanum, Gossypium and Dunaliella) than in monocots.

Fig. 5. Number of correctly identified TEs at different nesting levels by the four software tools; (A) zea_10%; (B) zea_90%; (C) zea_matryoshka; (D) oryza_10%, (E)

oryza_90% and (F) oryza_matryoshka

Fig. 6. Number of correctly identified TEs at different nesting levels by the four software tools in biological data; (A) zea_adh1 and (B) zea_2MB
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5 Discussion

Here, we present a new bioinformatic tool TE-greedy-nester for the
detection of nested LTR retrotransposons that is faster and more ef-
ficient in finding deeply nested elements than existing tools. These
advantages are due to the combination of structure-based retrotrans-
poson detection with recursive sequence removal. This results in
comparatively low memory usage and high computation speed, as
seen in performance tests presented herein. With the default settings
our tool is competitively sensitive although can produce higher rates
of false positives in some instances, as seen in both synthetic and
real biological data. We are exploring ways to reduce the number of
false-positive calls where several directions of action are possible,
such as (i) optimizing the search parametrization and scoring of can-
didate TEs; (ii) improving TE annotation, especially by accounting
for TSD sequences that should be present in bonafide full-length
TEs and (iii) abandoning the greedy approach by introducing extra
passes that would pre-score elements or explore multiple sequence
fragmentation scenarios.

Another advantage of TE-greedy-nester is its ability to identify
nesting in different species without the need for species specific TE
databases. This is in sharp contrast to the other three compared
tools that lack performance in cross-species applications. Their
results also differ significantly with the size and sparsity of the used
TE database.

While the focus now is on the nesting of LTR retrotransposons,
the approach is modular and can be expanded to other classes of re-
petitive sequences by simply employing additional TE detection
tools alongside LTR Finder. However, even without expansion to
other TE classes, the algorithm in TE-greedy-nester can detect short
foreign insertions in full-length LTR retrotransposons. This is the
advantage of using structural information where the most important
signal is the order of required TE components, while distance and
sequence similarity is secondary.

Both synthetic and biological data were chosen to represent dif-
ferent TE densities and levels of nesting to identify the strengths and
weaknesses of the tested tools. In this respect, we found that TE-
greedy-nester had the highest sensitivity across the board of different
tests. As expected, high sensitivity typically comes with a higher

proportion of false positives, and so it is important to look at accur-
acy and precision for an objective comparison of different tools. TE-
greedy-nester showed markedly lower precision with 90% TE-

generator data, suggesting that it could benefit from parameter fine-
tuning depending on the TE density of the data being analyzed.

Identifying the best parameter combinations for different types of
data is beyond the scope of this article, where only fixed or default
settings were used. TE-greedy-nester also found nested full-length

TEs one to two orders of magnitude faster than TEnest, which gave
the best results of the three compared tools across different tests.

LTRtype was more conservative but still performed very well on
TE-generator data of both densities. Compared to TEnest, it how-
ever failed to be competitive, together with REannotate, on simple

data with deep nesting, such as the adh1 locus or matryoshka data.
It should be noted that LTRtype is a tool able to recognize compos-

ite LTR retroelements, something the other tools cannot do.
Interestingly, running TE-greedy-nester on several species uncov-

ered remarkable differences to previously published nesting esti-

mates in certain species. For example, in P.patens no nesting was
observed by Gao et al. (2012), while we saw 32% nested LTR

retrotransposons.
TE-greedy-nester development is a live ongoing project. While

we were testing the software performance on nested full-length TEs,
a new feature was added to the code base. TE-greedy-nester can
now identify solo-LTRs in the analyzed sequence based on the

sequences of the LTRs identified in all iterations.
TE nesting reconstruction is important in genome evolution and

TE life cycle studies. We hope it will help users excavate older full-
length TE copies, differentiate between complex TEs transcribed as

a single unit and nested TEs originating from many independent
insertions. Based on the testing results, it may be useful in sequences
with deeply nested structures, such as those in centromeric and peri-

centromeric regions of plant chromosomes. For such use, it might be
useful to expand its abilities towards tandem repeat detection. In
our observations, tandem repeats are one of the things that can con-

fuse LTR Finder into interpreting some of their subsequences as
pairs of LTRs. The situation becomes even more complicated when

such tandem repeats originate from fragments of TE sequences con-
taining fragments of canonical domain coding sequences (Ahmed
and Liang, 2012) or LTRs. TE-greedy-nester should also come

handy in whole genome annotations where speed could be as im-
portant as precision.

Our tool is similar to software mentioned by Stitzer et al. (2019)
in two aspects. We also create a graph data structure to find the best

TE candidates, the two structures, however, carry different types of
data and are used for slightly different purposes.

6 Conclusion

In this work, we present a new software tool for the recovery of full-

length LTR retrotransposons fragmented by the nesting of other ele-
ments. We used a recursive approach in combination with structure-
based detection of TEs with LTR Finder and implemented it in a

Python tool called TE-greedy-nester. We tested this computational
approach on synthetic and natural DNA sequences. Testing showed

that TE-greedy-nester gave high-quality results faster than existing
tools and is superior in selected parameters, especially in its ability
to recover full-length LTR retrotransposons in deeply nested

regions. Moreover, we analyzed 18 plant genomes and showed that
TE-greedy-nester could be used in studies of TE life cycle and gen-

ome evolution, especially in areas where relative insertion times are
important.
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Species Sequence TE-g-nester TEnest LTRtype REannotate

Process time (s)
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Chr10_2Mbp 331 7866 136 122
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imum resident set size’ using the Linux time command on a dedicated ma-

chine with 12 GB RAM, Intel i5 processor with four cores, Fedora Linux

installed and no other jobs running.
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