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Abstract: Breast cancer is the second leading cause of morbidity and mortality in women worldwide.
Despite advancements in the clinical application of neoadjuvant chemotherapy (NAC), drug resis-
tance remains a major concern hindering treatment efficacy. Thus, identifying the key genes involved
in driving NAC resistance and targeting them with known potential FDA-approved drugs could
be applied to advance the precision medicine strategy. With this aim, we performed an integrative
bioinformatics study to identify the key genes associated with NAC resistance in breast cancer and
then performed the drug repurposing to identify the potential drugs which could use in combination
with NAC to overcome drug resistance. In this study, we used publicly available RNA-seq datasets
from the samples of breast cancer patients sensitive and resistant to chemotherapy and identified
a total of 1446 differentially expressed genes in NAC-resistant breast cancer patients. Next, we
performed gene co-expression network analysis to identify significantly co-expressed gene modules,
followed by MCC (Multiple Correlation Clustering) clustering algorithms and identified 33 key hub
genes associated with NAC resistance. mRNA–miRNA network analysis highlighted the potential
impact of these hub genes in altering the regulatory network in NAC-resistance breast cancer cells.
Further, several hub genes were found to be significantly involved in the poor overall survival of
breast cancer patients. Finally, we identified FDA-approved drugs which could be useful for potential
drug repurposing against those hub genes. Altogether, our findings provide new insight into the
molecular mechanisms of NAC resistance and pave the way for drug repurposing techniques and
personalized treatment to overcome NAC resistance in breast cancer.

Keywords: breast cancer; neoadjuvant chemotherapy (NAC) resistance; co-expression; drug repur-
posing; precision medicine

1. Introduction

Most clinical practices offer chemotherapy as a treatment for cancer. However, the
resistance to chemotherapy prevailed as a bottleneck in the advancement of cancer treat-
ment, despite the development of various chemotherapeutics and targeted small molecule
drugs [1]. In addition to showing remarkable improvement at the initial stage of treatment,
drug resistance occurs over a short time, resulting in reduced anti-tumor efficacy. Recent
studies show that tumors contain a high degree of cellular heterogeneity [2], which drives
drug-resistant cancer evolution. In this scenario, drug-resistant cancers evolve through
the therapy-induced selection of a minor resistant subpopulation of cancer cells from the
original tumor [3]. Drug-resistant cancer cells generate cell plasticity by adapting their
transcriptomic signature and interactome toward a phenotypic state which no longer de-
pends on the drug-targeted pathway [4–7]. Hence, identifying the genes, pathways, and
molecular interactions altered during drug resistance would be useful for developing
precision medicine against cancer.
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Breast cancer is the second-highest cancer-related cause of death in women, after lung
and bronchus [8–10]. Due to its highly heterogeneous nature, chemotherapy resistance is a
major challenge for breast cancer treatments [11]. Taxanes, such as paclitaxel and docetaxel
(alkaloids derived from the bark of pacific yew), are neoadjuvant chemotherapeutic agents
known to be extensively used to treat breast cancer [12]. Notably, they play multiple mech-
anisms of action to exert an anti-tumor effect. Both these drugs interfere with microtubule
dynamics, which leads to mitotic arrest and apoptosis [13–15]. Paclitaxel and docetaxel
also deplete mitochondrial calcium ions reserve to initiate cytochrome C-mediated apopto-
sis [16,17]. However, paclitaxel and docetaxel treatment often develop acquired resistance,
resulting in chemotherapy failure and consequent cancer relapse and mortality in breast
cancer patients [16,18–21]. Numerous studies have been conducted to elucidate the multi-
faceted mechanisms of paclitaxel and docetaxel-associated resistance. Gupta et al. have
shown that upregulation of HER2/β-catenin signaling causes breast cancer paclitaxel resis-
tance [22]. Other studies have shown that overexpression of glutaminase 1 (GLS1) [23] and
downregulation of α-1,3-Mannosyl-Glycoprotein 4-β-N-Acetylglucosaminyltransferase A
(MGAT4A) [24] are associated with paclitaxel resistance in breast cancer. Moreover, Chi
et al., and Lai et al. showed that actin-binding protein CapG mediated activation of the
PI3K/Akt pathway [25] and upregulation of the TAZ-TEAD-Cyr61/CTGF signaling path-
way [26] also accounts for the breast cancer paclitaxel resistance, respectively. Other studies
have shown that under-expression of the p27 protein and overexpression of kinesins lead
to docetaxel resistance in breast cancer [27,28]. Although several studies are attempting
to understand the molecular mechanisms behind the acquired resistance to neoadjuvant
chemotherapy (NAC) in breast cancer, much is unknown about the molecular interactions
and genes crucial for developing the resistance.

Understanding the molecular interactions behind NAC chemotherapy resistance in
breast cancer is important to designing precision medicine. Particularly, identifying genes
that could activate other compensatory pathways by changing their expression patterns
and altering the protein interaction network could be important for the development of
chemotherapy resistance. Therefore, comparative analysis of the gene expression data from
patients of resistance and sensitivity to a particular treatment in cancer using bioinformatics
and systems biology approaches could facilitate the identification of novel therapeutic tar-
gets to overcome drug resistance. With this aim, in the present study, we used 243 publicly
available RNA-seq samples from sensitive and resistant to NAC treatment breast cancer
patients to identify the hub genes that could be crucial for developing resistance. Further,
single cell RNA-seq analysis, mRNA–miRNA interaction analysis, pathway enrichment
analysis, overall survival analysis, and drug–gene interaction analysis were performed on
these hub genes to identify novel therapeutic targets and their potential drug candidates,
which might be useful to treat NAC-resistant breast cancer.

2. Results
2.1. Differential Gene Expression Analysis of Breast Cancer Patients Sensitive and Resistant
to Chemotherapy

Differential gene expression analysis was performed on between 89 and 154 samples
from breast cancer patients sensitive and resistant to chemotherapy treatment, respectively.
Remarkably, a total of 847 genes were found to be significantly upregulated in resistant
samples (p-value ≤ 0.05 and log2FoldChange ≥ 1), while, a total of 599 genes were found
to be significantly downregulated in resistant samples (p-value ≤ 0.05 and log2FoldChange
≤ −1) (Figure 1). The significantly dysregulated genes were further used for downstream
analysis to identify potential hub genes crucial for chemotherapy resistance.
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Figure 1. The volcano plot depicts the differentially expressed genes in breast cancer patients re-
sistant to chemotherapy treatment. 

2.2. Co-Expression Network Analysis to Identify the Functionally Significant Co-Expressed 
Module 

Co-expression network analysis is important to identify the set of functionally rele-
vant genes which have a trend to show a coordinated expression pattern across the sam-
ples [29–31]. In this analysis, the set of genes with similar expression patterns is assigned 
to a specific module. To identify the co-expressed genes from the differentially expressed 
genes in resistant samples, we performed a weighted gene co-expression network analysis 
(WGCNA). In the analysis, the soft threshold power of β was 5 when the scale-free topol-
ogy model fit R2 was maximized (Figure 2A). Then, the co-expression modules were iden-
tified by the dynamic tree-cut procedure using the dynamic branch-cutting algorithm 
with a robust measure of interconnectedness, using DynamicTreeCut and the WGCNA R 
library. A total of four co-expression modules were identified in the analysis, with each 
module being assigned a unique color label, as represented in Figure 2B (blue, brown, 
yellow, and turquoise). Among 1446 differentially expressed genes, only 413 genes were 
assigned to different modules. This observation indicates that most of the differentially 
expressed genes are the results of phenotypic changes in cancer cells due to the develop-
ment of drug resistance. However, those genes co-expressing and functionally involved 
in similar biological processes and pathways could cause drug resistance development. 
We identified 330 genes in the turquoise module, 29 genes in the blue module, 28 genes 
in the brown module, and 26 genes in the yellow module. 

Further, functional enrichment analysis of significant co-expressed modules was per-
formed using Metascape to understand the functional association of each module with 
different biological processes and pathways. Blue, brown, and yellow modules did not 
show any significant functional enrichment as the number of genes is low (<30 genes per 
module). We found only the turquoise module to be significantly enriched in various bi-
ological processes and pathways, which are crucial for drug resistance to cancer develop-
ment (Figure 2C). The most enriched process was “cellular responses to stress”, which 
indicates that these genes are differentially expressed in the resistant group to generate 
the stress response that leads to the induction of resistance to NAC treatment. Further, we 
found that the most enriched signaling pathways are the VEGF-VEGFR2 signaling 

Figure 1. The volcano plot depicts the differentially expressed genes in breast cancer patients resistant
to chemotherapy treatment.

2.2. Co-Expression Network Analysis to Identify the Functionally Significant Co-Expressed Module

Co-expression network analysis is important to identify the set of functionally relevant
genes which have a trend to show a coordinated expression pattern across the samples [29–31].
In this analysis, the set of genes with similar expression patterns is assigned to a specific module.
To identify the co-expressed genes from the differentially expressed genes in resistant samples,
we performed a weighted gene co-expression network analysis (WGCNA). In the analysis, the
soft threshold power of β was 5 when the scale-free topology model fit R2 was maximized
(Figure 2A). Then, the co-expression modules were identified by the dynamic tree-cut procedure
using the dynamic branch-cutting algorithm with a robust measure of interconnectedness,
using DynamicTreeCut and the WGCNA R library. A total of four co-expression modules were
identified in the analysis, with each module being assigned a unique color label, as represented
in Figure 2B (blue, brown, yellow, and turquoise). Among 1446 differentially expressed genes,
only 413 genes were assigned to different modules. This observation indicates that most of the
differentially expressed genes are the results of phenotypic changes in cancer cells due to the
development of drug resistance. However, those genes co-expressing and functionally involved
in similar biological processes and pathways could cause drug resistance development. We
identified 330 genes in the turquoise module, 29 genes in the blue module, 28 genes in the
brown module, and 26 genes in the yellow module.

Further, functional enrichment analysis of significant co-expressed modules was per-
formed using Metascape to understand the functional association of each module with
different biological processes and pathways. Blue, brown, and yellow modules did not
show any significant functional enrichment as the number of genes is low (<30 genes per
module). We found only the turquoise module to be significantly enriched in various biolog-
ical processes and pathways, which are crucial for drug resistance to cancer development
(Figure 2C). The most enriched process was “cellular responses to stress”, which indicates
that these genes are differentially expressed in the resistant group to generate the stress
response that leads to the induction of resistance to NAC treatment. Further, we found
that the most enriched signaling pathways are the VEGF-VEGFR2 signaling pathway and
signaling by Receptor Tyrosine Kinases. The VEGF-VEGFR2 signaling pathway appears to
mediate cellular responses involved in vasculogenesis and angiogenesis [32], whereas Re-
ceptor Tyrosine Kinases signaling is crucial for cell-to-cell communication, and controlling a
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broad range of complex biological functions, including cell growth, motility, differentiation,
and metabolism [33]. Dysregulation of both of these signaling processes is important
for cancer development, resistance, and metastasis. Therefore, alternations of these two
major signaling pathways in NAC resistance to breast cancer promote drug-resistant cancer
evolution. Hence, with the importance of the turquoise module, we considered genes from
this module for downstream analysis.
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The extracted genes from the turquoise module were used to construct the protein–
protein interaction (PPI) network and hub genes identification. The genes were used as 
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resultant network from the turquoise module had 321 nodes and 442 edges (PPI enrich-
ment p-value < 1.0 × 10−16), which signifies the robustness of the turquoise module. Further, 
the PPI network of the turquoise module was subjected to Cytoscape v3.8.0 for visualiza-
tion and hub gene identification. 

Hub genes are highly connected nodes in a network that play a critical role in regu-
lating other genes present in the related biological processes and pathways. The Cyto-
Hubba MCC clustering algorithm was implemented to identify the top 10% hub genes of 
the turquoise module. We identified 33 genes as the hub in the network (nodes 33, edges 
214, PPI enrichment p-value < 1.0 × 10−16), which are important for the development of 
NAC resistance in breast cancer (Figure 3A). Biological processes and pathway 

Figure 2. (A) Scale independence and mean connectivity of various soft-thresholding values (β).
(B) Hierarchical clustering dendrograms of identified modules of co-expressed differentially ex-
pressed genes in NAC-resistant breast cancer patients. Four co-expression modules were detected
and are colored blue, brown, yellow, and turquoise. (C) Enriched biological processes and pathways
of the genes from the turquoise module. Bar graph of enriched terms across input gene lists, colored
by p-values. The graph was prepared using Metascape.

2.3. Network Analysis of Co-Expressed Modules, Identification of Hub Genes from the PPI
Network, and Functional Enrichment Analysis

The extracted genes from the turquoise module were used to construct the protein–
protein interaction (PPI) network and hub genes identification. The genes were used as
the seed to construct high confidence (0.7) PPI network on the STRING database [34]. The
resultant network from the turquoise module had 321 nodes and 442 edges (PPI enrichment
p-value < 1.0 × 10−16), which signifies the robustness of the turquoise module. Further, the
PPI network of the turquoise module was subjected to Cytoscape v3.8.0 for visualization
and hub gene identification.

Hub genes are highly connected nodes in a network that play a critical role in regulat-
ing other genes present in the related biological processes and pathways. The CytoHubba
MCC clustering algorithm was implemented to identify the top 10% hub genes of the
turquoise module. We identified 33 genes as the hub in the network (nodes 33, edges
214, PPI enrichment p-value < 1.0 × 10−16), which are important for the development of
NAC resistance in breast cancer (Figure 3A). Biological processes and pathway enrichment
analysis of these hub genes were carried out in Metascape and ShinyGo v0.76 with an
FDR cutoff of 0.05. Hub genes were found to be significantly enriched in a broad range
of vital cellular processes (Figure 3B), such as RNA metabolism, mRNA splicing, mRNA
transport, regulation of translation, and regulation of the apoptotic signaling pathway. This
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indicates that breast cancer cells with the altered phenotype(s) survive using a wide range
of cellular processes in the face of drug-related stress that confer resistance to neoadjuvant
therapy. Further, Reactome pathway analysis showed enrichment of hub genes in the
regulation of expression of SLITs and ROBOs, signaling by ROBO receptors, cap-dependent
translation initiation, selenocysteine synthesis, and metabolism of RNA (Figure 3C). Several
studies have shown that the regulation of mRNA by binding or modulating the stabil-
ity of the RNA can confer NAC resistance [35,36]. Moreover, ribosomal biogenesis was
also found to be involved in cancer progression and resistance by regulating stress re-
sponses. Additionally, SLITs and ROBOs are involved in anti-tumor activity by regulating
chemokine-mediated response in breast cancer; thus, regulation of the expression of SLITs
and ROBOs might be associated with chemoresistance [37–39]. Additionally, other recent
studies have demonstrated resistant cancer cells have increased selenocysteine synthesis,
which protects cancer cells against oxidative stress [40–42]. Furthermore, the study by
Liu et al. showed SRP-dependent co-translational protein targeting to the membrane and
amplification of ribosomal protein involved in resistance [43].
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Figure 3. (A) Protein–protein interaction network of hub genes associated with NAC resistance in
breast cancer. The plot was prepared using STRING. (B) Significantly enriched biological processes
and pathways associated with the hub genes. Enrichment analysis performed using Metascape.
(C) Significantly enriched reactome pathways associated with the hub genes. Enrichment analysis
was performed using ShinyGO.

2.4. mRNA-miRNA Network Analysis Reveals the Potentiality of the Hub Genes in the
Alternation of Regulatory Network in NAC-Resistant Breast Cancer

To check the potentiality of these hub genes in altering the interactome of breast
cancer cells, we performed mRNA–miRNA network analysis. We used miRNet 2.0 [44] to
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construct the mRNA–miRNA network. We found that 44 miRNAs potentially interacted
with these 33 hub genes in the network (Figure 4A). All these interactions are supported by
the experiments (Table S1). Next, we performed the functional enrichment of these miR-
NAs using miEAA 2.0 (https://www.ccb.uni-saarland.de/mieaa2, accessed on 7 October
2022) [45]. We observed that these miRNAs are significantly involved in a broad range of bi-
ological processes and pathways (p-adjusted value < 0.05) (Figure 4B). Therefore, alteration
of the expression of the hub genes in NAC-resistant breast cancer could potentially impact
the interacting miRNAs in the network, which could affect various cellular processes and
pathways that could promote the changing regulatory landscape of the cancer cells.
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Figure 4. (A) mRNA–miRNA interaction network of hub genes. The network circle with purple color
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pathways where the miRNAs in this network are involved (p-adjusted value < 0.05).

2.5. Analysis of the Hub Genes in the Single-Cell RNA-seq Data of Breast Cancer Patients

Single-cell RNA-sequencing (scRNA-seq) is a useful method to analyze disease hetero-
geneity at the single-cell level [46]. Understanding the pattern of cell-type-specific hub gene
expression at the single-cell level could help us to determine their potentiality of being the drug-
gable target in breast cancer. We uploaded these 33 hub genes in the study of “A single-cell and
spatially resolved atlas of human breast cancers” (https://singlecell.broadinstitute.org/single_
cell/study/SCP1039/a-single-cell-and-spatially-resolved-atlas-of-human-breast-cancers, ac-
cessed on 7 October 2022) [47] in the Single Cell Portal of Broad Institute to check their pattern
of expression at single cell level. We observed that the pattern of expression of these hub genes
is similar in most of the cell types in the tumors (Figure 5A), which suggests that targeting those
hub genes could overcome the NAC resistance in breast cancer. Further, to understand the func-
tional state of these hub genes in breast cancer cells at the single-cell level, we uploaded these 33
hub genes to the CancerSEA database (http://biocc.hrbmu.edu.cn/CancerSEA/, accessed on 7
October 2022) [48]. Interestingly, we observed that DNA damage and repair are the two most
functional states in breast cancer associated with these hub genes. The gene list containing hub
genes was positively correlated with these two functional states in all four scRNA-seq datasets
(Figure 5B) [46,49–51]. DNA damage can result from chemotherapy treatment, and emerging
evidence highlighted that DNA repair processes are important in drug resistance [52]. Therefore,
this data suggests that the alternation of gene expression of these hub genes could promote the
DNA repair process in response to NAC-mediated DNA damage and drive the development of
NAC-resistant breast cancer.

https://www.ccb.uni-saarland.de/mieaa2
https://singlecell.broadinstitute.org/single_cell/study/SCP1039/a-single-cell-and-spatially-resolved-atlas-of-human-breast-cancers
https://singlecell.broadinstitute.org/single_cell/study/SCP1039/a-single-cell-and-spatially-resolved-atlas-of-human-breast-cancers
http://biocc.hrbmu.edu.cn/CancerSEA/
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Figure 5. (A) Expression of hub genes in different cell types of scRNA-seq data of breast cancer pa-
tients from the study of Wu, S. et al. [47]. (B) The correlation heatmap shows the detailed information
of all functional associations with hub genes in each breast cancer dataset available in CancerSEA
database [46,49–51].

2.6. Drug Repurposing Using Drug-Gene Interaction Analysis of Hub Genes

We found 10 hub genes out of 33 hub genes, against which 19 potential drugs (8 ap-
proved, 11 in preclinical and clinical trials) can be repurposed (Table S2). Carfilzomib and
Bortezomib, used to treat hematologic malignancy, have repurposing potential against
PSME3 and PSMB5 dysregulation. Ixazomib citrate, originally used in combination treat-
ment with Lenalidomide and Dexamethasone to treat multiple myeloma, can be repurposed
against PSMB5 dysregulation. Natalizumab, used in multiple sclerosis and Crohn’s disease,
has the potential to be repurposed against ITGB1 dysregulation. Homoharringtonine, an-
other drug used in hematologic malignancy, can be repurposed against RPL3 dysregulation
(CMap score 100). Interestingly, antibiotics, e.g., puromycin and anisomycin, have the
potential to be repurposed against RPL3 and RPL8 dysregulation. We also found drug
classes such as quinoline (antimalarial), pyrimidine analogs, topoisomerase inhibitors,
imatinib analog, and vinca alkaloids that can be repurposed against RPL3, RPL31, RPS9,
and U2AF2 dysregulation. Mitoxantrone is used in acute nonlymphocytic leukemia and
multiple sclerosis, Daunorubicin is used in acute myeloid leukemia, and Doxorubicin is
used in cancer that can be used against RPSA. Moreover, the comparative toxicogenomics
database revealed positive and negative associations between FDA-approved drugs and
hub genes based on the literature (Table S3).

2.7. Survival Analysis of the Hub Genes

The Kaplan–Meier plotter web browser [53] was used for the survival analysis of 33
hub genes to check their association with survival in overall breast cancer. We identified
seven hub genes (p-value cutoff < 0.05), of which four were upregulated hub genes (RPSA,
SEC61A1, ITGB1, PSMB5) and three were downregulated hub genes (PSME3, SNRNP70,
SRSF3) associated significantly with poor overall survival (Figure S1). Importantly, we
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found drugs with repurposing potentials such as Carfilzomib, Bortezomib, Ixazomib citrate
against hub gene PSMB5, Natalizumab against hub gene ITGB1, Mitoxantrone, Daunoru-
bicin, and Doxorubicin against hub gene RPSA, which were found to be upregulated in
NAC-resistant patients, as well as associated with poor overall survival.

3. Discussion

Breast cancer is a broad spectrum of highly heterogeneous diseases, which pose an
additional problem for developing effective treatment regimens [54]. The major obstacle
faced by current treatments is drug resistance, which leads to poor patient outcomes.

NAC is the frontline treatment for treating patients with locally advanced breast
cancer before tumor excision [55,56]. However, drug resistance hinders the development
of efficient cancer treatment. Thus, we need a better understanding of the molecular
landscape associated with NAC resistance to develop potential therapeutics. The drug
repurposing approach has emerged as a promising strategy to find available drugs for
designing personalized treatment, in addition to discovering new drugs [57].

In this study, we used an integrative bioinformatics approach to identify the potential
hub genes that could be involved in developing NAC resistance in breast cancer. First, we
downloaded the multiple publicly available RNA-seq dataset for breast cancer sensitivity
and resistance to NAC. Then, we combined all the datasets, performed differential gene
expression analysis, and identified 1446 differentially expressed genes (DEGs) associated
with NAC resistance in breast cancer. After that, to identify the functionally relevant co-
expressed genes which could be important for the development of NAC resistance breast
cancer, we performed a co-expression network analysis based on the WGCNA approach.
This step facilitates identifying a functionally significant co-expressed module consisting
of 330 genes. Next, we performed PPI network analysis of these 330 genes and identified
the top 10% of genes (33 genes) as hub genes. Then, to understand if these hub genes
could alter the regulatory landscape of the cancer cells, we performed mRNA-miRNA
interactome analysis. We identified 44 miRNAs that significantly interacted with these
hub genes, and these miRNAs are involved in a broad range of cellular processes and
pathways. Therefore, it could suggest that the alternation of gene expression of these hub
genes could significantly alter the mRNA–miRNA interaction, which could impact the
regulatory network of cancer cells. Then, we analyzed the functional associations of these
hub genes in the scRNA-seq data of breast cancer patients, which suggest that these genes
are significantly associated with the DNA repair processes in all the dataset. This finding
could support that these hub genes are crucial for DNA repair processes in response to
NAC-mediated DNA damage in breast cancer cells, potentially associated with the NAC
resistance to breast cancer emergence. Further, we performed functional and pathway
enrichment analysis, survival analysis, and drug repurposing of these hub genes.

Gene ontology and pathway enrichment analysis of 33 hub genes revealed they are
involved in a broad range of cellular processes and pathways. These findings support
that during the development of drug resistance to cancer emergence, cancer cells need to
change their phenotype without altering their genotype, impacting the global alternations
of cellular pathways and different biological processes. Therefore, these identified hub
genes could be the important regulator of all the alternations of various important processes
and pathways, which could lead to the development of resistance to NAC.

Next, we identified potential FDA-approved drugs against NAC-resistance associated
hub where we found drugs such as carfilzomib [58], bortezomib [59], mitoxantrone [60],
and homoharrington [61] used in hematologic malignancy have the potential to be re-
purposed against PSMB5, RPSA, and RPL3, respectively. Furthermore, the comparative
toxicogenomic database provided curated FDA-approved drugs that have the positive or
negative mode of action towards the differentially expressed hub genes in NAC-resistant
breast cancer patients, thus can be used for developing precision medicine. Drug resistance
is the key issue limiting modern cancer therapies. Drug repurposing is a promising tool that
can be deployed to identify approved drugs that can be used alone or in combination with
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other drugs to improve treatment outcomes [62–64]. In this study, we have used multiple
databases to screen FDA-approved drugs that have the potential to be repurposed against
differentially expressed hub genes in resistance patients to overcome drug resistance.

Moreover, we performed a survival analysis of all 33 hub genes to check their impact
on the survival of breast cancer patients. Here, we found four upregulated hub genes
(RPSA, SEC61A1, ITGB1, PSMB5) and three downregulated hub genes (PSME3, SNRNP70,
SRSF3) that are significantly associated with poor overall survival of breast cancer pa-
tients. The involvement of RPSA, SEC61A1, ITGB1, PSMB5, PSME3, and SRSF3 genes in
chemotherapeutic resistance has been well-studied in various malignancies. RPSA, also
known as 37LRP, was upregulated in the resistant breast cancer patient, and regarding its
role in drug resistance, studies by Sun et al. have shown MGr1-Ag/37LRP confer drug
resistance through FAK/PI3K and MAPK mediated pathway in gastric cancer [65]. RPSA
has also been reported to evade apoptosis by impeding caspase activity in pancreatic
cancer [66]. In breast and esophageal cancer, RPSA is associated with the suppression of
apoptosis and autophagy [67]. RPSA was also found to promote pancreatic cancer invasion
and metastasis through the MAPK signaling pathway [68]. SEC61A1 was reported to play a
role in colon and hepatocellular cancer progression [69–71]. Hsa_circ_0007841 transcripted
by SEC61A1 was found to be involved in drug resistance in doxorubicin and bortezomib-
treated multiple myeloma patients [72,73]. Additionally, Cao et al. showed the involvement
of the MAGI2-AS3/miR-218-5p/GDPD5/SEC61A1 axis in cisplatin resistance in nasopha-
ryngeal carcinoma [74]. ITGB1 was identified as a predictive neo-adjuvant chemotherapy
resistance marker for pathological response in breast cancer. Moreover, overexpression of
ITGB1 was also shown to be associated with high matrix stiffness and poor overall survival
in breast cancer patients [75]. Baltes et al. showed that ITGB1, upon binding to collagen
type 1, activates the ABC efflux transporter and exerts chemoresistance in doxorubicin,
cisplatin, and mitoxantrone-treated breast cancer [76]. Additionally, ITGB1 confers resis-
tance to paclitaxel in nasopharyngeal cancer [77]. Furthermore, increased expression of
ITGB1 is also involved in poor prognosis of ovarian cancer, gastric cancer, head and neck
squamous cell carcinomas, and lung cancer [78–81]. Upregulated PSMB5 was found to be
associated with increased cell proliferation, drug resistance, and poor prognosis in TNBC
patients [82]. Similarly, Wang et al. reported the involvement of PSMB5 in enhanced cell
migration and immunosuppression in breast cancer [83]. Several other studies showed
an association between overexpression of PSMB5 and drug resistance in T-lymphoblastic
lymphoma, myeloma, and gastric cancer [84–86]. PSME3 gene has lower expression in the
resistance group as well as in the lower OS group. Downregulation of PSME3 is involved
in cell growth arrest. Studies have shown low expression of PSME3 impedes proliferation
and induces apoptosis by overexpression p53 [87–89]. However, Sanchez et al. found
reduced p53 expression in their study despite miR-7-mediated downregulation of PSME3
expression, leading to cell cycle arrest and evasion of apoptosis [89]. Likewise, expression of
anti-apoptotic proteins increases by miR-30a-3p, miR-146a-5p, and miR-491-5p dependent
downregulation of PSME3, which suppresses apoptosis [3,90]. Another gene, SRSF3, was
overserved with low expression in resistant patients. A recent study demonstrated a link
between downregulated SRSF3 and poor overall survival [91]. SRSF3 was reported to
act as a tumor suppressor in hepatocellular carcinoma and colorectal cancer. Moreover,
recent studies have illustrated that lower expression of SRSF3 is associated with neoplasia
progression and poor overall survival in the liver and colorectal cancer [92–94].

In addition, hub genes such as RPS6, RPL34, SRP9, HNRNPA1, HNRNPM, SRRT, EIF5A,
NONO, and PTBP1 were significantly up or downregulated in resistant breast cancer patients
but not significant as prognostic biomarkers, also reported being involved in cancer progression.
Upregulation of RPS6 is involved in cancer cell proliferation, distant metastasis, and poor
prognosis in breast and cervical squamous cell carcinoma [95–97]. Increased expression of
RPL34 has been shown to be involved in malignancy progression in gastric cancer, osteosarcoma,
non-small cell lung cancer, esophageal cancer, and glioma [98–101]. Rho et al. and Erdogan et al.
demonstrated that the overexpression of SRP9 is involved in colorectal cancer progression
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and advanced breast cancer [102,103]. Increased expression of HNRNPA1 is also reported
to be involved in drug resistance in pancreatic and lung cancer [104,105]. Several studies
have shown that the overexpression of HNRNPM is involved in metastatic progression and
increased epithelial-to-mesenchymal transition and chemoresistance [106–108]. Upregulated
SRRT gene, also known as ARS2, is associated with increased cell proliferation and poor overall
survival by modulating the miR-6734-3p/p27 axis and miR-6798-3p in myeloid leukemia
and glioblastoma, respectively [109,110]. Downregulation of EIF5A was reported to induce
aggressive lymphomagenesis via a p53-independent mechanism [111]. Xie et al. showed that
the suppression of NONO expression modulates alternative splicing of SETMAR, resulting in
lymph node metastasis progression in bladder cancer [112]. Downregulation of PTBP1 exerts
anti-tubulin chemotherapeutics resistance in cancer cells by apoptotic evasion [113].

4. Materials and Methods
4.1. Acquisition of Transcriptome Dataset

RNA-Seq data samples of breast cancer patients sensitive and resistant to neoad-
juvant chemotherapy were downloaded from the GEO database, GSE162187 [114] and
GSE163882 [115]. A total of 89 data samples sensitive to treatment and 154 data samples
resistant to the treatment were used for downstream analysis.

4.2. Read Mapping and Differential Gene Expression Analysis

All the samples were mapped to the human reference genome (hg38) using STAR
aligner [116]; subsequently, reads mapped to each gene were calculated for all the samples
using featureCounts [117]. Read count matrices were further used for differential gene
expression (DGE) analysis using DESeq2 [118]. While performing DGE analysis, patients
sensitive to treatment were considered as a reference. Upregulated genes were considered
with p-values < = 0.05 and log2FoldChange > = 1, while downregulated genes were
considered with p-values < = 0.05 and log2FoldChange < = −1.

4.3. Weighted Gene Co-Expression Network Analysis

Weighted gene co-expression network analysis (WGCNA) [119] detects network mod-
ules consisting of highly correlated genes, in terms of expression, that are potentially
involved in similar biological processes. A total of 1446 differentially expressed genes were
used for this analysis. The co-expression network was constructed using the WGCNA
package [119]. The hierarchical clustering and dynamic tree cut algorithm were used to
identify the co-expression modules whose gene expression was highly correlated with the
clinic traits. Module-trait associations were calculated to identify the significant modules
related to clinical traits. Modules that were significantly correlated with individual traits
(p-value < 0.05) were selected, and we exported the genes of this module for further analysis.

4.4. Construction of PPI Network and Hub Gene Analysis

STRING v11.0 (https://string-db.org, accessed on 6 June 2022) [34] was used to
construct a protein–protein Interaction (PPI) network of genes extracted from the significant
WGCNA module. Homo sapiens was selected as an organism of interest, the minimum
required interaction score was set to high confidence (0.7), and the rest of the parameters
were used as default. The resultant network was visualized using Cytoscape v3.8.0 [120].
The MCC (Multiple Correlation Clustering) algorithms of the cytoHubba plug-in [121] of
Cytoscape were implemented to identify the top 10% of hub genes from the network.

4.5. mRNA-miRNA Network Analysis

We used miRNet 2.0 [44] to construct the mRNA–miRNA network. We uploaded the hub
genes to the miRNet 2.0 web server (https://www.mirnet.ca/upload/GeneUploadView.xhtml,
accessed on 7 October 2022) and selected the breast cancerous tissues to extract the potential
mRNA–miRNA network consisting of these hub genes.

https://string-db.org
https://www.mirnet.ca/upload/GeneUploadView.xhtml
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4.6. Functional Enrichment Analysis of Hub Genes and miRNAs

The identified hub genes from the corresponding network were subjected to enrichment
analysis. We used ShinyGo v0.76 [122] for biological processes, molecular function, KEGG,
and reactome pathway enrichment. Functional enrichment of miRNAs was performed using
miEAA 2.0 (https://www.ccb.uni-saarland.de/mieaa2, accessed on 7 October 2022) [45].

4.7. Survival Analysis of Hub Genes

Kaplan–Meier plotter analysis was performed online at https://kmplot.com/analysis,
accessed on 7 October 2022 [53] and used to assess the effects of 33 hub genes on breast
cancer survival. Notably, 15 hub genes were selected based on the p-value cutoff < 0.05.

4.8. Drug-hub Gene Interaction and Drug Repositioning

The Drug–Gene Interaction database (DGIdb, https://www.dgidb.org/; v4.2.0-sha1
afd9f30b, accessed on 16 July 2022) [123], Genomics and Drugs integrated Analysis (GDA,
http://gda.unimore.it/, accessed on 16 July 2022) [124], drug repurposing database CLUE
(https://clue.io/, accessed on 16 July 2022), and Comparative Toxicogenomics Database
(CTD) (http://ctdbase.org/, accessed on 16 July 2022) [125] were used to identify FDA
approved drugs for potential repurposing.

5. Conclusions

In this study, we identified the hub genes associated with developing resistance to
NAC in breast cancer and potential repurposing drugs for overcoming resistance. Our
study provides detailed molecular insight into NAC resistance in breast cancer. However,
the main limitation of the study is that we did not experimentally validate any of the
selected hub genes, as our findings are mainly based on the public dataset. Furthermore,
the drug repurposing described here is based on preliminary studies and requires further
experimental verification and proper clinical trials. Therefore, the findings of the present
study encourage the further design of experimental research to understand the molecu-
lar mechanisms behind the NAC resistance in breast cancer, which could facilitate the
development of precision medicine in the near future.
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53. Győrffy, B. Survival Analysis across the Entire Transcriptome Identifies Biomarkers with the Highest Prognostic Power in Breast
Cancer. Comput. Struct. Biotechnol. J. 2021, 19, 4101–4109. [CrossRef]

http://doi.org/10.1158/0008-5472.CAN-09-1224
http://doi.org/10.1038/ncomms4231
http://www.ncbi.nlm.nih.gov/pubmed/24488081
http://doi.org/10.3390/v13030402
http://www.ncbi.nlm.nih.gov/pubmed/33802569
http://doi.org/10.1093/nar/gkab556
http://doi.org/10.3389/fcell.2020.599281
http://www.ncbi.nlm.nih.gov/pubmed/33304904
http://doi.org/10.1186/s12943-018-0782-4
http://www.ncbi.nlm.nih.gov/pubmed/29455648
http://doi.org/10.1093/nar/gkw937
http://www.ncbi.nlm.nih.gov/pubmed/27924014
http://doi.org/10.1016/j.mce.2021.111221
http://www.ncbi.nlm.nih.gov/pubmed/33711334
http://doi.org/10.1038/s41568-021-00380-y
http://www.ncbi.nlm.nih.gov/pubmed/34341537
http://doi.org/10.1016/j.drudis.2014.09.008
http://www.ncbi.nlm.nih.gov/pubmed/25245168
http://doi.org/10.1074/jbc.M308083200
http://doi.org/10.1073/pnas.0801262106
http://doi.org/10.1002/jcb.30196
http://doi.org/10.1126/sciadv.aau7314
http://doi.org/10.3389/fonc.2020.597434
http://www.ncbi.nlm.nih.gov/pubmed/33425751
http://doi.org/10.3390/ph14090918
http://www.ncbi.nlm.nih.gov/pubmed/34577617
http://doi.org/10.1093/nar/gkaa467
http://doi.org/10.1093/nar/gkaa309
http://www.ncbi.nlm.nih.gov/pubmed/32374865
http://doi.org/10.1038/ncomms15081
http://doi.org/10.1038/s41588-021-00911-1
http://www.ncbi.nlm.nih.gov/pubmed/34493872
http://doi.org/10.1093/nar/gky939
http://doi.org/10.3389/fphar.2020.629266
http://doi.org/10.1016/j.csbj.2021.07.014


Int. J. Mol. Sci. 2022, 23, 12628 14 of 16

54. Lüönd, F.; Tiede, S.; Christofori, G. Breast Cancer as an Example of Tumour Heterogeneity and Tumour Cell Plasticity during
Malignant Progression. Br. J. Cancer 2021, 125, 164–175. [CrossRef]

55. Asselain, B.; Barlow, W.; Bartlett, J.; Bergh, J.; Bergsten-Nordström, E.; Bliss, J.; Boccardo, F.; Boddington, C.; Bogaerts, J.;
Bonadonna, G.; et al. Long-Term Outcomes for Neoadjuvant versus Adjuvant Chemotherapy in Early Breast Cancer: Meta-
Analysis of Individual Patient Data from Ten Randomised Trials. Lancet Oncol. 2018, 19, 27–39. [CrossRef]

56. Mougalian, S.S.; Soulos, P.R.; Killelea, B.K.; Lannin, D.R.; Abu-Khalaf, M.M.; Digiovanna, M.P.; Sanft, T.B.; Pusztai, L.; Gross, C.P.;
Chagpar, A.B. Use of Neoadjuvant Chemotherapy for Patients with Stage I to III Breast Cancer in the United States. Cancer 2015,
121, 2544–2552. [CrossRef] [PubMed]

57. Rudrapal, M.; Khairnar, S.J.; Jadhav, A.G.; Rudrapal, M.; Khairnar, S.J.; Jadhav, A.G. Drug Repurposing (DR): An Emerging
Approach in Drug Discovery. In Drug Repurposing: Hypothesis, Molecular Aspects and Therapeutic Applications; IntechOpen: London,
UK, 2020. [CrossRef]

58. Park, J.E.; Park, J.; Jun, Y.; Oh, Y.; Ryoo, G.; Jeong, Y.S.; Gadalla, H.H.; Min, J.S.; Jo, J.H.; Song, M.G.; et al. Expanding Therapeutic
Utility of Carfilzomib for Breast Cancer Therapy by Novel Albumin-Coated Nanocrystal Formulation. J. Control. Release 2019,
302, 148–159. [CrossRef] [PubMed]

59. Yang, C.H.; Gonzalez-Angulo, A.M.; Reuben, J.M.; Booser, D.J.; Pusztai, L.; Krishnamurthy, S.; Esseltine, D.; Stec, J.; Broglio, K.R.;
Islam, R.; et al. Bortezomib (VELCADE) in Metastatic Breast Cancer: Pharmacodynamics, Biological Effects, and Prediction of
Clinical Benefits. Ann. Oncol. 2006, 17, 813–817. [CrossRef] [PubMed]

60. Landys, K.; Borgstrom, S.; Andersson, T.; Noppa, H. Mitoxantrone as a First-Line Treatment of Advanced Breast Cancer. Investig.
New Drugs 1985, 3, 133–137. [CrossRef] [PubMed]

61. Yakhni, M.; Briat, A.; Guerrab, A.E.; Furtado, L.; Kwiatkowski, F.; Miot-Noirault, E.; Cachin, F.; Penault-Llorca, F.; Radosevic-
Robin, N. Homoharringtonine, an Approved Anti-Leukemia Drug, Suppresses Triple Negative Breast Cancer Growth through a
Rapid Reduction of Anti-Apoptotic Protein Abundance. Am. J. Cancer Res. 2019, 9, 1043–1060.

62. Palmer, A.C.; Sorger, P.K. Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug
Additivity or Synergy. Cell 2017, 171, 1678–1691.e13. [CrossRef]

63. Detroja, T.S.; Gil-Henn, H.; Samson, A.O. Text-Mining Approach to Identify Hub Genes of Cancer Metastasis and Potential Drug
Repurposing to Target Them. J. Clin. Med. 2022, 11, 2130. [CrossRef]

64. Jaaks, P.; Coker, E.A.; Vis, D.J.; Edwards, O.; Carpenter, E.F.; Leto, S.M.; Dwane, L.; Sassi, F.; Lightfoot, H.; Barthorpe, S.; et al.
Effective Drug Combinations in Breast, Colon and Pancreatic Cancer Cells. Nature 2022, 603, 166–173. [CrossRef]

65. Sun, L.; Liu, L.; Liu, X.; Wang, Y.; Li, M.; Yao, L.; Yang, J.; Ji, G.; Guo, C.; Pan, Y.; et al. MGr1-Ag/37LRP Induces Cell
Adhesion-Mediated Drug Resistance through FAK/PI3K and MAPK Pathway in Gastric Cancer. Cancer Sci. 2014, 105, 651–659.
[CrossRef]

66. Chetty, C.J.; Ferreira, E.; Jovanovic, K.; Weiss, S.F.T. Knockdown of LRP/LR Induces Apoptosis in Pancreatic Cancer and
Neuroblastoma Cells through Activation of Caspases. Exp. Cell Res. 2017, 360, 264–272. [CrossRef] [PubMed]

67. Khumalo, T.; Ferreira, E.; Jovanovic, K.; Veale, R.B.; Weiss, S.F.T. Knockdown of LRP/LR Induces Apoptosis in Breast and
Oesophageal Cancer Cells. PLoS ONE 2015, 10, e0139584. [CrossRef] [PubMed]

68. Wu, Y.; Tan, X.; Liu, P.; Yang, Y.; Huang, Y.; Liu, X.; Meng, X.; Yu, B.; Wu, M.; Jin, H. ITGA6 and RPSA Synergistically Promote
Pancreatic Cancer Invasion and Metastasis via PI3K and MAPK Signaling Pathways. Exp. Cell Res. 2019, 379, 30–47. [CrossRef]
[PubMed]

69. Ye, Y.; Gu, B.; Wang, Y.; Shen, S.; Huang, W. E2F1-Mediated MNX1-AS1-MiR-218-5p-SEC61A1 Feedback Loop Contributes to the
Progression of Colon Adenocarcinoma. J. Cell. Biochem. 2019, 120, 6145–6153. [CrossRef] [PubMed]

70. Li, N.; Zhao, L.; Guo, C.; Liu, C.; Liu, Y. Identification of a Novel DNA Repair-Related Prognostic Signature Predicting Survival of
Patients with Hepatocellular Carcinoma. Cancer Manag. Res. 2019, 11, 7473–7484. [CrossRef] [PubMed]

71. Liu, X.; Zeng, J.; Li, H.; Li, F.; Jiang, B.; Zhao, M.; Liu, Z.; Li, R.; Ma, T. A Risk Model Based on Sorafenib-Response Target Genes
Predicts the Prognosis of Patients with HCC. J. Oncol. 2022, 2022, 7257738. [CrossRef] [PubMed]

72. Song, Y.; Hu, N.; Song, X.; Yang, J. Hsa_Circ_0007841 Enhances Multiple Myeloma Chemotherapy Resistance Through Upregulat-
ing ABCG2. Technol. Cancer Res. Treat. 2020, 19, 1533033820928371. [CrossRef]

73. Wang, Y.; Lin, Q.; Song, C.; Ma, R.; Li, X. Depletion of Circ_0007841 Inhibits Multiple Myeloma Development and BTZ Resistance
via MiR-129-5p/JAG1 Axis. Cell. Cycle 2020, 19, 3289–3302. [CrossRef] [PubMed]

74. Cao, C.; Zhou, S.; Hu, J. Long Noncoding RNA MAGI2-AS3/MiR-218-5p/GDPD5/SEC61A1 Axis Drives Cellular Proliferation
and Migration and Confers Cisplatin Resistance in Nasopharyngeal Carcinoma. Int. Forum. Allergy Rhinol. 2020, 10, 1012–1023.
[CrossRef]

75. Zhang, J.; Zhang, S.; Gao, S.; Ma, Y.; Tan, X.; Kang, Y.; Ren, W. HIF-1α, TWIST-1 and ITGB-1, Associated with Tumor Stiffness, as
Novel Predictive Markers for the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancer Manag. Res.
2020, 12, 2209–2222. [CrossRef] [PubMed]

76. Baltes, F.; Pfeifer, V.; Silbermann, K.; Caspers, J.; Wantoch von Rekowski, K.; Schlesinger, M.; Bendas, G. B1-Integrin Binding to
Collagen Type 1 Transmits Breast Cancer Cells into Chemoresistance by Activating ABC Efflux Transporters. Biochim. Biophys.
Acta Mol. Cell. Res. 2020, 1867, 118663. [CrossRef]

77. Huang, L.; Hu, C.; Chao, H.; Wang, R.; Lu, H.; Li, H.; Chen, H. MiR-29c Regulates Resistance to Paclitaxel in Nasopharyngeal
Cancer by Targeting ITGB1. Exp. Cell Res. 2019, 378, 1–10. [CrossRef]

http://doi.org/10.1038/s41416-021-01328-7
http://doi.org/10.1016/S1470-2045(17)30777-5
http://doi.org/10.1002/cncr.29348
http://www.ncbi.nlm.nih.gov/pubmed/25902916
http://doi.org/10.5772/INTECHOPEN.93193
http://doi.org/10.1016/j.jconrel.2019.04.006
http://www.ncbi.nlm.nih.gov/pubmed/30954620
http://doi.org/10.1093/annonc/mdj131
http://www.ncbi.nlm.nih.gov/pubmed/16403809
http://doi.org/10.1007/BF00174160
http://www.ncbi.nlm.nih.gov/pubmed/4019117
http://doi.org/10.1016/j.cell.2017.11.009
http://doi.org/10.3390/jcm11082130
http://doi.org/10.1038/s41586-022-04437-2
http://doi.org/10.1111/cas.12414
http://doi.org/10.1016/j.yexcr.2017.09.016
http://www.ncbi.nlm.nih.gov/pubmed/28899658
http://doi.org/10.1371/journal.pone.0139584
http://www.ncbi.nlm.nih.gov/pubmed/26427016
http://doi.org/10.1016/j.yexcr.2019.03.022
http://www.ncbi.nlm.nih.gov/pubmed/30894280
http://doi.org/10.1002/jcb.27902
http://www.ncbi.nlm.nih.gov/pubmed/30362161
http://doi.org/10.2147/CMAR.S204864
http://www.ncbi.nlm.nih.gov/pubmed/31496805
http://doi.org/10.1155/2022/7257738
http://www.ncbi.nlm.nih.gov/pubmed/35799605
http://doi.org/10.1177/1533033820928371
http://doi.org/10.1080/15384101.2020.1839701
http://www.ncbi.nlm.nih.gov/pubmed/33131409
http://doi.org/10.1002/alr.22562
http://doi.org/10.2147/CMAR.S246349
http://www.ncbi.nlm.nih.gov/pubmed/32273760
http://doi.org/10.1016/j.bbamcr.2020.118663
http://doi.org/10.1016/j.yexcr.2019.02.012


Int. J. Mol. Sci. 2022, 23, 12628 15 of 16

78. Zhu, T.; Zhu, T.; Chen, R.; Chen, R.; Wang, J.; Wang, J.; Yue, H.; Yue, H.; Lu, X.; Lu, X.; et al. The Prognostic Value of ITGA
and ITGB Superfamily Members in Patients with High Grade Serous Ovarian Cancer. Cancer Cell Int. 2020, 20, 257. [CrossRef]
[PubMed]

79. Wang, K.; Zhu, X.; Mei, D.; Ding, Z. Caveolin-1 Contributes to Anoikis Resistance in Human Gastric Cancer SGC-7901 Cells via
Regulating Src-Dependent EGFR-ITGB1 Signaling. J. Biochem. Mol. Toxicol. 2018, 32, e22202. [CrossRef]

80. Ueki, Y.; Saito, K.; Iioka, H.; Sakamoto, I.; Kanda, Y.; Sakaguchi, M.; Horii, A.; Kondo, E. PLOD2 Is Essential to Functional
Activation of Integrin B1 for Invasion/Metastasis in Head and Neck Squamous Cell Carcinomas. iScience 2020, 23, 100850.
[CrossRef] [PubMed]

81. Wang, C.; Zhang, S.; Liu, J.; Tian, Y.; Ma, B.; Xu, S.; Fu, Y.; Luo, Y. Secreted Pyruvate Kinase M2 Promotes Lung Cancer Metastasis
through Activating the Integrin Beta1/FAK Signaling Pathway. Cell. Rep. 2020, 30, 1780–1797.e6. [CrossRef] [PubMed]

82. Wei, W.; Zou, Y.; Jiang, Q.; Zhou, Z.; Ding, H.; Yan, L.; Yang, S. Psmb5 Is Associated with Proliferation and Drug Resistance in
Triple-Negative Breast Cance. Int. J. Biol. Mark. 2018, 33, 102–108. [CrossRef] [PubMed]

83. Wang, C.-Y.; Li, C.-Y.; Hsu, H.-P.; Cho, C.-Y.; Yen, M.-C.; Weng, T.-Y.; Chen, W.-C.; Hung, Y.-H.; Lee, K.-T.; Hung, J.-H.; et al.
PSMB5 Plays a Dual Role in Cancer Development and Immunosuppression. Am. J. Cancer Res. 2017, 7, 2103–2120. [PubMed]

84. Lü, S.; Chen, Z.; Yang, J.; Chen, L.; Gong, S.; Zhou, H.; Guo, L.; Wang, J. Overexpression of the PSMB5 Gene Contributes
to Bortezomib Resistance in T-Lymphoblastic Lymphoma/Leukemia Cells Derived from Jurkat Line. Exp. Hematol. 2008, 36,
1278–1284. [CrossRef] [PubMed]

85. Ri, M.; Iida, S.; Nakashima, T.; Miyazaki, H.; Mori, F.; Ito, A.; Inagaki, A.; Kusumoto, S.; Ishida, T.; Komatsu, H.; et al. Bortezomib-
Resistant Myeloma Cell Lines: A Role for Mutated PSMB5 in Preventing the Accumulation of Unfolded Proteins and Fatal ER
Stress. Leukemia 2010, 24, 1506–1512. [CrossRef]

86. Matsunaga, T.; Tsuchimura, S.; Azuma, N.; Endo, S.; Ichihara, K.; Ikari, A. Caffeic Acid Phenethyl Ester Potentiates Gastric
Cancer Cell Sensitivity to Doxorubicin and Cisplatin by Decreasing Proteasome Function. Anti-Cancer Drugs 2019, 30, 251–259.
[CrossRef] [PubMed]

87. Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M. Mdm2 Promotes the Rapid Degradation of P53. Nature 1997, 387, 296–299. [CrossRef]
88. Zhu, Q.; Wani, G.; Yao, J.; Patnaik, S.; Wang, Q.E.; El-Mahdy, M.A.; Prætorius-Ibba, M.; Wani, A.A. The Ubiquitin–Proteasome

System Regulates P53-Mediated Transcription at P21waf1 Promoter. Oncogene 2007, 26, 4199–4208. [CrossRef] [PubMed]
89. Sanchez, N.; Gallagher, M.; Lao, N.; Gallagher, C.; Clarke, C.; Doolan, P.; Aherne, S.; Blanco, A.; Meleady, P.; Clynes, M.; et al.

MiR-7 Triggers Cell Cycle Arrest at the G1/S Transition by Targeting Multiple Genes Including Skp2 and Psme3. PLoS ONE 2013,
8, e65671. [CrossRef] [PubMed]

90. Mesrian Tanha, H.; Mojtabavi Naeini, M.; Rahgozar, S.; Moafi, A.; Honardoost, M.A. Integrative Computational In-Depth Analysis
of Dysregulated MiRNA-MRNA Interactions in Drug-Resistant Pediatric Acute Lymphoblastic Leukemia Cells: An Attempt to
Obtain New Potential Gene-MiRNA Pathways Involved in Response to Treatment. Tumor Biol. 2016, 37, 7861–7872. [CrossRef]

91. More, D.A.; Kumar, A. SRSF3: Newly Discovered Functions and Roles in Human Health and Diseases. Eur. J. Cell. Biol. 2020, 99,
151099. [CrossRef]

92. Sen, S.; Langiewicz, M.; Jumaa, H.; Webster, N.J.G. Deletion of Serine/Arginine-Rich Splicing Factor 3 in Hepatocytes Predisposes
to Hepatocellular Carcinoma in Mice. Hepatology 2015, 61, 171–183. [CrossRef]

93. Kumar, D.; Das, M.; Sauceda, C.; Ellies, L.G.; Kuo, K.; Parwal, P.; Kaur, M.; Jih, L.; Bandyopadhyay, G.K.; Burton, D.; et al.
Degradation of Splicing Factor SRSF3 Contributes to Progressive Liver Disease. J. Clin. Investig. 2019, 129, 4477–4491. [CrossRef]
[PubMed]

94. Torres, S.; García-Palmero, I.; Marín-Vicente, C.; Bartolomé, R.A.; Calviño, E.; Fernández-Aceñero, M.J.; Casal, J.I. Proteomic
Characterization of Transcription and Splicing Factors Associated with a Metastatic Phenotype in Colorectal Cancer. J. Proteome
Res. 2018, 17, 252–264. [CrossRef] [PubMed]

95. McCubrey, J.A.; Abrams, S.L.; Fitzgerald, T.L.; Cocco, L.; Martelli, A.M.; Montalto, G.; Cervello, M.; Scalisi, A.; Candido, S.; Libra,
M.; et al. Roles of Signaling Pathways in Drug Resistance, Cancer Initiating Cells and Cancer Progression and Metastasis. Adv.
Biol. Regul. 2015, 57, 75–101. [CrossRef] [PubMed]

96. You, K.S.; Yi, Y.W.; Kwak, S.J.; Seong, Y.S. Inhibition of RPTOR Overcomes Resistance to EGFR Inhibition in Triple-Negative
Breast Cancer Cells. Int. J. Oncol. 2018, 52, 828–840. [CrossRef] [PubMed]

97. Campos-Parra, A.D.; Padua-Bracho, A.; Pedroza-Torres, A.; Figueroa-González, G.; Fernández-Retana, J.; Millan-Catalan, O.;
Peralta-Zaragoza, O.; Cantú de León, D.; Herrera, L.A.; Pérez-Plasencia, C. Comprehensive Transcriptome Analysis Identifies
Pathways with Therapeutic Potential in Locally Advanced Cervical Cancer. Gynecol. Oncol. 2016, 143, 406–413. [CrossRef]
[PubMed]

98. Liu, H.; Liang, S.; Yang, X.; Ji, Z.; Zhao, W.; Ye, X.; Rui, J. RNAi-Mediated RPL34 Knockdown Suppresses the Growth of Human
Gastric Cancer Cells. Oncol. Rep. 2015, 34, 2267–2272. [CrossRef] [PubMed]

99. Luo, S.; Zhao, J.; Fowdur, M.; Wang, K.; Jiang, T.; He, M. Highly Expressed Ribosomal Protein L34 Indicates Poor Prognosis in
Osteosarcoma and Its Knockdown Suppresses Osteosarcoma Proliferation Probably through Translational Control. Sci. Rep. 2016,
6, 37690. [CrossRef] [PubMed]

100. Yang, S.; Cui, J.; Yang, Y.; Liu, Z.; Yan, H.; Tang, C.; Wang, H.; Qin, H.; Li, X.; Li, J.; et al. Over-Expressed RPL34 Promotes
Malignant Proliferation of Non-Small Cell Lung Cancer Cells. Gene 2016, 576, 421–428. [CrossRef] [PubMed]

http://doi.org/10.1186/s12935-020-01344-2
http://www.ncbi.nlm.nih.gov/pubmed/32565741
http://doi.org/10.1002/jbt.22202
http://doi.org/10.1016/j.isci.2020.100850
http://www.ncbi.nlm.nih.gov/pubmed/32058962
http://doi.org/10.1016/j.celrep.2020.01.037
http://www.ncbi.nlm.nih.gov/pubmed/32049010
http://doi.org/10.5301/ijbm.5000283
http://www.ncbi.nlm.nih.gov/pubmed/28623645
http://www.ncbi.nlm.nih.gov/pubmed/29218236
http://doi.org/10.1016/j.exphem.2008.04.013
http://www.ncbi.nlm.nih.gov/pubmed/18562081
http://doi.org/10.1038/leu.2010.137
http://doi.org/10.1097/CAD.0000000000000715
http://www.ncbi.nlm.nih.gov/pubmed/30489290
http://doi.org/10.1038/387296a0
http://doi.org/10.1038/sj.onc.1210191
http://www.ncbi.nlm.nih.gov/pubmed/17224908
http://doi.org/10.1371/journal.pone.0065671
http://www.ncbi.nlm.nih.gov/pubmed/23762407
http://doi.org/10.1007/s13277-015-4553-1
http://doi.org/10.1016/j.ejcb.2020.151099
http://doi.org/10.1002/hep.27380
http://doi.org/10.1172/JCI127374
http://www.ncbi.nlm.nih.gov/pubmed/31393851
http://doi.org/10.1021/acs.jproteome.7b00548
http://www.ncbi.nlm.nih.gov/pubmed/29131639
http://doi.org/10.1016/j.jbior.2014.09.016
http://www.ncbi.nlm.nih.gov/pubmed/25453219
http://doi.org/10.3892/ijo.2018.4244
http://www.ncbi.nlm.nih.gov/pubmed/29344641
http://doi.org/10.1016/j.ygyno.2016.08.327
http://www.ncbi.nlm.nih.gov/pubmed/27581326
http://doi.org/10.3892/or.2015.4219
http://www.ncbi.nlm.nih.gov/pubmed/26323242
http://doi.org/10.1038/srep37690
http://www.ncbi.nlm.nih.gov/pubmed/27883047
http://doi.org/10.1016/j.gene.2015.10.053
http://www.ncbi.nlm.nih.gov/pubmed/26526135


Int. J. Mol. Sci. 2022, 23, 12628 16 of 16

101. Fan, H.; Li, J.; Jia, Y.; Wu, J.; Yuan, L.; Li, M.; Wei, J.; Xu, B. Silencing of Ribosomal Protein L34 (RPL34) Inhibits the Proliferation
and Invasion of Esophageal Cancer Cells. Oncol. Res. 2017, 25, 1061–1068. [CrossRef] [PubMed]

102. Rho, J.H.; Qin, S.; Wang, J.; Roehrl, M.H.A. Proteomic Expression Analysis of Surgical Human Colorectal Cancer Tissues:
Up-Regulation of PSB7, PRDX1, and SRP9 and Hypoxic Adaptation in Cancer. J. Proteome Res. 2008, 7, 2959–2972. [CrossRef]
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