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In the process of regulating gene expression and evolution, such as DNA replication and
mRNA transcription, the binding of transcription factors (TFs) to TF binding sites (TFBS)
plays a vital role. Precisely modeling the specificity of genes and searching for TFBS are
helpful to explore the mechanism of cell expression. In recent years, computational and
deep learning methods searching for TFBS have become an active field of research.
However, existing methods generally cannot meet high performance and interpretability
simultaneously. Here, we develop an accurate and interpretable attention-based hybrid
approach, DeepARC, that combines a convolutional neural network (CNN) and recurrent
neural network (RNN) to predict TFBS. DeepARC employs a positional embedding
method to extract the hidden embedding from DNA sequences, including the positional
information from OneHot encoding and the distributed embedding from DNA2Vec.
DeepARC feeds the positional embedding of the DNA sequence into a CNN-BiLSTM-
Attention-based framework to complete the task of finding the motif. Taking advantage of
the attention mechanism, DeepARC can gain greater access to valuable information
about the motif and bring interpretability to the work of searching for motifs through the
attention weight graph. Moreover, DeepARC achieves promising performances with an
average area under the receiver operating characteristic curve (AUC) score of 0.908 on
five cell lines (A549, GM12878, Hep-G2, H1-hESC, and Hela) in the benchmark dataset.
We also compare the positional embedding with OneHot and DNA2Vec and gain a
competitive advantage.

Keywords: transcription factor binding sites, attention mechanism, positional embedding, deep learning, DNA
INTRODUCTION

The interaction between protein and DNA plays a pivotal role in in vitro life activities, such as
mRNA transcription, DNA replication, and immune response (1). Transcription factors (TFs) are
proteins that bind to regulatory DNA sequences and mediate gene expression. TF binding sites
(TFBSs), also called motifs, typically range from a few to about 20 base pairs (bps) and are a type of
DNA functional site. TF binds specifically to TFBS. Accurately finding the TFBS in the DNA
sequence is essential for deciphering the mechanism of gene expression and understanding the life
expression in vitro and drug design (2).
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Studying the characteristics of TFBSs is a process of searching
for subsequences with binding characteristics from the massive
DNA sequence data. Unfortunately, traditional biological
experiments are not only challenging to process massive
amounts of data but also expensive and time-consuming. With
the development of high-throughput technology, massive
amounts of reliable experimental data can be obtained through
in vitro experiments. These data contain potential TFBS
sequences and provide convenience for obtaining TFBSs based
on computational methods (3–5). MEME (4) searches for TFBS
in DNA sequences by scoring the DNA sequences and then
recursively selecting the sequences most likely to have motifs.
AlignACE (5) computes possible sequences of TFBS based on
Gibbs sampling. The common point of these algorithms is to use
ChIP-seq high-throughput experimental data and statistical
calculation methods to find potential TFBS, which has the
characteristics of a large deviation of calculation accuracy.
Because high-throughput experiments cannot accurately find
the DNA subsequences where TFBSs are located under high-
precision requirements, some sequence-based feature extraction
methods have been proposed to solve the first step in motif
searching. In past decades, position weight matrix (PWM) (1),
OneHot (6), and K-mer (7) are all DNA representation methods
that have achieved good results.

For the past few years, deep learning methods have been
widely applied quite in many fields like computer vision, natural
language processing, and speech recognition, and these fields
have achieved good results, etc. (8–10). Predicting the interaction
of biological sequences such as DNA/RNA sequences and
protein sequences, as a new subject, has continuously been a
very active research field, in which deep learning also plays a
decisive role (11–19). Deep learning approaches can learn
features from large amounts of data. DeepBind (6) is an earlier
deep learning-based model in the field of gene sequencing. It
miraculously adopts CNN to extract gene features predicted by
protein binding sites, thus reshaping the entire era of using
convolution kernels to capture features. In (12, 14), by fine-
tuning the network architecture of CNN, the validity of various
networks to verify TFBS has been evaluated in terms of overall.
DanQ (13), the one who tactfully used long short-term memory
(LSTM) to improve the before-and-after dependency in gene
features, further enhanced the performance in the task of
quantifying gene sequence functions.

Although the methods based on deep learning have achieved
significant results in discovering TFBS, at this stage, a more in-
depth and comprehensive application still needs great
improvement: 1) accurately embedding the DNA sequence has
been decisive to promote the model’s performance. In previous
studies, the traditional method such as OneHot (6) for encoding
has been proposed as a promising, relatively achieved good
performance, but it is difficult to improve due to its explosion of
the consumption of computing resources when the OneHot
embedding size increases. In (20), the NLP method has many
applications in the field of DNA sequence and realizes
distributed embedding representation. However, it was found
that the position information contained in the DNA sequence
Frontiers in Oncology | www.frontiersin.org 2
was lost during use. 2) It has proven effective as an emerging
method at predicting capabilities in successfully applying the
attention mechanism for NLP. However, there is still an uneasy
process with multiple challenges that need to be addressed
before acquiring practical application potential, such as
limited knowledge of an outstanding method to integrate it
into the field of genes. In this work, we develop a combined deep
learning approach that uses OneHot and DNA2Vec embedding
to extract the hidden embedding from DNA sequences and
apply CNN and bidirectional LSTM network (BiLSTM) with an
attention mechanism to build the prediction model.
Experimental results show that our proposed method predicts
better than existing state-of-the-art methods and has
good interpretability.
MATERIALS AND METHODS

Datasets
High-throughput experiments produce a mass of protein-DNA
binding datasets. We use ENCODE (Encyclopedia of DNA
Elements), which offers TF cell type binding data analyzed by
the ChIPseq method (21) to train and test our model. Zeng’s
works (12) have completed the preprocessing part of the work. In
the preprocessing work, the positive samples consisting of 101
bps were generated in the central region of each ChIP-seq peak.
The negative sample is obtained by recombining the positive
sequence with the matching length. We distinguish positive
samples from negative samples based on whether TFBS can be
found in the sequence. So the positive samples represent TFBSs,
while negative samples do not have binding sites with a TF in the
sequence. In this study, we adopted 50 datasets that were selected
at random from 690 ChIP-seq datasets, including five cell lines
(GM12878, H1-hESC, Hep-G2, Hela, and A549) as training sets
and testing sets to measure the model performance. Of these
data, 60% are used as the training set, 30% as the test set, and 10%
as the verification set. In this article, our method runs as follows:
first, we embed each DNA sample to get the position information
and DNA sequence content features at the same time. Then we
feed the DNA embedding to the attention-based model to get the
final prediction.
Problem Statements
The problem of TFBS prediction can be expressed as follows.
First of all, we divided all gene sequences into two categories
based on whether TFBS could be found in the DNA sequence.
The two categories are represented by label 0 or 1, which means
that there is no TFBS or TFBS in the gene sequences, respectively.
The embedded DNA sequences are expressed by fX(i), y(i)gni=1
and input into the model where X(i) is the input DNA sequence
data and y(i) shows the type of gene sequence. After that, we train
the model DeepARC (Figure 1) on the training sets. Our goal is
to obtain high-accuracy classification results in the testing sets
and extract the consistent sequence features from a tremendous
amount of gene information.
June 2022 | Volume 12 | Article 893520
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Positional Embedding
1)OneHot encoding, also called one-bit efficient encoding, uses the
N-bit status register to encode N states, each of which has its own
independent register bit, and at any given time, only one bit in the
code is valid and can be used to map characters to a unique
encoding. As a simple and effective coding method, OneHot
encoding has been widely used for indicating the state of a state
machine, and there are many applications in bioinformatics and
natural language processing (6, 14). In DeepBind, each fragment of
gene sequence is regarded as a feature and encoded byOneHot in a
special way. However, there are some drawbacks to the OneHot
encoding. Due to the simple and sparse characteristics of OneHot
encoding and the assumption that different features are
independent, the mutual relationship between different coding
units will be lost, and the distance relationship between coding
units will not be reflected. For data with some kind of continuous
relationship, encoding with the OneHot method may result in a
situation where the accuracy rate will be significantly reduced. In
Frontiers in Oncology | www.frontiersin.org 3
addition, the OneHot encoding dimension of each word is the size
of the entire vocabulary. With the growth of embedded data, the
dimensionwill becomehuge, and the codingwill turn sparse,which
will make the calculation cost very terrible.

2) In the field of molecular biology, mer represents a
monomeric unit, and k-mer means a set of nucleotide strings
with a length of k. Extracting k-mer from L-length DNA
sequence can generate L − k + 1 fragments, and the association
between different sequences after k-mer division can be
preserved in these fragments. In WSCNNLSTM (17), instead
of using OneHot coding, k-mer features of sequences are
extracted. The association between sequences is still
maintained in k-mer after the gene sequence is divided into k-
mer. Therefore, WSCNNLSTM has better performance in TFBS
classification work. A new method is proposed in DNA2Vec that
can calculate the distribution representations of k-mer with
variable length (20), which apply to NLP to biological
sequence information.
FIGURE 1 | The architecture of DeepARC. In the embedding layer, OneHot and k-mer encoding are used to generate position-based feature embedding from DNA
sequences. Then convolution kernels are utilized to extract non-linear features. In the BiLSTM layer, we use a bidirectional long short-term memory network (BiLSTM)
to capture the contextual dependencies of DNA sequences. Next, we use the attention mechanism to enhance the model’s prediction performance, and finally, the
prediction results are obtained through the dense layer.
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3) In this paper, we present a gene position embeddingmethod,
which transforms gene sequence into a characteristic matrix, as
shown in Figure 2. It uses a combination of the OneHot encoding
method, the DNA2Vec method, and the convolutional module.
The workflow of this method is as follows: first, the input gene
sequence, S = (s1, s2,…, sl), is divided into L–k+1 sequence features
by k-mer cutting method, which is called Zmer = (z1,z2,…,zL–k+1).
Next, we use OneHot encoding on the mer to get the unique
location information called, as well as adopt DNA2Vec to get the
context feature called Zvec∈R(L−k+1)×d, where d is the dimension of
word embedding in the DNA2Vec. Because the feature dimension
obtained by DNA2Vec is too high, we try to decrease the word
embedding dimension to 4k by extracting features through a
convolution module. Finally, we linked the high-order
dependent features ZOH and Zvec to obtain DNA position
embeddings Zpe ∈ R(L−k+1)�(2�4k).

Convolutional Neural Network
The convolutional neural network (CNN) is a sort of feedforward
neural network with convolution calculation and depth architecture
(18). It is successfully used in image recognition, video analysis,
natural language processing, drug discovery, and other fields and
has achieved good results (22, 23). The working process of CNN is
usually to input image information; then pass a battery of
convolutional layers, non-linear layers, pooling layers, and
complete connection layers; and then get the final output result.
Among them, the convolutional layer mainly has the function of
feature extraction through the scan of the convolutional kernel,
while the pooling layer primarily plays the role of feature selection
Frontiers in Oncology | www.frontiersin.org 4
and information filtering. Therefore, CNN greatly reduces network
parameters and has translational invariant properties. In the field of
bioinformatics, CNN was initially applied to deal with DNA
sequence information in the DeepBind. After embedding the
DNA sequence in some manner, it is disposed of in the shape of
a graph in the network. CNN is able to extract multiple features
through scanning different convolution kernels so that it can handle
various downstream works.

Because of its strong feature extraction ability, CNN was used
to capture TFBS in this study. The embedded gene sequence Zpe
was input into the CNN model to get the extracted feature C. In
our experiment, there are two submodules in the CNN model,
and each submodule is composed of a convolution layer and a
non-linear activation layer. Among them, the convolutional layer
mainly plays the function of detecting TFBS to obtain features
similar to TF-motif. The parameters of the model are set as
follows: the size of the convolution kernel is 5, the padding is 2,
and the step size is 1. The purpose of such a setting is to make the
dimension of feature C to represent the constant length of the
sequence and to be able to learn the features of the whole DNA
sequence through BiLSTM. In order to prevent over-fitting of the
model, the ReLU function is used in the non-linear activation
layer. Finally, we extracted feature C through the CNN module.

Bidirectional Long Short-Term Memory
Networks
BiLSTM is a particular type of recurrent neural network (RNN),
which has parameter sharing, Turing-complete, and
memorability, so it has some advantages in learning non-linear
FIGURE 2 | DNA positional embedding for an original DNA sequence with 101-bps length and 3-mer split.
June 2022 | Volume 12 | Article 893520
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characteristics of sequences. Compared with RNN, BiLSTM can
handle the long-term dependency problem existing in RNN and
can realize the real context-based consideration, so it also has
higher accuracy (24). In terms of structure, based on the
traditional RNN model, LSTM also adds a gate structure of
forgetting gate, input gate, and output gate to control the
information passing through the model, through the gate
structure to control the input and output information flow, so
as to solve the problem of long-term dependence in RNN.
BiLSTM combines forward LSTM and backward LSTM for
accurate context analysis. The following is the operation
formula of the LSTM memory unit:

ft = s Wxf xt +Whf ht−1 + bf
� �

, (1)

it = s Wxixt +Whiht−1 + bið Þ, (2)

ct = ft o ̇ ct−1 + it o ̇ tanh   Wxcxt +Whcht−1 + bcð Þ, (3)

ot = s Wxoxt +Whoht−1 + boð Þ, (4)

ht = ot ȯ tanh(ct) (5)

where i, f, o, c, and h represent the input gate, forget gate cell
vector and hidden vector, respectively. W is the gate matrix,
and b is the bias. The index t refers to the time step s is the
logistic sigmond function tanh is the active function to force
the values to be between -1 and 1, and ȯ denotes element-
wise multiplication.

The DNA sequence is a series of letters used to represent the
actual or hypothetical primary structure of DNA molecules
carrying genetic information, which can be considered the
mystery of life’s sequence language to some extent. The LSTM
model has been introduced by DeeperBind (14) and DeepTF (25)
to analyze the long-term dependence of DNA sequences.
However, in this paper, we adopt BiLSTM to capture
associations between successive gene sequences. BiLSTM is
composed of forward propagating LSTM and backward
propagating LSTM and can analyze forward and backward
sequence information. Therefore, it has higher accuracy than
LSTM. The input of the BiLSTM model is the feature generated
by passing the convolution layer, and the output includes the
output feature P and the hidden state information hn. It is worth
noting that the sum output by the forward model and the
backward model of BiLSTM is the final output feature at the
ith position, and the formula is as follows:

hi = hi
!

⊕ h i
h i

(6)

Attention Mechanism
In essence, the attention mechanism in deep learning is
analogous to the selective visual attention mechanism in
mankind, and the major objective is to select more important
information for the current work goal from massive details. The
attention mechanism is a kind of resource allocation scheme,
Frontiers in Oncology | www.frontiersin.org 5
which is the principal method to deal with the trouble of
information overload, and it is very suitable in the case of
limited computing power. It allocates computing resources to
more critical work and improves the utilization of resources. The
self-attention mechanism has been used by BERT (26) to train
natural language and has also obtained excellent results in text
classification, machine translation, and other works. Attention
mechanism has been used in the field of deep learning far and
wide and achieved good results in named entity recognition,
machine translation, and other fields (8–10, 19). Therefore, a soft
attention mechanism was adopted in our experiment to focus
attention on the TFBS we were looking for. The feature P and the
hidden state hn after the BiLSTMmodule are used as the input of
the soft attention mechanism. The mer-level feature is merged
into a sentence-level feature vector to generate the attention-
weight vector (27). Finally, the DNA attention vector for the
classified prediction can be calculated. The formula is as follows:

M = tanh(H), (7)

a = softmax(wTM), (8)

g = HaT , (9)

h* = tanh(g ) (10)

where H∈Rdw×T, dw is the dimention of the word vectors, w is a
trained parameter vector, and wT is a transpose. The dimention
of w, a, and g is dw, T and dw, respectively.

Dense Module
The dense module constituted by two layers of a fully connected
neural network, one dropout layer core and one sigmoid
function, is the last module of the whole model. The full
connection layer mainly acts as a classifier to classify the input
into several categories. However, since the full connection layer
has too many parameters, we added a dropout layer to the back
of the full connection layer to prevent the over-fitting of the
model from improving the generalization ability of the model
(28). We take the binary cross-entropy loss calculated by the
prediction and the goal as the cost function of the model, and the
formula is as follows:

loss = −
1
N o

N

n=1
½yn log  xn + (1 − yn) log (1 − xn) � (11)

where xn is the prediction and yn is the goal.
RESULTS

DeepARC is an attention mechanism-based model for predicting
the presence or absence of TFBSs on gene sequences. In the
experiment, we randomly selected 50 datasets from ENCODE to
conduct model training. To demonstrate the advantages of the
model architecture and location embedding used in this article,
June 2022 | Volume 12 | Article 893520
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we also compare it to similar approaches that are currently
popular. So as to test the property of DeepARC, we will use the
three most advanced algorithms in this field to carry out
comparative experiments on the same dataset. In the following
content, we will analyze the experimental results in detail. First,
we introduce the evaluation indicators used in this experiment.
Second, the advantages of our model and the advantages of our
location-embedding approach are presented. Third, we mainly
introduce the performance comparison of our method with
existing excellent predictors. Finally, we explain the attention
mechanism used in the article.

Evaluation Measurements
Due to the characteristics of this experiment, we decided to select
five evaluation measurements—sensitivity (Sen), specificity
(Spe), accuracy (Acc), Mathew’s correlation coefficient (MCC),
and the area under the receiver operating characteristic curve
(AUC)—to evaluate the prediction ability of our model (29).
Their formula is as follows:

Sen = TP=(TP + FN) (12)

Spe = TN=(TN + FP) (13)

Acc = (TP + TN)=(TP + FP + TN + FN) (14)

MCC =
(TP · TN − FP · FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TN + FN)(TP + FN)(TN + FP)
p (15)

where TP, TN, FP, and FN are the number of true positives, true
negatives, false positives, and false negatives, respectively.

Performance Comparison With Other
Model Frameworks
In this experiment, we used the data encoded by OneHot as
input, adopted the Adam optimizer (30), and set the learning rate
to 0.001 and the step size to 20 to show the performance of the
model architecture. In addition, in order to reflect the excellence
of the model mechanism, we compare the performance
differences of CNN-BiLSTM, BiLSTM-Att, and DeepARC in
the same input set. CNN-BiLSTM represents a model whose
model architecture is CNN+BiLSTM, BiLSTM-ATT represents a
model whose architecture is BiLSTM+attention mechanism, and
CNN-BiLSTM-Att is the model architecture used by DeepARC.
The results of the three cross-validation tests are considered to be
the final model performance. Table 1 shows the final
performance comparison results for each model, and Table 2
describes the other detailed parameter settings.

As shown in Table 1, in the five datasets, our model (CNN-
BiLSTM-Att) generally has the best performance and always has
the highest score in Acc value, MCC value, and AUC value. First
of all, by comparing the performance of CNN-BiLSTM-Att and
BiLSTM-Att on the five datasets, it can be found that except for
the Spe, CNN-BiLSTM-Att has better performance on other
evaluation values, namely, Sen, Acc, and MCC were 5.43%,
1.36%, and 1.4% higher, as compared with BiLSTM-Att. It can
Frontiers in Oncology | www.frontiersin.org 6
be seen that CNN is used to find TFBS features and has a good
effect. Next, we compared CNN-BiLSTM-Att with CNN-
BiLSTM and found that CNN-BiLSTM-Att has Sen, Acc, and
MCC of 0.22%, 0.95%, and 1.26% higher than CNN-BiLSTM on
the 5 datasets. It can also be seen that the attention mechanism
enhances the weight of the model on motif to effectively promote
the performance of the model. Compared with other popular
model frameworks, our model architecture obviously has higher
performance and certain advantages. However, it can also be
seen from the table that our model has a poor performance in
SPE. The lower SPE may be due to the tendency of the model’s
predicted samples to be positive.

Performance Comparison Among
Positional Embedding and Other Methods
In this part, we primarily analyze the property of positional
embedding in the DNA embedding part. To more intuitively
observe the advantages and disadvantages of the performance,
we compare the positional embedding method with DNA2Vec
and OneHot. On the basis of the research (7), we set 3-mer to
implicitly capture the binding information, 3-mer splitting, and
one stride in the embedding. Consistency is maintained by using
the CNN-BiLSTM-Att in the previous section as the model for
the experiment. Moreover, the hyperparameters and prediction
methods of the three methods are consistent with the above
methods. Table 3 shows the experimental performance results.

As can be seen from Table 3, on the five datasets, our
positional embedding method obviously has the best
performance, always having the highest AUC value and MCC
value in the DNA embedding methods. This means that our
positional embedding method has significantly better
performance than the current popular embedding methods.
Beyond that, the OneHot method has better performance in
the model on many evaluation values, namely, Sen, Acc, and
MCC were 1.47%, 0.276%, and 0.6% higher than has DNA2Vec.
However, the best performance is positional embedding, which is
higher than the OneHot method in all the evaluation indexes of
the five datasets, 1.14%, 2.664%, 1.7%, 0.39%, and 0.16% in Sen,
Spe, Acc, MCC, and AUC, respectively.

In our opinion, the reason why the location embedding
method can achieve better results is that it combines the
advantages of OneHot encoding and DNA2Vec encoding. It
has a distributed representation of the content encoded by
DNA2Vec, as well as location information in the OneHot
encoding. Therefore, with a suitable model, the position
embedding method can show better performance.

Performance Comparison With Other
Existing Predictors
In this part, in order to analyze the performance of DeepARC, we
compare it with several other prediction methods (DeepTF,
DeepBind, and CNN-Zeng) on 50 randomly selected datasets.
The comparison results obtained are shown in Table 4. As can be
seen from the table, among the four methods, DeepARC has the
best performance in each evaluation measurement. In addition,
compared with DeepTF, which has the best performance among
June 2022 | Volume 12 | Article 893520
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the other competitive two methods, DeepARC has higher Sen,
Spe, Acc, and MCC evaluation indexes of 4.58%, 2.83%, 2.12%,
and 3.2%, respectively. The average AUC values of each method
Frontiers in Oncology | www.frontiersin.org 7
on five cell lines are shown in Figure 3. It can also be seen from
Figure 3 that DeepARC has the highest accuracy and is 1.8%
higher than the second-place method DeepTF.

According to the results, DeepARC has better predictive
performance on the dataset compared with other methods. By
analyzing the model architecture of DeepARC and several other
methods, we reasonably believe that the position embedding
method and model architecture of DeepARC, especially the use
of the attention mechanism, play a promoting role in the
experiment, thus improving the prediction performance of
the model.
Attention Mechanism Brings Interpretation
CNN is one of the representative deep learning algorithms that
are widely used at present, and it has a robust feature learning
ability. But because of the high complexity of its architecture, it is
often difficult to understand and explain the decisions that these
networks make (31–34). Therefore, a layer of attention
TABLE 1 | Performance comparison of CNN-BiLSTM, BiLSTM-Attention, and CNN-BiLSTM-Att with OneHot embedding.

Dataset Model Sen (%) Spe (%) Acc (%) MCC AUC

CNN-BiLSTM-Att 80.66 83.66 82.16 0.644 0.901
A549 CNN-BiLSTM 79.42 82.61 81.01 0.625 0.896

BiLSTM-Att 74.13 86.96 80.55 0.616 0.887
CNN-BiLSTM-Att 81.05 83.02 82.04 0.641 0.902

GM12878 CNN-BiLSTM 75.63 86.51 81.07 0.625 0.891
BiLSTM-Att 73.90 85.58 79.74 0.600 0.880
CNN-BiLSTM-Att 79.95 74.32 77.13 0.545 0.860

Hela CNN-BiLSTM 80.17 73.81 76.99 0.543 0.858
BiLSTM-Att 76.32 75.94 76.13 0.524 0.845
CNN-BiLSTM-Att 81.47 84.50 82.98 0.660 0.908

Hep-G2 CNN-BiLSTM 85.87 77.99 81.93 0.641 0.906
BiLSTM-Att 76.78 86.18 81.48 0.634 0.897
CNN-BiLSTM-Att 81.26 82.13 82.72 0.636 0.891

H1-hESC CNN-BiLSTM 82.19 81.31 81.25 0.629 0.883
BiLSTM-Att 76.11 81.52 82.32 0.612 0.876
June 2022 |
 Volume 12 | Article 8
CNN, convolutional neural network; BiLSTM, bidirectional long short-term memory network; Sen, sensitivity; Spe, specificity; Acc, accuracy; MCC, Mathew’s correlation coefficient; AUC,
area under the receiver operating characteristic curve.
The bold section indicates the best performing indicators in each dataset.
TABLE 2 | Parameters setting of different models.

CNN CNN -

Parameter BiLSTM BiLSTM BiLSTM
Att – Att

Learning rate 0.001 0.001 0.001
Epochs 20 20 20
Batch size 64 64 64
CNN layers 2 2 –

Kernel size 5 5 –

BiLSTM hidden size 16 16 32
Attention vec size 16 – 32
Dense neurons 16 32 32
Dropout 0.2 0.2 0.2
Optimizer Adam Adam Adam
CNN, convolutional neural network; BiLSTM, bidirectional long short-term memory network.
TABLE 3 | Performance comparison of OneHot, DNA2Vec, and positional embedding.

Dataset Model Sen (%) Spe (%) Acc (%) MCC AUC

Positional embedding 83.17 83.74 83.46 0.671 0.909
A549 DNA2Vec 77.58 85.64 81.61 0.635 0.896

OneHot 80.66 83.66 82.16 0.644 0.901
Positional embedding 81.31 83.48 82.40 0.650 0.905

GM12878 DNA2Vec 80.81 81.25 81.03 0.623 0.895
OneHot 81.05 83.02 82.04 0.641 0.902
Positional embedding 80.36 84.64 82.50 0.652 0.906

Hela DNA2Vec 77.53 75.48 76.51 0.534 0.853
OneHot 79.95 74.32 77.13 0.545 0.860
Positional embedding 82.25 86.51 84.38 0.690 0.919

Hep-G2 DNA2Vec 80.91 85.14 83.25 0.661 0.908
OneHot 81.47 84.50 82.98 0.660 0.908
Positional embedding 83.00 82.58 82.79 0.658 0.905

H1-hESC DNA2Vec 80.19 81.31 83.25 0.639 0.896
OneHot 81.26 82.13 82.72 0.636 0.891
Sen, sensitivity; Spe, specificity; Acc, accuracy; MCC, Mathew’s correlation coefficient; AUC, area under the receiver operating characteristic curve.
The bold section indicates the best performing indicators in each dataset.
93520

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cao et al. DeepARC
mechanism was added in DeepARC to enhance the weight of
attention on the motif. In addition, we also visually display the
average weights of different datasets in the model to strengthen
the interpretability of the model (Figures 4, 5).
Frontiers in Oncology | www.frontiersin.org 8
As can be seen from Figure 4, attention is a major
concentration in the intermediate region. In other words, the
model determines whether there is a TFBS in the input gene
information mainly by sensing the peak value of the gene
TABLE 4 | Performance comparison of DeepARC and three existing predictors.

Model Sen (%) Spe (%) Acc (%) MCC

DeepARC 82.02 84.19 83.10 0.664
DeepTF 77.44 81.36 80.98 0.632
CNN-Zeng 72.12 81.96 79.92 0.619
DeepBind 72.64 81.44 79.82 0.609
June 2022 | Volume 12 | Article 8
Sen, sensitivity; Spe, specificity; Acc, accuracy; MCC, Mathew’s correlation coefficient.
The bold part indicates the index with the best performance.
FIGURE 3 | Performance of DeepARC and three existing predictors in ROC-AUC. ROC, receiver operating characteristic; AUC, area under the ROC curve.
FIGURE 4 | Heatmap of H1-hESC.
FIGURE 5 | Heatmap of A5493.
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sequence. The theory of peeling existing binding site sequences
from the peak is consistent with this. However, there are two
attention peaks shown in Figure 5, indicating that the model
recognizes the presence of two TFBSs in the sequence.
CONCLUSIONS

In this work, we describe a novel attention-based network model
named DeepARC to predict TFBSs. Driven by its beneficial
strength of combining DNA2Vec and OneHot encoding,
DeepARC could embed the gene information into a distributed
positional representation and then predict the output using
attention-based CNN-BiLSTM network architecture. The
comparative work shows that DeepARC is superior to the existing
state-of-the-art methods. To demonstrate the interpretability of
DeepARC, we visualized the attention weights and found that
the attention weight was concentrated in the peak region of the
ChIP-seq. Although our method achieves good results, there is
still room for improvement. DeepARC only uses DNA sequence
information for feature embedding. Evolution information,
physical–chemical properties, and embedding from language
models can be integrated to improve performance in the future.
On the other hand, the attention mechanism can be optimized to
mark the accurate TFBS fragments directly.
Frontiers in Oncology | www.frontiersin.org 9
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