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Summary

BNT162b2 and mRNA‐1273 are two types of mRNA‐based vaccine platforms that

have received emergency use authorization. The emergence of novel severe acute

respiratory syndrome (SARS‐CoV‐2) variants has raised concerns of reduced

sensitivity to neutralization by their elicited antibodies. We aimed to systematically

review the most recent in vitro studies evaluating the effectiveness of BNT162b2

and mRNA‐1273 induced neutralizing antibodies against SARS‐CoV‐2 variants of

concern. We searched PubMed, Scopus, and Web of Science in addition to bioRxiv

and medRxiv with terms including ‘SARS‐CoV‐2’, ‘BNT162b2’, ‘mRNA‐1273’, and
‘neutralizing antibody’ up to June 29, 2021. A modified version of the Consolidated

Standards of Reporting Trials (CONSORT) checklist was used for assessing included

study quality. A total 36 in vitro studies meeting the eligibility criteria were included

in this systematic review. B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2

(Delta) are four SARS‐CoV‐2 variants that have recently been identified as variants

of concern. Included studies implemented different methods regarding pseudovirus

or live virus neutralization assays for measuring neutralization titres against utilized
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viruses. After two dose vaccination by BNT162b2 or mRNA‐1273, the B.1.351

variant had the least sensitivity to neutralizing antibodies, while B.1.1.7 variant had

the most sensitivity; that is, it was better neutralized relative to the comparator

strain. P.1 and B.1.617.2 variants had an intermediate level of impaired naturali-

zation activity of antibodies elicited by prior vaccination. Our review suggests that

immune sera derived from vaccinated individuals might show reduced protection of

individuals immunized with mRNA vaccines against more recent SARS‐CoV‐2 var-

iants of concern.

K E YWORD S

BNT162b2, mRNA‐1273, neutralizing antibody, SARS‐CoV‐2, variants of concern

1 | INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2),
caused the global pandemic of coronavirus disease 2019 (COVID‐19),
which infected more than 181 million and killed 3.9 million people

across the world as of June 29, 2021.1 Since the emergence of

COVID‐19, several drastic public health measures such as draconian

lockdowns have been imposed to contain the virus spread and end

the pandemic. Understandably, substantial focus has been given to

the rapid manufacture and distribution of vaccines that would enable

herd immunity for some countries as early as the second half of 2021.

This is exemplified by early authorization for emergency use of

Pfizer‐BioNtech (BNT162b2)2 and Moderna (mRNA‐1273)3 vaccines,
knowing to be the first mRNA based platform vaccines rolled out on a

global scale.

SARS‐CoV‐2 is a positive‐stranded RNA virus. The spike protein

of the virus consists of two fragments: The spike 1 (S1) subunit,

consisting of N‐terminal domain (NTD) and receptor binding domain

(RBD), is responsible for viral attachment to the host cell through

angiotensin‐converting enzyme 2 (ACE2), whereas the spike 2 (S2)

subunit completes membrane fusion.4 Because the spike protein is an

important mechanism of viral cell entry, it has been a potential target

for vaccine development.5

Due to the great numbers of viral genome replications that occur

in infected individuals and the error‐prone nature of RNA dependent

RNA polymerase,6 progressive accrual mutations do and will

continue to occur. Despite ineffectiveness of most mutations to viral

fitness, a few may provide beneficial features that could give the

virus an opportunity to transmit more efficiently and evade host

immune response.7 As a result, efficient mutations could be the

subject of natural selection and lead to emergence of novel SARS‐
CoV‐2 variants that are able to expand rapidly across countries

and overcome public health efforts to restrict the infection. However,

as vaccines currently in circulation have been designed based on the

spike sequence of the ancestral SARS‐CoV‐2 strain, outbreaks of

novel variants could be a potential threat for compromising immu-

nogenicity of these vaccines.8–10

In recent months, several mutations have appeared in the spike

protein, leading to identification of novel variants with several

substitutions or deletions in the spike protein. The variants, which

have potential to increase transmissibility, virulence, or evade avail-

able diagnostics, vaccines, and therapeutics, have been denoted as

variants of concern. According to the World Health Organization

(WHO), these variants which named Alpha (Lineage B.1.1.7), Beta

(Lineage B.1.351), Gamma (Lineage P.1), and Delta (Lineage B.1.617.2)

were first emerged in the United Kingdom, South Africa, Brazil, and

India, respectively, where they have rapidly become dominant and are

currently spreading across the globe (Figure S1 and S2).11

Serum neutralization activity is a common predictor of protec-

tion against SARS‐CoV‐2 following natural infection or vaccina-

tion.12,13 Due to variations observed in the spike genome, effective

protection from SARS‐CoV‐2 infection requires a sufficient breadth

of neutralizing antibodies rather than potency alone.14 Preliminary

studies have shown that mutant viruses increase the affinity of

binding to host cell receptors and diminish the susceptibility of

neutralization by pre‐existing antibodies raised through either prior

infection or vaccination.15–18

In the present study, effectiveness of neutralizing antibodies

elicited by two doses of mRNA based vaccine platforms, including

BNT162b2 and mRNA‐1273, was systematically evaluated according

to variants of concern using data from in vitro studies.

2 | METHODS

The guideline of Preferred Reporting Items for Systematic reviews

and Meta‐Analyses (PRISMA) statement was followed for review

reporting.19 As the evaluationwas on in vitro studies, the pre‐specified
protocol could not be published on the International Prospective

Register of Systematic Reviews (PROSPERO). However, the protocol

was pre‐specified and no alterations to the proposed evaluation

methods (including design and outcomes) occurred literature retrieval.

2.1 | Search strategy

Three online databases (PubMed, Scopus and Web of Science) and

two preprint servers (bioRxiv and medRxiv) were screened for
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relevant records up to June 29, 2021. Search terms included ‘SARS‐
CoV‐2’, ‘COVID‐19’, ‘B.1.1.7’, ‘B.1.351’, ‘P.1’, ‘B.1.617.2’, ‘BNT162b2’,
‘mRNA‐1273’, and ‘neutralizing antibody’. No search filters were

applied to any fields, including study type, publication date, or lan-

guage. Details on the search strategy for each database are repre-

sented in Table S1. Several journals were screened directly from the

associated portal, including the New England Journal of Medicine,

Science, Nature, and Cell journals, while grey literature included

manual screening of results from the first 100 pages of the Google

Scholar search engine as well as forward and backward citation

searching of reference lists from included studies to find further

eligible publications.

2.2 | Study selection

Search results were exported to EndNote X8.0 (Clarivate Analytics,

Philadelphia, PA, USA) reference manager software. Following

removal of duplicates, titles and abstracts from remaining articles

were screened against inclusion and exclusion criteria by two inde-

pendent review authors. Studies requiring full‐text review were

again screened by two independent review authors, with discrep-

ancies resolved through consensus, and where required a third

author as arbiter. We contacted the corresponding authors for

retrieving full‐text of articles that we could not access to their full‐
texts.

Studies meeting the following criteria were included: (1) In vitro

studies comparing 50% neutralization titre against SARS‐CoV‐2
variants of concern and a reference strain for samples obtained

from vaccine recipients, (2) Studies reporting fold change of

neutralization titre or displayed it in high resolution images,

(3) Studies recruiting samples from individuals who received two

doses of 30 μg BNT162b2 vaccine or 100 μg mRNA‐1273 vaccine,

(4) Studies utilizing viruses with at least one set of mutations as re-

ported by WHO for each variant of concern,20 and (5) Studies

reporting the exact mutation in the spike protein of utilized viruses

or reporting the strain name and Global Influenza Surveillance and

Response System (GISAID; https://www.gisaid.org/hcov19‐mutation‐
dashboard/)‐ID. Exclusion criteria were as follows: (1) Samples were

collected from convalescent individuals who were not vaccinated,

(2) The vaccine type was not clearly determined, (3) Recruited in-

dividuals received only one dose of vaccine, (4) Studies were con-

ducted on samples from vaccinated mice or non‐human primates,

(5) Neutralization titre was measured for viruses with only a specific

subset of mutations, and (6) Study types other than in vitro (e.g.,

clinical trials, animal studies, and systematic reviews).

2.3 | Data extraction

Two independent reviewers extracted the following characteristics

from identified studies using standardized templates: first author's

name, title, publication date, country of origin, sample size, gender

and age of vaccine recipients, type of vaccine, history of previous

SARS‐CoV‐2 infection, and days passed from the second vaccine

dose that samples were obtained. Variant of concern type and its

spike protein mutation profiles, type of reference virus, stain name or

GISAID‐ID for variants and reference viruses were also extracted.

Where the mutation profile of spike protein was not reported, an

additional source, that is the GISAID webpage were was searched.21

Laboratory methods, including type of neutralization assay and

source of the utilized viruses, fold changes in 50% neutralization titre,

and relevant p‐values were also recorded. If fold changes were not

reported, neutralization titres were digitized from figures in papers

with a digital extraction tool.22 Disagreements between review au-

thors were resolved by discussion and consensus, or where required

consultation with a third reviewer.

2.4 | Risk of bias assessment

Given that no established guidelines currently exist for quality

assessment of in vitro studies, two independent review authors used

a modified version of the Consolidated Standards of Reporting Trials

(CONSORT) tool, which was developed to appraise the quality of

studies in dentistry.23 Discrepancies were resolved through discus-

sion and consultation with a third reviewer. The checklist contains 15

items enabling assessment of methodological quality for included

studies, taking into account evidence presented in the abstract,

introduction, methods, results, discussion, and other information

sections. Each item is answered as a Yes (1 point) or a No (0 point)

based on reporting the relevant information. Therefore, a maximum

of 15 points and a minimum of 0 point could be assigned to each

study for evaluating quality.

2.5 | Data synthesis

Data analysis was performed using qualitative methodology with

narrative synthesis. Included studies were categorized based on the

variant of interest and type of vaccine. Tables summarizing

outcome measures and related findings from each type of vaccine

were made. Meta‐analysis was not possible due to substantial dif-

ferences across investigation methods, which was a pre‐specified
decision, therefore, no test for assessment of publication bias was

performed.

3 | RESULTS

The systematic search identified 782 records of which 120 were

duplicates and excluded. Following title and abstract screening of

the remaining 662 records, 69 full text publications were screened

for eligibility. Eighteen studies evaluated the effects of single

mutations,24–41 six studies evaluated the effects of other variants

which were not variants of concern,42–47 three were review
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articles,48–50 two studies were re‐analysis of previously published

articles,51,52 two studies did not differentiate type of vaccines,53,54

two studies were conducted on animal subjects,55,56 and one did not

mention the exact mutations of viruses.57 Finally, 36 publications

met the inclusion criteria and were included in this systematic

review (Figure 1).

3.1 | Study characteristics

3.1.1 | B.1.1.7 variant

BNT162b2 vaccine

Twenty‐two studies15,16,58–77 with a total of 968 samples evaluated

the effect of B.1.1.7 variant on antibody neutralization activity elicited

by BNT162b2 vaccine. Samples were obtained at least seven days and

up to 91 days after the second dose of vaccine. The reference strain

was a virus with D614G mutation in 10 studies,60–62,66–68,70,72,73,77 a

viruswith no functionalmutation in11 studies,15,16,58,59,63–65,69,71,74,75

and both types of viruses were used as comparator strains in one

study.76 Fourteen studies utilized live virus neutralization as-

says,15,16,58,59,61,63,64,66,68,70,72,73,75,77 seven used pseudovirus

neutralization assays,60,62,65,67,69,71,74 and one used both types of as-

says.76 Fifty percent neutralization titre was decreased as little a s2.6

fold or increased up to 3.8 fold in studies utilizing live virus neutrali-

zation assays, and decreased as little as 6.7 fold or increased up to 1.69

fold in studies utilizing pseudovirus neutralization assays, as compared

with reference strain (Table 1).

mRNA‐1273 vaccine
Eight studies18,65,69,76,78–81 with a total of 295 samples evaluated the

effect of B.1.1.7 variant on antibody neutralization activity elicited by

mRNA‐1273 vaccine. Samples were obtained at least seven days and

up to 180 days after second dose of vaccine. The reference strain was

a virus with D614G mutation in four studies,18,78,79,81 a virus with no

functional mutation in three studies,65,69,80 and both types of viruses

were used as a comparator strain in one study.76 Two studies utilized

live virus neutralization assays,79,80 while four used pseudovirus

neutralization assays,18,65,69,81 and two used both type of assays.76,78

Fifty percent neutralization titre was decreased as little as 1.77 fold

or increased up to 1.6 fold in studies utilizing live virus neutralization

assays and it was decreased as little as 3.1 fold in studies utilizing

pseudovirus neutralization assays, as compared with reference strain

(Table 1).

F I GUR E 1 Study selection process
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3.1.2 | B.1.351 variant

BNT162b2 vaccine

Twenty‐one studies15,58–61,63–70,72,73,75–77,82–84 with a total of 891

samples evaluated the effect of B.1.351 variant on antibody

neutralization activity elicited by the BNT162b2 vaccine. Samples

were obtained at least seven days and up to 91 days after second

dose of vaccine. The reference strain was a virus with D614G mu-

tation in 12 studies,60,61,66–68,70,72,73,77,82–84 a virus with no func-

tional mutation in eight studies,15,58,59,63–65,69,75 and both types of

viruses were used as a comparator strain in one study.76 Fourteen

studies utilized live virus neutralization as-

says,15,58,59,61,63,64,66,68,70,72,73,75,77,82 while six used pseudovirus

neutralization assays,60,65,67,69,83,84 and one used both types of as-

says.76 Fifty percent neutralization titre was decreased up to 22.83

fold in studies utilizing live virus neutralization assays and up to 41.2

fold in studies utilizing pseudovirus neutralization assays, as

compared with reference strains (Table 2).

mRNA‐1273 vaccine
Seven studies17,18,65,69,76,78,85 with a total of 310 samples evaluated

the effect of the B.1.351 variant on antibody neutralization activity

elicited by the mRNA‐1273 vaccine. Samples were obtained at least

seven days and up to 180 days after second dose of vaccine. The

reference strain was a virus with D614G mutation in four

studies,17,18,78,85 a virus with no functional mutation in two

studies,65,69 and both types of viruses were used as comparator

strains in one study.76 One study utilized live virus neutralization

assays,85 while four used pseudovirus neutralization assays,17,18,65,69

and two used both types of assays.76,78 Fifty percent neutralization

titre was decreased up to 12.4 fold in studies utilizing live virus

neutralization assays and up to 27.7 fold in studies utilizing pseu-

dovirus neutralization assays, as compared with reference strains

(Table 2).

3.1.3 | P.1 variant

BNT162b2 vaccine

Nine studies15,58,60,61,63,65,67,77,86 with 272 samples evaluated the

effect of the P.1 variant on antibody neutralization activity elicited

by the BNT162b2 vaccine. Samples were obtained at least seven

days and up to 32 days after the second dose of vaccine. The

reference strain was a virus with D614G mutation in four

studies,60,61,67,77 a virus with no functional mutation in four

studies,15,58,63,65 and both types of viruses were used as comparator

strains in one study.86 Five studies utilized live virus neutralization

assays,15,58,61,63,77 while three used pseudovirus neutralization as-

says,60,65,67 and one used both types of assays.86 Fifty percent

neutralization titre was decreased up to 2.99 fold in studies utilizing

live virus neutralization assays and it up to 6.7 fold in studies uti-

lizing pseudovirus neutralization assays, as compared with reference

strain (Table 3).

mRNA‐1273 vaccine
Four studies18,65,78,86 with 115 samples evaluated the effect of P.1

variant on antibody neutralization activity elicited by mRNA‐1273
vaccine. Samples were obtained at least seven days and up to 180

days after second dose of vaccine. The reference strain was a virus

with D614G mutation in one study,18 a virus with no functional

mutation in one study,65 and both types of viruses were used as

comparator strains in two studies.78,86 Three studies utilized pseu-

dovirus neutralization assays,18,65,78 while one used both types of

assays.86 Fifty percent neutralization titre was decreased to 4.8 fold

in a study utilizing live virus neutralization assays and up to 4.5 fold in

studies utilizing pseudovirus neutralization assays, as compared with

reference strain (Table 3).

3.1.4 | B.1.617.2 variant

Five studies73,75,87–89 with 275 samples evaluated the effect of the

B.1.617.2 variant on antibody neutralization activity elicited by

BNT162b2 vaccine. Samples were obtained at least seven days and

up to 91 days after the second dose of vaccine. The reference strain

was a virus with D614G mutation in two studies73,89 and a virus with

no functional mutation in three studies.75,87,88 All of the included

studies utilized live virus neutralization assays except one study that

used both pseudovirus and live virus assays.89 Fifty percent

neutralization titre was decreased up to 8.4 fold as compared with

the reference strain (Table 4). No investigation assessed the effect of

B.1.617.2 variant on neutralization activity of antibodies elicited by

the mRNA‐1273 vaccine.

3.2 | Quality assessment

Quality of included studies ranged from 4 to 9, using the modified

version of the CONSORT checklist (Table S2). The average score

was 7.8 points, reflecting 52% of the possible total score of 15.

Potential sources of bias were primarily attributed to issues con-

cerning sample size estimation and randomization methods,

including sequence generation, allocation concealment mechanism,

implementation, and blinding. In addition, a registered pre‐specified
protocol was not provided for any of the included studies.

Furthermore, limitations were discussed in only half of the eligible

studies. Figure 2 illustrates a summary of the modified CONSORT

checklist per item.

4 | DISCUSSION

This systematic review found that the B.1.351 variant had the most

reduced sensitivity against antibody neutralization induced by

vaccination with BNT162b2 or mRNA‐1273, while the B.1.1.7

variant had the least, and P.1 and B.1.617.2 variants had an in-

termediate phenotype, using either live virus or pseudovirus
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neutralization assays. In line with a recent review, the emergence

of ongoing SARS‐CoV‐2 variants may potentially compromise cur-

rent monoclonal antibodies and vaccine effectiveness.90 These

findings are of great importance since the immune escape of SARS‐
CoV‐2 variants could confer an unpredictable threat to the whole

world vaccination program, which could increase the risk of

infection with mutant viruses, particularly later post decline of

antibody titres.

4.1 | RBD mutations as potential threat against
vaccine efficacy

Vaccination is a key component of a long lasting strategy to bring the

COVID‐19 pandemic under control. Pfizer‐BioNTech and Moderna

vaccines are two lipid nanoparticled‐mRNA encoding perfusion sta-

bilized forms of the full‐length SARS‐CoV‐2 spike protein, with more

than 94% efficacy at preventing disease.13,91 How previously vacci-

nated individuals with either BNT162b2 or mRNA‐1273 have

responded to novel SARS‐CoV‐2 variants has been the subject of

intense scrutiny over recent months. All of the variants of concern

have mutations in the RBD region, which is the main target for

neutralizing antibodies,92,93 resulting in ineffectiveness of immune

protection provided by natural infection or vaccination. Given that

the RBD has functional plasticity,93,94 ongoing mutations in this re-

gion would be feasible as the pandemic continues to evolve poten-

tially compromising efficacy of current vaccines. The impact of

changes in neutralization titres is challenging to predict, since it re-

mains difficult to estimate precisely to what extent the reduction in

neutralizing antibodies will affect vaccine efficacy leading to increase

the risk of breakthrough infections or higher COVID‐19 severity in

vaccinated populations.

4.2 | Mutations in variants of concern that are
responsible for escaping from neutralizing antibodies

Mutations that occur in the RBD region of spike protein are of the

greatest concern due to their potential to promote escape from the

vaccine induced neutralizing antibody response, which predomi-

nantly targets this region. N501Y substitution is shared among the

RBD region of B.1.1.7, B.1.351, and P.1 spike genome. Although this

mutation has been suggested to enhance the ACE2 binding affinity,95

it has no pronounced effect on neutralizing activity of sera from

vaccinated individuals.31,39,76,79,96,97 While both B.1.351 and P.1 have

mutations at 417 residue, studies have reported that this mutation

has no potential impact on reduced sensitivity to neutralizing anti-

bodies.36,61 It appears that E484K substitution in B.1.351 and P.1

variants likely plays a crucial role in reducing the susceptibility of

being neutralized by sera from vaccinated individuals. The E484

residue importantly is critical for binding of highly potent neutralizing

antibodies.98 This significant effect on serum neutralization can be

elucidated by the dominance of RBD neutralizing antibodies,

corroborated by studies indicating reduced neutralization titres

mediated by the E484K mutation alone.27,36,39,41,76,97,99,100 In addi-

tion, the original B.1.1.7 variant did not have E484K substitution in

RBD, but there have been some reports that it recently poses

E484101 and it vitro studies have shown that while B.1.1.7 has min-

imal impact on serum neutralization, B.1.1.7 mutations along-

side E484K could significantly reduce efficacy of neutralizing

antibodies.18,62 Therefore, E484K mutation located in the RBD would

become a serious threat to the protection efficacy of mRNA‐based
SARS‐CoV‐2 vaccines.

It is worth noting that the RBD of spike has the major impact on

responding to neutralizing antibodies, however, despite the same

encoded mutations in RBD of P.1 and B.1.351 (E484K, K417N/T and

F I GUR E 2 Percentage of modified
Consolidated Standards of Reporting Trials

(CONSORT) scores for included studies per
item
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N501Y), neutralization of the P.1 variant is not compromised as

severely as neutralization of B.1.351 when using vaccine sera

immunized by earlier SARS‐CoV‐2 variants. This could be presumably

justified by other distinct sets of mutations or deletions, particularly

those introduced in NTD of viral spike.102–104

Despite the great number of investigations on the efficacy of

current vaccines for B.1.1.7, B.1.351, and P.1 variants, there is a lack

of studies for the B.1.617.2 variant, which has recently been identi-

fied as variant of concern by WHO. B.1.617.2 harbours two muta-

tions at 452 and 478 residues. In vitro experiments have

demonstrated that L452R could compromise the neutralization

titres,105,106 while there were no studies evaluating the impact of the

T478K mutation.

4.3 | An urgent need for standardization of
methodology of in vitro studies

In recent decades, several high throughput methods have been

developed for quantification of neutralizing antibodies and the

COVID‐19 pandemic has provided a beneficial opportunity for

expediting research on upgrading neutralization assays.107 It is

noteworthy that included studies in this present review used

different methods, including pseudovirus assays or live virus assays

for testing neutralization activity of antibodies, that make compara-

bility and therefore reliability of results challenging. Using authentic

viruses or pseudovirus particles may have different impacts on

neutralization due to the additional mutations outside of the spike

region or differences in the density of spike protein per virion, which

may alter sensitivity to neutralizing antibodies. However, recent

studies have reported a high degree of concordance between pseu-

dovirus and live virus neutralization assays, evaluating antibody

response to SARS‐CoV‐2.108–111 Furthermore, D614G mutation is

one of the earliest substitutions that emerged and rapidly became

globally dominant. Thereafter, in vitro studies aiming to make a

comparison on neutralization activity of sera between an emerging

variant and a reference strain utilized either virus bearing the D614G

mutation or Wuhan strain with no functional mutations as compar-

ator strain. It has been revealed that viruses with mutation in 614

residue may be neutralized better than the Wuhan strain by sera

from vaccinated individuals.18,37,112 Consequently, the reduction fold

of neutralization titres against a certain variant may be potentially

dependent on the comparator strain. Taken together, despite the

questionable scientific relevance of distinct methods, there is an ur-

gent need for standardization of neutralization assays and methods

that in vitro studies utilize for comparing vaccine elicited immune

effectors between different viruses to avoid diverse interpretations

of final results.

Moreover, the status of individuals who received vaccines for

previous SARS‐CoV‐2 infection was not clear in several included

studies, which may impact the potency of antibodies to

neutralize emerging variants. It has been demonstrated that sera

from individuals who had recovered from SARS‐CoV‐2 infection

prior to vaccination could not only neutralize B.1.351 more

effectively than those who had been SARS‐CoV‐2 naïve, but

there were also no significant reductions in neutralization titres

against B.1.351 as compared to wild type strain after two dose

vaccination.53

4.4 | Cellular immunity as another predictor of
protection against novel variants

While the effect of humoural immunity on protection against mutant

viruses for mRNA vaccine platforms has been extensively investi-

gated, there is a need to study how the cellular immunity could

contribute to protecting vaccinated individuals against novel vari-

ants. However, recent studies have suggested that T cell responses

raised to early SARS‐CoV‐2 strains might be minimally impacted by

emerging variants.66,113,114

4.5 | Real‐world effectiveness of mRNA vaccines
over the expansion of variants of concern

During the second and third wave of SARS‐COV‐2 infection in Qatar,

the B.1.1.7 and B.1.351 variants became dominant and nearly all of

the infected cases were caused by these two variants. At the same

time period, several individuals have been vaccinated with at least

one dose of BNT162b2. Comparing the infection rate between

vaccinated and unvaccinated individuals, two dose vaccination was

effective at 89.5% and 75.0% in reducing the risk of infection by

B.1.1.7 and B.1.351, respectively. Interestingly, the vaccine reaches

100% effectiveness in preventing severe, critical, or fatal disease for

both variants.115 Another study evaluating the effectiveness of

BNT162b2 vaccine against B.1.617.2 variant reported that while two

dose vaccination was effective at 93.4% in preventing B.1.1.7

infection, it reduces minimally to 87.9% against B.1.617.2 variant.116

Therefore, confirming the results of in vitro investigation, the

B.1.351 would be responsible for greatest rate of breakthrough

infections.

4.6 | Potent neutralization of variants of concern by
single dose vaccination in convalescent individuals

For previously SARS‐CoV‐2 infected cases, a single dose of vaccines

may act as booster dose following natural infection. Indeed, single

dose vaccination post infection achieves similar levels of neutralizing

antibodies to two doses in naïve vaccinated cases and second dose

vaccination following the first dose in previously infected individuals

offers no additional enhancement.117–120 It has been reported that

SARS‐CoV‐2 naïve immune cases were not capable of making

detectable neutralizing antibody response against B.1.1.7 and
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B.1.351 variants after single dose vaccination. In contrast, vaccinated

post infection individuals showed a strong neutralizing antibody

response against B.1.1.7 and B.1.351 variants after single dose

vaccination.53,54,121 Consequently, the robust boosting of neutral-

izing antibodies in these subjects after one dose may have implica-

tions in settings where supply is limited.

4.7 | Development of next generation vaccines with
spike sequence of emerging variants

Given the ongoing emergence of SARS‐CoV‐2 variants, designing

next generation vaccines as booster doses with diverse mutated

spike sequences appears to be the only countermeasure strategy

for combating the pandemic. Indeed, multiple vaccine companies

have announced that they already initiated working on reformu-

lating current vaccines with variants of concern. In this regard,

Moderna has recently started the evaluation of booster dose con-

taining the B.1.351 spike sequence in a phase 1 clinical trial.122

However, efficacy of reformulated vaccines incorporating new viral

strains may be challenging for individuals with pre‐existing immu-

nity to ancestral strains. Whether the modified areas in spike pro-

tein will be capable of eliciting the unique antibody response, rather

than boosting memory response against early strains is yet to be

determined.123 Therefore, intensive studies are needed to examine

efficacy of booster doses for novel SARS‐CoV‐2 variants. Further-

more, based on our review, B.1.351 is the variant of greatest

concern since it results in the largest reduction in neutralization

titres, thus, despite the individuals who have already been vacci-

nated against SARS‐CoV‐2 globally, new variants such as B.1.351

may lead to a significant reinfection risk and it would be reasonable

that developing booster vaccines constructs to B.1.351 should be

prioritized.

4.8 | Overview and future outlook

The emergence of variants of concern highlights the beginning of

viral antigenic drift, which may be going in a direction that eventually

leads to escape from our current prophylactic interventions against

the spike protein. It is therefore imperative to closely monitor the

emergence of novel SARS‐CoV‐2 variants and functional impacts that

their mutations may have on vaccine efficacy. While viral sequence

surveillance for detecting novel mutations in the SARS‐CoV‐2
genome has been established in several countries, global coverage

is still insufficient. Consequently, suppression of viral replication by

multiplying mitigation measures and expediting vaccine deployment

is critical in reducing the risk of a new generation of SARS‐CoV‐2
variants. Finally, worldwide research on development of a general

SARS‐CoV‐2 vaccine and challenges that mutations pose on vaccine

program development, would offer a unique period in human history

that can be studied and used to outline strategies for future infec-

tious disease outbreaks.

5 | LIMITATIONS

Our study relies on in vitro investigations, therefore, reduction in

neutralization titres of antibodies against novel variants may not be

generalizable to in vivo environments. In addition, the time period for

collecting specimens following the second vaccination dose ranged

from a few days to one month across studies, therefore, it is possible

that antibody titres would have decreased over time to levels no

longer able to provide adequate protection against mutant viruses.

For instance, it was shown that almost half of vaccinated individuals

with mRNA‐1273 were unable to neutralize the B.1.351 variant after

three months.78 Thus, long‐term evaluation of neutralizing antibody

titres in vaccinated individuals is required to assess durability of

protection against emerging SARS‐CoV‐2 variants. Although serum

neutralizing antibody titre is a potent predictor of protection, mRNA

vaccines could also elicit other immune effectors such as CD4+ and

CD8+ T cells, complement deposition, and non‐neutralizing anti-

bodies124 that induce antibody‐dependent cytotoxicity. As a result,

mechanisms other than neutralization by antibodies could confer

further substantial vaccine‐mediated protection necessitating the

need for further investigations. Considering the methodology of

present systematic review, we cannot rule out the probability of

missing some studies that our searching process might have failed to

find. Additionally, there is no approved guideline for apprising the

quality of in vitro studies, so we used the modified version of

CONSORT checklist that have not been evaluated for its measure-

ment properties. Finally, there is potential for publication and

reporting bias, which has not been quantified as part of this review.

Despite these limitations, to the best of our knowledge, this is the

first article systematically reviewing the effectiveness of current

mRNA vaccines against novel SARS‐CoV‐2 variants by eliciting

neutralizing antibodies.

6 | CONCLUSION

The recent emergence of multiple SARS‐CoV‐2 variants has dis-

rupted confidence in the current generation of vaccines to provide

adequate protection against COVID‐19. Our review suggests that

immune sera derived from vaccinated individuals might fail to protect

people immunized by mRNA vaccines against more recent SARS‐
CoV‐2 variants of concern; mutations present in B.1.351 were

found to have the most impact on impairing antibody naturalization

activity, with B.1.1.7 showing minimal impact, and P.1 and B.1.617.2

showing an intermediate effect. With the emergence of ongoing

mutations, it is likely that SARS‐CoV‐2 vaccines will require updating

in the near future, with immunity monitored to compensate for viral

evolution.
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