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Abstract: Grapevine red blotch virus (GRBV) is a recently identified virus. Previous research indicates
primarily a substantial impact on berry ripening in all varieties studied. The current study analyzed
grapes’ primary and secondary metabolism across grapevine genotypes and seasons to reveal both
conserved and variable impacts to GRBV infection. Vitis vinifera cv. Cabernet Sauvignon (CS)
grapevines grafted on two different rootstocks (110R and 420A) were analyzed in 2016 and 2017.
Metabolite profiling revealed a considerable impact on amino acid and malate acid levels, volatile
aroma compounds derived from the lipoxygenase pathway, and anthocyanins synthesized in the
phenylpropanoid pathway. Conserved transcriptional responses to GRBV showed induction of auxin-
mediated pathways and photosynthesis with inhibition of transcription and translation processes
mainly at harvest. There was an induction of plant-pathogen interactions at pre-veraison, for all
genotypes and seasons, except for CS 110R in 2017. Lastly, differential co-expression analysis
revealed a transcriptional shift from metabolic synthesis and energy metabolism to transcription and
translation processes associated with a virus-induced gene silencing transcript. This plant-derived
defense response transcript was only significantly upregulated at veraison for all genotypes and
seasons, suggesting a phenological association with disease expression and plant immune responses.

Keywords: grapevine red blotch virus; grape metabolism; grape ripening; virus-induced gene
silencing; plant-pathogen interactions

1. Introduction

Geminiviruses are responsible for detrimental effects on crop yield and quality world-
wide. The international trading of agricultural materials has led to the rapid spread of
geminiviruses between continents and the evolution of new virulent strains through re-
combination and mutation events. There are currently fourteen genera in the Geminiviridae
family of viruses (Becurtovirus, Begomovirus, Capulavirus, Citlodavirus, Curtovirus, Eragrovirus,
Grablovirus, Maldovirus, Mastrevirus, Mulcrilevirus, Opunvirus, Topilevirus, Topocuvirus, and
Turncurtovirus) consisting of 520 different species [1]. All members contain a circular
single-stranded (ss) DNA genome, either mono- or bi-partite, with a distinct intergenic
region that includes a nonanucleotide motif that functions as the origin of replication [2].
Geminiviruses encode viral proteins via bidirectional transcription in the virion-sense and
complimentary-sense.

Int. J. Mol. Sci. 2022, 23, 13248. https://doi.org/10.3390/ijms232113248 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232113248
https://doi.org/10.3390/ijms232113248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-2725-4815
https://orcid.org/0000-0002-5682-9913
https://orcid.org/0000-0002-5100-1594
https://orcid.org/0000-0002-3383-8235
https://doi.org/10.3390/ijms232113248
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232113248?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 13248 2 of 20

Like all viruses, geminiviruses must hijack and reprogram the host’s cellular machinery
to successfully create an infection. Upon infection, DNA of the geminiviruses require DNA
polymerase for replication; therefore, they must enter the nuclei of the host cells where the
ssDNA is replicated through dsDNA intermediates [3]. These dsDNA intermediates form
dsRNAs that are well documented to be associated with antiviral RNA silencing [4,5]. The
dsRNAs are cleaved by Dicer-like (DCL) proteins to form small (~21–24 nt) RNAs (sRNAs)
that mediate RNA silencing in plants and are classified into two groups: microRNAs
(miRNAs) and short interfering RNAs (siRNAs) [5]. The production of siRNAs leads to
several processes, such as degradation of existing RNA (post-transcriptional gene silencing)
or targeting DNA for methylation (transcriptional gene silencing) [6]. Tolerant or resistant
plant cultivars are known to activate this silencing pathway to lower viral titer levels to
achieve an antiviral state [4]. To combat this plant immune response, geminiviruses encode
distinct suppressors of RNA silencing leading to abnormalities in plant development which
may result in symptoms [7]. Revealing these plant-pathogen interactions remains crucial in
understanding host resistance to geminiviruses.

In 2012, the first geminivirus to infect Vitis vinifera was identified: Grapevine red
blotch virus (GRBV), a species of the Grablovirus genus. GRBV is the causative agent
for grapevine red blotch disease (GRBD) and has been identified in vineyards across
the United States [8–12], as well as several locations internationally [13–17]. Symptoms
of GRBD include red blotches on leaves as well as reddening of primary, secondary, and
tertiary veins on red varieties and chlorotic regions within leaf blades and marginal burning
similar to potassium deficiency in white varieties. Foliar levels of specific amino acids,
sugars, phenolics, and terpenoids are reported to be higher in infected grapevines [18].
GRBV substantially impacts berry ripening in all varieties examined so far, causing variable
impacts on primary and secondary metabolites, depending on the site and season [19–23].
Most notably is the impact on the phenylpropanoid pathway [22], responsible for flavonoid
biosynthesis, which are essential compounds in wine grapes due to their organoleptic
properties. The economic impact to vineyards in the United States could reach $68,548/ha
with few mitigation strategies available to the industry [24].

Several studies have analyzed how genotypic and environmental factors influence dis-
ease outcomes [25–28] in cassava [29,30], tomatoes [26,31], as well as in grapevines [22,32].
Since grapevine rootstocks can impact grapevine physiology and metabolism, they con-
tribute to plant-pathogen interactions [19,32]. For instance, differences in vigor, resulting
in greater shoot length and leaf area, may impact metabolism in the leaves and fruit of
grapevines, consequently affecting the final wine composition [33]. In addition, macro and
microclimate fluctuations have also been shown to contribute to pathogen-plant interac-
tions [29,34,35] and should be considered.

In this study, we investigated the impact of GRBV infection on grape metabolism
during ripening under the influence of genotypic and environmental factors using tran-
scriptomic and metabolomic approaches. This investigation set out to further understand
plant-pathogen interactions in GRBV infections and uncovered a phenological association
with the expression of a transcript encoding for a DCL protein. Here, we discuss the
alteration of transcriptional networks associated with plant-pathogen interactions and a
DCL protein in grapevines infected with GRBV.

2. Results
2.1. Influence of Genotype and Season on Grape Metabolism

Grape samples were collected from Cabernet Sauvignon (CS) grapevines that were
grafted on two different rootstocks (110R and 420A) and planted in 1993. Fifty grapevines
(25 vines each for healthy (RB(−)) and diseased (RB(+)) grapes) in 2016 and 2017 were
utilized for metabolomic and transcriptomic analysis. Grapes were collected at four differ-
ent ripeness stages in 2016 and three different ripeness stages in 2017. Further details of
viticultural practices and sampling are discussed in Section 2.1. A total of 78 metabolites
(24 volatile secondary metabolites, 30 secondary phenolic metabolites, and 24 primary
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metabolites) were analyzed. Multi-dimensional scaling indicated that ripeness level primar-
ily explained the variability between samples, followed by season, genotype, and finally
disease status (Figure S1). Figure 1 displays the log fold change (FC) in concentration of
each primary metabolite between RB(−) and RB(+) grapes.
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Figure 1. Log fold changes of primary metabolite concentrations through ripening in Cabernet
Sauvignon grapes grafted onto 110R and 420A rootstocks in 2016 and 2017. Negative values (blue)
indicate a decrease in concentration and positive values (red) indicate an increase in concentration
in RB(+) grapes compared to RB(−) grapes. Color gradient indicates the size of log fold change.
Values in bold indicate a significant difference (p < 0.05, FDR correction). CS = Cabernet Sauvignon,
PV = pre-veraison, V = veraison, PoV = post-veraison, and H = harvest.

Generally, GRBV increased amino acids and malate concentrations and decreased
carbohydrate levels (Figure 1). Malate concentrations were generally higher in RB(+)
grapes at all ripeness levels across seasons and rootstocks. Amino acid concentrations were
significantly higher in RB(+) grapes at post-veraison for CS 110R in 2016 and harvest for
CS 110R in 2017. Whereas carbohydrate concentrations at harvest were lower and malate
concentrations were higher in RB(+) grapes. Proline was higher in RB(+) grapes at harvest
except for CS 420A in 2016. To determine the significant seasonal and genotypic influences
on grape metabolome, the differential expression analysis analyzed the interactions between
season, disease status, and rootstock. Seasonal variation played a larger role in CS 420A
for primary metabolite concentrations, where fructose, glucose, arabinose, phenylalanine,
threonine, and trigonelline were significantly affected by season at pre-veraison. Between
CS 110R and CS 420A several amino acids were significantly affected by the difference in
rootstock in 2017, but not in 2016. At pre-veraison in 2017, arabinose, alanine, arginine,
phenylalanine, threonine, trigonelline, choline, and chlorogenate were significantly affected
by rootstock differences, whereas gamma aminobutyric acid (GABA), leucine, isoleucine,
phenylalanine, valine, and threonine were significantly affected at harvest in 2017. Amino
acid concentrations were generally lower in CS420 RB(+) grapes than RB(−) at harvest,
with the opposite being true for CS 110R. In addition, GRBV significantly lowered arabinose
and fructose at pre-veraison for CS 420A in 2017 which was not observed in 2016 or for CS
110R rootstock.

Log FC in secondary metabolite concentrations are shown in Figure 2. Few significantly
different volatile metabolites were observed, with the most considerable impact occurring
in C6 aldehydes, C6 alcohols, and terpenes. Generally, there were increased amounts of C6
aroma compounds at pre-veraison in diseased fruit. Consistent differences were observed



Int. J. Mol. Sci. 2022, 23, 13248 4 of 20

between CS 420A and CS 110R in 2017 at veraison, where RB(+) grapes experienced
decreases in concentration for C6 aldehydes and increases in the primary C6 alcohols,
hexanol, cis-3-hexen-1-ol, and trans-3-hexen-ol, although this was not always significant.
Together, our results suggest irregular ripening events in fruit produced on GRBV infected
grapevines.
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ethyl hexanoate 0.08 0.00 0.01 -0.02 0.01 -0.03 0.01 0.00 0.02 -0.01 0.02 0.01 0.01 -0.04

ethyl octanoate 0.10 -0.03 0.00 -0.03 0.05 -0.02 0.02 0.01 0.06 -0.02 0.03 0.04 0.01 -0.02

hexanal 1.09 -0.35 0.17 0.00 0.03 -0.95 -0.14 0.09 0.40 0.61 0.28 0.35 -0.67 0.30

2-hexenal 0.68 -0.44 0.24 0.22 0.27 -1.03 0.31 0.03 0.93 0.29 0.37 0.35 -0.49 0.19

hexanol 0.27 0.08 -0.14 -0.28 0.40 0.49 0.70 0.07 0.38 -0.02 0.06 0.04 0.36 0.13 -2

trans-3-hexen-1-ol 0.02 0.00 -0.01 -0.01 0.01 0.02 0.04 0.00 0.02 0.00 0.00 0.00 0.02 -0.01

cis-3-hexen-1-ol 0.01 0.31 -0.09 0.02 0.35 0.45 0.28 0.22 0.26 -0.01 0.03 -0.24 0.19 0.26

trans-2-hexen-1-ol 0.09 0.00 0.00 -0.03 0.15 -0.37 -0.01 0.04 0.06 -0.02 0.05 -0.15 -0.19 -0.06 0

alpha-pinene 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 0.01 0.00 0.01 -0.01

beta-myrcene 0.01 0.11 -0.05 -0.06 -0.13 -0.14 -0.02 0.08 -0.14 0.05 0.02 -0.01 -0.08 -0.03

alpha-terpinene 0.00 0.16 0.00 -0.04 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 2

limonene 0.00 -0.04 0.00 0.00 -0.05 -0.03 0.04 0.01 -0.04 -0.03 0.01 0.07 0.02 -0.04

p-cymene 0.00 0.01 0.00 0.00 -0.02 0.01 0.00 0.00 -0.01 0.00 0.00 -0.01 0.03 -0.01

beta-linalool 0.00 0.01 0.00 0.00 -0.01 -0.01 0.00 0.01 -0.01 0.00 0.00 0.01 0.00 0.00

beta-cyclocitral 0.01 0.01 0.01 0.00 0.01 -0.02 0.00 -0.02 0.00 0.00 0.01 0.00 0.00 0.00

geranial 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00

beta-citronellol 0.00 -0.01 0.00 0.00 -0.01 -0.02 0.00 -0.01 0.00 -0.01 0.00 -0.01 -0.01 -0.01

geraniol -0.05 -0.27 0.06 0.06 0.04 -0.12 0.01 -0.18 0.24 -0.15 0.02 -0.06 -0.03 -0.08

Norisoprenoid beta-ionone 0.02 -0.05 0.06 0.00 0.04 -0.17 0.01 -0.04 0.17 0.00 0.05 0.04 0.00 0.00

C8 aldehyde octanal 0.01 0.03 0.00 0.00 0.02 -0.03 -0.01 0.00 0.01 0.00 0.00 0.00 -0.01 0.00

C8 alcohol 1-octen-3-ol 0.07 0.02 -0.01 -0.06 0.04 0.00 -0.15 0.01 0.01 0.03 0.01 0.07 -0.01 -0.03

Aromatic alcohol guaiacol 0.00 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00

Class of Compound Compound Name

PV V PoV H PV V H PV V PoV H PV V H

Gallic Acid 0.25 -0.03 -0.23 -0.11 -0.99 -0.40 0.23 0.24 -0.16 0.32 -0.01 -1.03 -0.06 0.21

Vanillic Acid 0.05 -0.14 -0.11 0.01 -1.00 -0.13 0.18 -0.15 -0.17 0.48 -0.48 -1.24 -0.10 0.14

p-Coumaric Acid 0.60 1.13 0.22 -0.44 -1.68 0.87 -0.22 0.23 0.57 2.91 -2.14 -1.28 1.40 2.11

Caftaric Acid 0.69 2.62 -0.01 -0.24 -1.21 1.80 0.76 -0.13 -1.73 0.59 -0.36 -2.54 -1.41 -0.69

Ferulic Acid 0.00 0.30 -0.09 0.20 -0.35 -0.46 -0.40 -0.31 0.05 -0.26 -0.24 -0.83 -0.44 0.08

Gallocatechin 1.32 1.07 -1.06 0.32 -0.57 1.41 0.90 0.99 -1.51 0.85 -0.95 -0.45 -0.72 0.58

Epigallocatechin 0.87 0.46 -0.69 0.17 -0.40 -0.06 1.20 0.40 -0.55 0.35 0.24 -0.51 0.01 0.11

Catechin 0.95 1.46 0.28 -0.38 -1.55 1.03 1.28 0.41 -0.80 2.22 0.73 -1.82 -0.17 0.46

B1 0.54 0.15 0.33 -0.05 -0.29 2.12 1.70 -0.31 0.79 1.53 0.00 -1.71 -0.10 0.65 -4

Epicatechin 1.37 1.13 0.59 -1.05 -1.01 0.47 2.41 -1.09 -0.50 2.36 1.08 -1.64 -1.20 -0.12

Epicatechin gallate -0.27 0.32 0.25 0.06 -0.98 1.29 0.45 -1.33 0.32 1.64 0.45 -1.32 0.33 -0.04

Myricetin-glucoside 0.13 -0.44 -0.64 0.25 -1.04 -1.48 0.24 -0.71 -1.04 -0.09 -0.31 -0.94 -0.89 -0.37 0

Quercetin-rutinoside 0.19 -0.42 -0.19 0.74 -0.73 0.21 0.37 -0.93 -1.09 0.03 -0.11 -1.50 0.23 -0.28

Quercetin-glucoside 0.22 -0.59 -0.51 0.67 -0.94 -0.28 0.35 -0.81 -0.86 0.15 -0.17 -1.78 -0.23 -0.19

Kaempferol glucoside 0.29 -0.59 -0.71 0.62 0.22 -0.39 0.32 -0.81 -0.85 -0.10 -0.29 -0.85 -0.26 -0.33 4

Delphinidin-3-glucoside 0.14 -0.58 -0.99 -0.18 -2.57 -1.98 -0.17 -0.09 -0.89 -0.19 -0.52 -3.35 -1.11 -0.96
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Cyanidin-3-p-coumaroyl glucoside 0.06 -0.78 -0.79 0.25 -0.67 -1.21 -0.06 -0.80 -0.64 0.24 -0.32 -0.61 -0.75 -0.67

Petunidin-3-p-coumaroyl glucoside -0.13 -0.49 -0.50 0.29 -1.85 -1.62 0.15 -1.22 -0.66 -0.03 -0.34 -1.38 -0.88 -0.51

Peonidin-3-p-coumaroyl glucoside -0.60 -0.80 -0.26 0.75 -0.64 -1.30 0.20 0.01 -0.71 0.41 0.19 -0.87 -1.05 -0.24

Malvidin-3-p-coumaroyl glucoside -0.19 -0.47 -0.01 0.84 -2.16 -1.59 -2.32 -1.22 -0.58 0.25 0.27 -1.25 -0.73 -0.10
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Figure 2. Log fold changes of secondary metabolite concentrations through ripening in Cabernet
Sauvignon grapes grafted onto 110R and 420A rootstocks in 2016 and 2017. Negative values (blue)
indicate a decrease in concentration and positive values (red) indicate an increase in concentration
in RB(+) grapes compared to RB(−) grapes. Color gradient indicates the size of log fold change.
Bolded values indicate a significant difference (p < 0.05, FDR correction). CS = Cabernet Sauvignon,
PV = pre-veraison, V = veraison, PoV = post-veraison, and H = harvest.
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The interaction between disease statues and season indicated that seasonal differences
mainly affected 420A rootstock. At veraison, α-terpinene, octanal, and trans-2-hexen-1-ol
were significantly affected by season, and hexanol at harvest. Only p-cymene was signif-
icantly affected by season for CS 110R at veraison. Differences in rootstock significantly
affected alpha-terpinene and geraniol at veraison in 2016.

The largest FC differences in phenolic compound concentrations occurred at pre-
veraison and veraison, with fewer differences towards harvest. Most notably, there were
large decreases in anthocyanin concentrations across season and rootstock as well as tran-
scriptional suppression of the phenylpropanoid pathway at veraison (Figure S2), agreeing
with previous results [18–20,22,36]. More considerable differences in metabolite concentra-
tions were observed in 2017 than in 2016, with more consistent decreases in anthocyanin
concentrations for CS 110R at harvest than CS 420A, agreeing with findings in Martínez-
Lüscher et al. [19]. Flavan-3-ol concentrations were mainly higher in RB(+) grapes, yet
consistent trends across ripeness level, season, and rootstock were not observed. The
interactions between disease status and season or rootstock were not significant for any of
the phenolic compounds. However, rootstock differences significantly affected caftaric acid
at veraison in both seasons. Caftaric acid was higher for CS 420A in both seasons and lower
for CS 110R RB(+) in 2016 grapes at veraison potentially indicating grapevine genotype
affects GRBV infection (Figure 2).

2.2. GRBV Delays Berry Ripening through Induction of Defense Processes, Photosynthesis, and
Auxin Pathways

RNA-seq was utilized to sequence the transcriptome of the CS grapes. Like the
metabolite profiling, the differences in ripeness level predominantly explained the variance
in the grape transcriptome, followed by season, rootstock, and then disease status (in
descending order of effect, Figure S3). Differential expression (DE) analysis was performed
on all trimmed and normalized reads. Significantly (p < 0.01) differentially expressed genes
(DEGs) for each rootstock, season, and ripeness level are shown in Figure 3. In general,
there were fewer DEGs in 2017 than in 2016 for both rootstocks and fewer DEGs for CS 420A
than CS 110R, concurrent with primary metabolite results. Gene ontology analysis (GO)
determined the main processes impacted were biological regulation, cellular processes,
localization, metabolic processes, and response to stimulus.

To determine the consistent responses across genotype and season, all the significant
DEGs of each rootstock/season were pooled across ripeness levels to generate a Venn
Diagram (Figure 4). Figure 4A depicts all the commonly upregulated genes (81), and
Figure 4B represents all the commonly downregulated genes (33). A dendrogram separated
these 114 genes into four different clusters of 50, 14, 22, and 28 genes. The VitisNet [37]
(http://vitis-dormancy.sdstate.org (accessed on 12 January 2021)) and VitisPathway [38]
(http://www.rit.edu/VitisPathways (accessed on 12 January 2021)) databases were used
for gene annotation of these genes in each cluster, and a heatmap was used to visualize the
regulation of these 114 genes due to the viral infection (Figure 5).

http://vitis-dormancy.sdstate.org
http://www.rit.edu/VitisPathways
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Figure 3. Number of significantly (p < 0.01) differentially expressed genes at each ripeness level across
genotype and season. Different coloring indicates different gene ontology classifications based on
biological processes. Negative values indicate significantly down regulated genes and positive values
indicate significantly upregulated genes. CS = Cabernet Sauvignon, PV = pre-veraison, V = veraison,
PoV = post-veraison, H = harvest.
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Figure 4. Venn Diagram of upregulated differentially expressed genes (A) and downregulated
differentially expressed genes (B) for each rootstock and season. The genes at each ripeness level
were pooled for each rootstock and season combination to find the conserved up and downregulated
genes due to GRBV infection. CS = Cabernet Sauvignon.

Cluster one mainly showed induction of transcripts in GRBV grapes from post-
veraison to harvest (Figure 5). Of the 50 genes, seven were associated with energy
metabolism (photosynthesis and oxidative phosphorylation), 12 were associated with
transportation processes, three were associated with amino acid metabolism, and four with
hormone processes. Three of the latter genes were related to auxin-mediated processes.
Transcript VIT_08s0040g00800, encoding an auxin-induced protein, was highly upregulated
from post-veraison to harvest, and in 2017 from veraison.
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0.43 0.55 0.46 0.43 0.57 0.65 0.56

100248784 VIT_10s0003g00140 vv30008Ethylene_signaling; vv60003AP2_EREBP -0.82 0.66 0.88 0.70 0.68

100258273 VIT_09s0002g05170 0.47 0.59 0.54 0.60

100244962 VIT_06s0080g00920 0.71 0.94 2.25 1.71

100257648 VIT_19s0093g00220 vv10480Glutathione_metabolism 0.48 0.52 0.48 1.15

100247778 VIT_08s0007g03930 vv10100Biosynthesis_of_steroids 0.59 1.18 0.84

100250741 VIT_03s0091g00310 vv11002Auxin_biosynthesis 1.13 1.28 1.40 0.97

100264253 VIT_04s0023g03540 1.53 1.85 2.53 2.93 1.60 1.50 1.37

100255226 VIT_13s0067g00260 0.81 0.71 0.75 0.86 1.62 1.15 0.90
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Figure 5. Log fold change of conserved genes affected by GRBV infection based on results from the
Venn Diagram in Figure 4. Transcripts are grouped together in clusters based on dendrogram output.
Negative values (blue) indicates a decrease in gene expression in diseased grapes and positive values
(red) indicate an increase in gene expression in diseased grapes compared to healthy grapes. Color
gradient indicates the size of log fold change. 110R = Cabernet Sauvignon on rootstock 110R and
420A = Cabernet Sauvignon on rootstock 420A.
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Cluster two was moderately induced due to GRBV infection at veraison to harvest.
This cluster was associated with lipid metabolism, hormone signaling, and translation pro-
cesses. GRBV induced one gene related to plant-pathogen interactions, VIT_19s0090g00410,
at veraison in 2017 and harvest in 2016 for both rootstocks, potentially indicating that
seasonal conditions may relate to the induction of plant responses to viral infection. Some
of the largest differences in cluster two were transcripts encoding for currently uncharac-
terized proteins. The 22 genes in cluster three were mainly suppressed in GRBV infected
grapes at harvest. These genes are related to translation, ABA signaling, and cell wall
metabolism. One of the genes in this cluster, VIT_04s0023g00920, which is re involved in
RNA virus-induced gene silencing (Uniprot; https://www.uniprot.org (accessed on 19
January 2021)) was consistently upregulated at veraison. Lastly, genes in cluster four were
mainly induced at pre-veraison due to GRBV infection and associated with plant-pathogen
interactions, defense responses (WRKY transcription factor), ABA signaling, and auxin
signaling. A few other genes were also suppressed at veraison to harvest, and these were
mainly associated with translation processes. Interestingly, only CS 110R grapes in 2017
did not follow this trend. Instead, GRBV infection led to a suppression of the transcripts in
the plant-pathogen interaction pathway, WRKY, and auxin signaling at veraison, followed
by induction at harvest. The only time that anthocyanin concentrations were significantly
impacted at harvest was for CS 110R in 2017, suggesting a differential response to GRBV
infection by CS 110R versus CS 420A in 2017, and this was not observed in 2016.

2.3. GRBV Induces Genes Involved in Plant-Pathogen Interactions

All the DEGs were also used to construct a weighted gene co-expression network
analysis (WGCNA). The results from the WGCNA indicated that the grouping of genes was
mainly due to the difference in ripeness levels and the impact of the disease was indistin-
guishable (Figure S4). Thus, differential co-expression analysis was performed on the DEGs.
Differential co-expression analysis aims to identify coordinated expression patterns that
differ across conditions. Our study compared differences in gene co-expression between
healthy and diseased grapes to determine networks of genes that are impacted due to the
virus. Due to the entire network of correlation differences being too large to thoroughly
analyze at an adjusted p < 0.05 (FDR correction), we used adjusted p-values < 5.0 × 10−6,
which afforded 185 correlations.

Out of these 185 correlations, four contained more than four genes. Three of these
networks gained co-expression, and one lost co-expression due to GRBV infection in
grapes. One gaining co-expression was related to sugar metabolism, ethylene signaling,
cell wall metabolism, and nucleotide sugar metabolism (Figure S5). Another had a central-
ized gene that was gaining co-expression with several genes (Figure S6). The transcript
in the center is a calcium-binding protein (VIT_14s0006g01400) associated with plant-
pathogen interactions. The exterior transcripts encoded for transcription factors, WRKY
(VIT_17s0000g01280), bHLH (VIT_17s0000g00430), and Zf-HD (VIT_14s0108g00810), glycol-
ysis (VIT_17s0000g03280), tyrosine metabolism (VIT_17s0000g03280), fatty acid metabolism
(VIT_17s0000g03280), sucrose metabolism (VIT_12s0057g00700), a SWEET sugar trans-
porter (VIT_1s0000g00830), and auxin transport (VIT_01s0011g04640; Table S1).

The other two networks that contained more than four genes are shown in Figure 6.
The centralized gene gains (Figure 6A) or loses (Figure 6B) co-expression with several
encompassing genes. Interestingly, the gene in the center of both figures is the same,
VIT_04s0023g00920, and encodes a dicer-like (DCL) protein, specifically DCL2. Our data
suggests a transcriptional shift caused by GRBV reallocating the co-expression of this
gene in diseased grapes. Figure 6A demonstrates that this gene gains co-expression with
genes responsible for flower development, translation, and transcription processes in
GRBV fruit (Table S2). Simultaneously, there is a loss of co-expression (Figure 6B) with
genes associated with plant-pathogen interactions, flavonoid biosynthesis, amino acid
metabolism, carbohydrate metabolism, transport, cell wall metabolism, and oxidative
phosphorylation (Table S3). The one gene associated with plant-pathogen interactions

https://www.uniprot.org
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is again a calcium-binding protein (VIT_02s0241g00140). The transcript in the flavonoid
biosynthesis pathway encodes for the chalcone-flavanone isomerase family of proteins
(VIT_13s0067g02870), which precedes the synthesis of flavonols, flavan-3-ols, anthocyanins,
and proanthocyanidins in the phenylpropanoid pathway.
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Figure 6. Two networks produced through differential co-expression analysis, one showing a
gain in co-expression (A) and one showing a loss in co-expression (B). The centralized gene is
VIT_04s0023g00920, which encodes for a dicer-like protein The transcripts on the exterior are asso-
ciated with (a) transcription and translation processes or (b) with metabolite synthesis and energy
metabolism.

Analyzing the DE of DCL2 revealed a significant (FDR adjusted p-value < 0.05) in-
duction only at veraison for both seasons and rootstocks (Table 1). More considerable
differences in DE were observed between 2016 than 2017. These data were compared to
the viral gene expression, which was determined by overlaying the GRBV genome with
the grape RNA-seq data. The six open reading frames of the GRBV genome encode for
five proteins, and these five proteins are thought to be translated from two mRNAs: the
sense strand and the antisense strand. Therefore, the counts from open reading frames 1,
2, and 3 were combined (sense strand), and 4, 5, and 6 were combined (antisense strand)
to determine viral gene expression in the diseased grapes (Figure 7A). Expression of viral
genes was highest at all points at pre-veraison, with a slight decrease at veraison and more
drastic decreases until harvest.

Table 1. Log fold change of VIT_04s0023g00920 which encodes for a dicer-like protein (DCL2).
Bolded values indicate a significant difference (FDR adjusted p < 0.05). DEG = differential expression,
110R = Cabernet Sauvignon on rootstock 110R, 420A = Cabernet Sauvignon on rootstock 420A,
PV = pre-veraison, V = veraison, PoV = post-veraison, and H = harvest.

DE of
VIT_04s0023g00920

DCL2

Pre-veraison Veraison Post-
veraison Harvest

110R 420A 110R 420A 110R 420A 110R 420A

2016 2017 2016 2017 2016 2017 2016 2017 2016 2016 2016 2017 2016 2017

1.03 0.55 0.28 −0.33 1.39 2.33 1.94 2.08 0.44 0.78 −0.02 −0.53 −0.68 −1.09
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Figure 7. Comparison of viral gene expression in each season (A) and cumulative growing degree
days in each season (B). 110R = Cabernet Sauvignon on 110R rootstock and 420A = Cabernet Sauvi-
gnon on 420A rootstock. Viral counts consist of the two mRNAs (sense strand and antisense strands)
thought to translate the five proteins encoded by the GRBV genome.

3. Discussion

GRBV is known to inhibit ripening processes in grapes leading to decreases in car-
bohydrate levels, increases in malic acid, and variable impacts on secondary metabolites
depending on seasonal and genotypic factors [19–23,39]. In the current study, GRBV sup-
pressed the phenylpropanoid pathway at veraison resulting in decreased anthocyanin
concentrations through ripening. Phenylalanine concentrations, the amino acid that initi-
ates the phenylpropanoid pathway and the synthesis of flavonoids, was generally higher
at pre-veraison and lower by harvest in diseased fruit compared to healthy fruit. Although
anthocyanins were affected through ripening, the decreases in phenylalanine accompanied
with fewer anthocyanins being lower by harvest potentially indicates a delayed biosynthe-
sis of anthocyanins in GRBV infected grapes, which was generally recovered by harvest.
Our study corroborated previous results indicating that GRBV inhibits ripening events in
grapes resulting in lower carbohydrate and anthocyanin concentrations, with higher malic
acid, amino acid, and C6 aroma compound concentrations [19,20,22,39].

In the current study, larger differences in secondary metabolites concentrations
due to GRBV infection were seen in 2017 than in 2016. This was also observed in
Rumbaugh et al. [39], where it was hypothesized that the higher temperatures in 2017
potentially increased plant defense responses, leading to fewer differences in primary
metabolite concentrations. However, simultaneously it acted as a secondary stressor for
RB(+) fruit in terms of secondary metabolites, such as anthocyanins, which are more
sensitive to elevated temperatures, leading to larger differences [40].

GRBV infection was more impacted by seasonal differences in rootstock 420A than
110R, mainly impacting amino acids and carbohydrates suggesting that the pathogenicity
of GRBV in 420A is correlated to environmental factors. Differences in rootstock mainly
impacted amino acid concentrations in 2017, not in 2016 potentially suggesting that geno-
typic and environmental differences affect how the grapevine host will interact with GRBV.
Together, our results conclude that the genotype 110R, a more drought-tolerant and vig-
orous rootstock than 420A, has a differential response to GRBV infection over 420A. CS
110R in 2017 did not undergo the same conserved transcriptional response to GRBV as the
other rootstock/season combinations (Figure 5), which may have contributed to the lower
anthocyanin accumulation at harvest (Figure 2). In addition, there were fewer significant
DE genes for 420A than 110R in both seasons (Figure 3). Rootstock susceptibility to viral
infection is an ongoing research topic [19,32,39,41–43], with variable conclusions. One
study determined that grapevine leafroll-associated virus-3 caused greater impacts on the
rootstock 110R compared to 196.17C when grafted onto Albariño grapevines [43], which is
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similar to the current study. On the other hand, Vondras et al. [32] found that Kober 5BB
(V. berlandieri × V. riparia, similar to 420A) was more impacted than MGT 101- 14 during
the infection of multiple grapevine leafroll-associated viruses.

GRBV infection was recently reported to generally decrease volatile aroma compound
accumulation in grapes, except for C6 aldehydes and alcohols [39]. C6 aroma compounds
are synthesized in the lipoxygenase pathway and participate in plant defense responses
and growth and development [44,45]. In healthy grapes, C6 aldehydes typically increase
in concentration after veraison with a decrease at harvest due to increased ADH activity.
Consequently, ADH converting C6 aldehydes into C6 alcohols consistently increases hex-
anol levels until harvest and, to a lesser extent, trans-3-hexen-ol [46]. In general, transcripts
encoding for LOX enzymes are upregulated before veraison and then suppressed during
grape ripening [47]. We observed a premature decrease in C6 aldehydes resulting in an
increase in the primary C6 alcohols in diseased grapes in 2017. In addition, there was
irregular induction of a LOX transcript due to GRBV infection in 2017, potentially resulting
in higher levels of C6 alcohols at veraison and harvest.

GRBV infection decreased levels of carbohydrates and anthocyanins while increasing
the levels of malic acid in grapes at harvest, similar to previous findings [19,20,23,36,48].
Blanco-Ulate et al. [22] demonstrated that GRBV causes an impairment to ripening events,
mainly affecting the phenylpropanoid pathway in which 68% of the genes were sup-
pressed with concurrent decreases in anthocyanin concentrations. GRBV also induced
auxin metabolism while decreasing levels of abscisic acid (ABA) and gibberellin. Auxin is
involved in many grape processes, such as cell division and expansion in early fruit devel-
opment and repressing fruit ripening. One of these processes is malic acid catabolism [49].
In healthy grapes, before veraison, malate is synthesized inside the grape berry through sev-
eral pathways such as glycolysis and photosynthesis, where it is then stored in the vacuole.
At veraison, sugars are no longer utilized for energy metabolism and begin to accumulate in
the vacuole. In addition, photosynthetic processes drastically decrease. Thus, to accommo-
date the energy needs of the berry, there is a switch from carbohydrate utilization to malic
acid catabolism [50]. Malate is released from the vacuole and becomes available for energy
metabolism (through the TCA cycle and oxidative phosphorylation), amino acid intercon-
versions, and secondary metabolite synthesis, such as flavonoids. In the current study, the
consistently elevated levels of malate (Figure 1) and the induction of auxin signaling and
photosynthesis from post-veraison to harvest (Figure 5) potentially suggest an imbalance
in energy utilization after the onset of veraison. This ultimately could have resulted in
the desynchronization of ripening events in GRBV fruit that Martínez-Lüscher et al. [19]
theorized.

Differential co-expression analysis in the current work indicated a potential signaling
control of a SWEET sugar transporter by a calcium-binding protein (Figure S6). SWEET
transporters are known to be associated with plant-pathogen interactions, although it has
been challenging to define a clear role due to variability in their responses to pathogen
infection [51]. The calcium-binding protein was also co-expressed with bHLH, WRKY,
and Zf-HD transcription factors during GRBV infection. Basic helix-loop-helix (bHLH)
proteins are a superfamily of transcription factors that have been previously associated in
defense responses to tomato yellow leaf curl virus, a geminivirus [52]. Both WRKY and
zinc finger homeodomain (Zf-HD) proteins have also been correlated to plant defense-
signaling pathways during pathogen infections [53,54]. In addition, signaling crosstalk
between auxin and Ca2+ has been suggested [55]. Although, Ca2+ signals calcium-binding
proteins to prompt a physiological response to survive an infection [56], viruses are also
adept at utilizing Ca2+ for their benefit [57]. The current work suggests that GRBV triggers
an association of the calcium-binding protein with auxin transport (a hormone primarily
responsible for inhibiting ripening events), carbohydrate metabolism, sugar transport, and
transcription factors involved in the plant immune system. Martínez-Lüscher et al. [19]
proposed that GRBV likely causes an impairment to carbon translocation mechanisms
from source-to-sink, which our research indicates may be controlled by a calcium-binding
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protein mediating a defense response. Further research is needed to determine the precise
role of calcium and calcium-binding proteins during GRBV infection.

Among the plant-pathogen interactions, RNA silencing has been widely documented
in geminivirus infections [5,58–60]. RNA silencing is a plant response that regulates viral
gene expression to fight the infection, mediated by sRNAs. Dicer-like (DCL) proteins are
essential enzymes in this response as they produce sRNAs [5]. Most plants encode four
DCL proteins (DCL 1–4), where DCL 1 encodes for miRNAs, and DCL 2–4 encodes for
siRNAs [61]. Specifically, DCL 2 triggers intercellular silencing in cells adjacent to the
initial virus-infected cell [60]. Previous literature has successfully correlated higher levels
of siRNA accumulation to symptom recovery and decreases in viral titer levels [58,62].

In the current study, the antiviral transcriptional control observed with DCL2 po-
tentially explains the irregular ripening events observed in the fruit of GRBV-infected
grapevines for the past 10 years. For the first time, we revealed a transcriptional shift of
DCL2, indicating a loss of allocation of resources for primary and secondary metabolism
and energy metabolism. The loss of co-expression with the oxidative phosphorylation path-
way may also explain the slight downregulation of this pathway and potentially the increase
in malate concentrations previously discussed. The gaining of co-expression of this gene
with transcriptional and translational processes further supports that GRBV-infected grapes
are potentially favoring RNA silencing as a defense mechanism over normal ripening
processes. However, to confirm the present findings, analysis of siRNAs in GRBV-infected
grapes is needed which was not able to be performed in this study.

Analyzing the DE of DCL 2 reveals that GRBV infection led to significant induction at
veraison in both seasons, which was moderate at post-veraison in 2016, and suppression
at harvest in both seasons. A similar study investigating transcriptional responses to
grapevine leafroll-associated virus-3 (GLRaV-3) infection observed an analogous induction
of DCL 2 at only veraison [63]. Interestingly, research indicates that the onset of foliar
symptoms for GLRaVs and GRBV begins at veraison [12,18,64]. After veraison, viral gene
expression levels decreased (Figure 7B), which may relate to RNA silencing modifying
viral RNAs [65]. Taken together, our data suggests a phenological association with plant
immune responses, potentially resulting in the onset of foliar symptoms.

In Chellappan et al. [29], similar work was performed on a geminivirus infecting
cassava plants. In this study, fluctuations in temperature regulated the expression of RNA
silencing where increases in temperatures increased expression and decreased viral titer
and symptoms [29,35]. During our study, cumulative growing degree days were higher
in 2017 than the previous year (Figure 6A), with nine days exceeding 35 ◦C and four days
exceeding 40 ◦C. Consistently in this study, the impact of GRBV on the grape transcriptome
was lower in 2017 than in 2016 concurrently with generally lower viral gene expression and
higher expression of the DCL 2 transcript. Although viral titer levels were not measured
in this study, our results agree with previous studies that temperature affects disease
expression [29,35].

4. Materials and Methods
4.1. Chemicals and Reagents

Sodium acetate, PVP-40, NaCl, sodium citrate, ascorbic acid, 2-undecanone, methanol,
chloroform, formic acid, decyl-β-glucopyranoside, acetonitrile, potassium phosphate, HCl,
NaOH, were all purchased from Sigma Aldrich (St. Louis, MO, USA). EDTA was purchased
from Fisher Scientific (Pittsburgh, PA, USA). Guanidine thiocyanate was purchased from
Spectrum Chemicals (New Brunswick, NJ, USA). D2O was purchased from Cambridge
Isotope Laboratories, Inc. (Tewksbury, MA, USA). 3-(trimethylsilyl)-1-propanesulfonic
acid-d6 (DSS-d6) was purchased from Chenomx (Edmonton, AB, Canada)

4.2. Plant Material and Sample Collection

Cabernet Sauvignon grapevines (clone 8, Foundation Plant Services, University of
California Davis) grafted onto 110R (V. berlandieri × V. rupestris), and 420A (V. berlandieri
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× V. riparia) rootstocks were used for this study. Since rootstocks can impact grapevine
physiology and berry composition, they can also potentially impact disease severity. There-
fore, rootstocks 110R and 420A were chosen due to their differences in vigor and drought
tolerance [39,66]. These grapevines were planted in 1999 at the Oakville Experimental
Vineyard (Napa County, CA, USA). The grapevines were trained to a bilateral cordon in a
vertical shoot positioned system. Viticultural practices are reported in Rumbaugh et al. [39]
and Martínez-Lüscher et al. [19]. From this vineyard block, 60 vines were tested for the
presence or absence of GRBV, as well as GLRaV-1 to 4, and strains of 4. For this study,
only healthy vines (i.e., vines that tested negative for viruses and did not show symptoms
of viral disease, RB(−)) and vines which only tested positive for GRBV, and which are
symptomatic (RB(+)) were used as data vines. For each treatment, 20 and 25 data vines
were identified in 2016 and 2017, respectively. Data vines were randomly subdivided into
five biological replicates of four and five vines, using a random sequence generator for 2016
and 2017, respectively (http://www.random.org.sequences (accessed on 23 May 2016)).
Five berries were collected from each data vine randomly (top, middle, and bottom of grape
bunches on the outer and inner side of the canopy) for a total of 20 berries per biological
replicate. Grapes were sampled four times during ripening at pre-veraison, 50% veraison
(berry softening and color change), post-veraison, and harvest for 2016. For 2017, grapes
were collected at all the previous points, except for post-veraison due to a heat spike and
unexpected rapid increases in sugar content. Grapes sampled were immediately processed
upon arrival at the laboratory, and berries were deseeded, frozen in liquid nitrogen, and
stored at −80 ◦C until further analysis.

4.3. Total RNA Isolation

Total RNA from each biological replicate across seasons, rootstocks, and collection
points was extracted and isolated. Approximately 2 g of fresh weight grape material was
mixed with a lysate buffer consisting of 4 M guanidine thiocyanate, 0.2 M sodium acetate,
26 mM EDTA, and 2.6% (w/v) PVP-40. The samples were then homogenized using a
table mill, and then total RNA was isolated using the Qiagen RNeasy Plant Mini Kit in
conjunction with the Qiagen PowerClean Pro Cleanup kit (Qiagen, Hilden, Germany). DNA
was removed using the Zymo Research RNA Clean & Concentrator-5 Kit (Zymo Research,
Irvine, CA, USA). RNA integrity and purity were analyzed using a 2100 Bioanalyzer
(Agilent, Santa Clara, CA, USA) and NanoDrop 2000c spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA), respectively.

4.4. mRNA Sequencing and Analysis

Gene expression profiling was carried out using a 3′ Tag-RNA-Seq protocol. Barcoded
sequencing libraries were prepared using the QuantSeq FWD kit (Lexogen, Vienna, Austria)
for multiplexed sequencing according to manufacturer recommendations. Micro-capillary
gel electrophoresis was used to verify the fragment size distribution of the libraries on
a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). The libraries were quantified by
fluorometry on a Qubit fluorometer (LifeTechnologies, Carlsbad, CA, USA) and pooled
in equimolar ratios. Up to forty-eight libraries per lane were sequenced on a HiSeq 4000
sequencer (Illumina, San Diego, CA, USA). The sequencing was carried out by the DNA
Technologies and Expression Analysis Core at the UC Davis Genome Center, supported by
NIH Shared Instrumentation Grant 1S10OD010786-01.

4.5. Metabolite Extraction and Quantitation
4.5.1. Volatile Compound Analysis

The berries were finely ground in liquid nitrogen for each biological replicate using
an IKA analytical mill (Wilmington, NC, USA). Approximately 0.5 g of freshly ground
grape powder was added to a 10 mL amber headspace vial (Agilent Technologies, Santa
Clara, CA, USA) containing 1 g of NaCl, 1 mL of 1 M sodium citrate buffer, and 25 µL
of ascorbic acid solution. Each vial was spiked with 25 µL of a 0.5 mg/L 2-undecanone
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internal standard solution. For a QC sample, grapes from all collection points, seasons,
and rootstocks were homogenized together in liquid nitrogen and treated as a sample. A
QC sample was extracted with each extraction batch and analyzed similarly to determine
day-to-day instrumental drift.

Headspace solid-phase microextraction gas chromatography coupled to a mass spec-
trometer (HS-SPME-GC-MS) was used to analyze the volatile profiles of grape extracts, as
in Rumbaugh et al. [39]. Ions were monitored using synchronous scan and selected ion
monitoring (SIM). All compounds identified in this study were identified using the SIM
mode described in Hendrickson et al. [67]. Samples were analyzed using Mass Hunter
software version B.07.00 (Agilent Technologies, Santa Clara, CA, USA). Compounds were
semi-quantitatively analyzed using relative peak areas by normalization with 2-undecanone
as well as the berry mass. The five biological replicates across all variables were analyzed
in triplicate. Compounds were identified by retention time and confirmation of mass
spectra ion peaks using the National Institute of Standards and Technology database (NIST)
(https://www.nist.gov (accessed on 4 September 2019)). A list of 50 volatile compounds
was generated from previous literature and was used for compound identification. A final
list of 38 compounds was identified in the grape samples and used for quantitation.

4.5.2. Phenolic Compound Analysis

The homogenized frozen grape powder was analyzed by mixing 1 g of grape material
with 4 mL of extraction buffer that consisted of methanol:water:chloroform in a 3:1:1 and
0.1% (v/v) formic acid. Decyl-β-glucopyranoside was used as an internal standard, and
each sample was spiked with 80 µL of 100 mg/L solution (final concentration of 500 µg/L).
The sample was vortexed for 30 s, sonicated for 10 min at 4 ◦C, and then centrifuged at
3220× g at 4 ◦C for 10 min at 4 ◦C. The supernatant was collected, and 1 mL was diluted to
4 mL using 18 MΩ water. The rest of the supernatant was saved for primary metabolite
analysis. The sample was mixed and centrifuged for 10 min at 15,000 rpm. One mL of the
diluted sample was transferred to a 2 mL amber vial with a screw cap for analysis. QC
samples, which consisted of the same grape material as described in Section 4.5.1, were
prepared daily in the same manner for phenolic analysis.

Analyses were carried out on an Agilent 1290 Infinity Ultra-high 150 Performance Liq-
uid Chromatography (UHPLC) system coupled with an Agilent 6545 151 quadrupole time-
of-flight (Q-TOF) LC/MS (Agilent Technologies, Santa Clara, CA, USA). The temperature-
controlled autosampler was kept at 4 ◦C. Chromatographic separation was carried out on
an Agilent analytical column (2.1 × 150 mm, particle size 2.7 µm) after 2 µL of the sample
was injected. Mobile phase A was LC grade water with 0.1% (v/v) formic acid, and phase B
was LC grade acetonitrile with 0.1% (v/v) formic acid. The chromatographic method was
98% phase A (0–1 min), a gradual decrease from 98% to 20% phase A (1–16 min), a decrease
to 2% phase A (16–18 min), which was maintained for 2 min (18–20 min), and finally a
linear increase from 2% to 98% phase A over one minute (20–21 min) which was then held
for another four minutes (21–25 min). The iso pump and binary pump were set to a flow
rate of 0.2 mL a minute. The mass range of the detector was 100–1000 m/z, and the rate of
detection was set to 2 spectra per second with a cycle time of 1 min. The sheath gas and
drying gas temperatures were at 375 ◦C and 200 ◦C, respectively. The capillary voltage and
nozzle voltage were set to 3500 V and 1000 V, respectively. The nebulizer was set to 50 psi,
and the fragmentor voltage set to 100 V. The internal standard eluted at 13.45 min with the
mass of 321.2272 m/z, 343.2091 m/z, and 359.183 m/z for H+, Na+, and K+ ionized forms of
the internal standard, respectively. The area of the peak of mass 343.2091 m/z was used for
the normalization of all other compounds identified. A list of 51 phenolic compounds that
were previously cited in the literature was utilized for compound identification. The final
number of identified compounds in all samples across environmental, developmental, and
genotypic factors was 36 compounds which consisted of benzoic acids, hydroxycinnamic
acids, flavonoids, and stilbenes.
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4.5.3. Primary Metabolite Analysis

For the analysis of primary metabolites, 1 mL of the supernatant from the phenolic
hydroalcoholic extraction was utilized. The sample was dried under vacuum for 4 h at
35 ◦C, suspended in 1 mL of D2O, and then dried again under vacuum again for 4 h at 35 ◦C
to reduce the methanol signal [68]. The dried samples were then reconstituted with 1 mL
of 10 mM potassium phosphate buffer (pH 6.8), vortexed until completely homogenized,
and centrifuged at 14,000× g at 4 ◦C for 5 min. Into a new microcentrifuge tube, 585 µL of
the sample was mixed with 65 µL of 5 mM DSS-d6 as an internal standard. Each sample
was adjusted to a pH of 6.8 using 1 N HCl or NaOH, and 600 µL was transferred to a 5 mm
NMR tube. Samples were stored at 4 ◦C for no longer than 24 h until the NMR spectra
were acquired. Sample acquisition and analysis were performed as in Chin et al. [69,70].
Briefly, the 1H NMR spectra of the aqueous samples were acquired at 298 K on a Bruker
600 MHz NMR spectrometer (Bruker BioSpin AG, Fällanden, Switzerland) equipped with
a TCI cryoprobe and a SampleJet using the noesypr1d pulse programs. Each spectrum
was acquired in approximately 10 min. Chenomx Inc. NMR suite Processor version 8.3
(Edmonton, AB, Canada) was used to identify and quantify primary metabolites in grape.
A total of 26 metabolites were identified and quantified, ranging from amino acids, organic
acid esters, and carbohydrates.

4.6. Statistical Analysis

All metabolites were subjected to differential expression analysis using limma-voom.
Log fold changes based on averages and p-values were calculated using R (version 4.0.1).
All significant metabolite differences were determined by adjusting the p-value using a
false discovery rate (FDR) test (p < 0.05, FDR correction).

Raw reads were processed with HTStream v.1.1.0 (https://s4hts.github.io/HTStream/
(accessed on 15 August 2019)) to perform sequence data QA/QC, remove adapter con-
tamination and low-quality bases/sequences. The trimmed reads were aligned to the
Vitis vinifera 12X genome (GCA_000003745.2, with Ensembl v.42 annotation, downloaded
from https://plants.ensembl.org/Vitis_vinifera (accessed on 15 August 2019)) using STAR
v.2.6.1d [71], to generate raw counts of reads per gene for each sample.

Differential expression (DE) analysis was conducted using the package limma-voom
in R. Significant (p < 0.01) DEGs were analyzed for gene ontology using the PANTHER
website [72,73]. The conserved responses to GRBV were determined by creating a Venn
Diagram [74]. The WGCNA analysis was conducted in R using log2 counts per million reads
and included all genes in the DE analyses. The analysis used a signed network and a robust
biweight midcorrelation. A soft-thresholding power of 32 was chosen, using the WGCNA
function pickSoftThreshold, as the smallest power for which the scale-free topology index
exceeded 0.85. Differential co-expression analyses were conducted in R using the z-score
method [75] as implemented in the Bioconductor package dcanr [76], version 1.6.0, which
compares correlation coefficients between pairs of genes across conditions. p-values were
adjusted for multiple testing using the Benjamini-Hochberg method [77].

Subsequently, the reads that did not align to the grape genome were aligned to
the GRBV RefSeq genome sequence (https://www.ncbi.nlm.nih.gov/data-hub/genome/
GCF_000909815.1/ (accessed on 18 November 2019)) using Bowtie2 v.2.3.4.1 [78]. The
featureCounts tool of Subread v.1.6.3 [79] was used to assign the read alignments to open
reading frames and to generate raw viral counts, which were used as input to the statistical
analysis.

5. Conclusions

GRBV is the first geminivirus detected in grapevines, and our understanding of the
detrimental impacts of the virus on grape and wine composition and quality is advancing.
In this study, the seasonal impact was larger than the genotypic impact of rootstock on
GRBD induced changes in grapes. Seasonal differences considerably impacted disease
outcomes in grapevines, where the impact in 2016 was larger than in 2017. Fewer dif-
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ferences in primary metabolites and the grape transcriptome between RB(+) grapes and
RB(−) grapes in 2017 were concurrent with increased induction of a gene that encodes
for DCL-2. CS on 420A rootstock was less sensitive to GRBV infection than CS on 110R
rootstock, specifically in 2017. This was seen in anthocyanin accumulation and the grape
transcriptome, specifically with plant-pathogen interactions in 2017. We hypothesize that
the difference in vigor and drought resistance in the two rootstocks led to a difference in
the microclimate of the grapevine and berry metabolism.

In past research, decreases in symptoms have been correlated to upregulation of
RNA silencing. Our research potentially indicates the same phenomenon in grapevines
infected with GRBV, where higher temperatures potentially led to induction of virus-
induced RNA gene silencing in GBRV infected fruit and fewer differences in the grape
transcriptome. In the current study, the transcript that encodes DCL-2 was only significantly
upregulated at veraison in both rootstocks and seasons, which resulted in decreases in viral
gene expression, suggesting a potential phenological control over plant-derived immune
responses. Further work on calcium-binding proteins, RNA-induced gene silencing, and
siRNAs analysis in GRBV infected grapes is needed to confirm these findings and obtain a
holistic view of the plant-pathogen interactions during GRBV infection.
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