
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18670  | https://doi.org/10.1038/s41598-020-75760-9

www.nature.com/scientificreports

Delineating colorectal cancer 
distribution, interaction, and risk 
prediction by environmental risk 
factors and serum trace elements
Azmawati Mohammed Nawi1,2*, Siok Fong Chin1,2, Luqman Mazlan3 & Rahman Jamal1,2*

The burden of colorectal cancer (CRC) is increasing worldwide especially in developing countries. 
This phenomenon may be attributable to lifestyle, dietary and environmental risk factors. We aimed 
to determine the level of 25 trace elements, their interaction with environmental risk factors, and 
subsequently develop a risk prediction model for CRC (RPM CRC). For the discovery phase, we used 
a hospital-based case–control study (CRC and non-CRC patients) and in the validation phase we 
analysed pre-symptomatic samples of CRC patients from The Malaysian Cohort Biobank. Information 
on the environmental risk factors were obtained and level of 25 trace elements measured using the 
ICP-MS method. CRC patients had lower Zn and Se levels but higher Li, Be, Al, Co, Cu, As, Cd, Rb, 
Ba, Hg, Tl, and Pb levels compared to non-CRC patients. The positive interaction between red meat 
intake ≥ 50 g/day and Co ≥ 4.77 µg/L (AP 0.97; 95% CI 0.91, 1.03) doubled the risk of CRC. A panel 
of 24 trace elements can predict simultaneously and accurate of high, moderate, and low risk of 
CRC (accuracy 100%, AUC 1.00). This study provides a new input on possible roles for various trace 
elements in CRC as well as using a panel of trace elements as a screening approach to CRC.

The incidence and mortality of colorectal cancer (CRC) vary widely from country to  country1. The incidence 
and mortality rates are still increasing in low- and middle-income  countries2, while developed countries such 
as the United States show a decreasing  trend3. In Asia, environmental factors and the low public awareness of 
CRC screening within the different ethnicities and cultures may contribute to the increasing trend in  incidence4. 
Among the screening tests for detecting CRC, colonoscopy has a sensitivity of more than 90%, with an estimated 
59% reduction in risk of death from CRC 5. However, it is an invasive procedure and costly, especially in countries 
that do not provide free population screening. A blood-based marker, which would be relatively inexpensive to 
measure, could increase screening compliance and be cost-effective6.

In recent years, there has been great interest in the analysis of trace elements (TEs) for use as biomarkers due 
to the diverse roles that TEs play in the various biochemical and physiological processes. The levels of arsenic 
(As), copper (Cu), cobalt (Co), nickel (Ni), Magnesium (Mg) and lead (Pb) have been reported to be high in 
several cancers and are believed to contribute to cancer  development7–11. There are few studies looking at the 
multi-element approach and most of them have used the atomic absorption spectroscopy approach and not the 
ICPMS method. There is a need for a multi-element approach to analyse the various TEs in blood samples The 
levels of TEs in the human body vary according to different environmental exposures and are influenced by diet 
 intake12,13, smoking  status14, and  obesity15.

Most risk prediction models (RPMs) for CRC use information on non-modifiable (i.e., age, sex) and modifi-
able environmental factors (i.e., lifestyle, clinical data)16. RPMs that use information on environmental factors 
with the inclusion of TE levels are lacking. An RPM that can identify high-risk groups would be helpful and 
cost-beneficial and enable the development of focused preventive strategies.

The objectives of this study were to: (i) determine, compare and classify TE levels among CRC cases and 
controls, (ii) determine the interaction between serum TEs and environmental factors, and (iii) develop and 
validate a CRC RPM using TE levels and environmental factors.

OPEN

1Department of Community Health, Faculty of Medicine, UKM Medical Center, Universiti Kebangsaan Malaysia, 
Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, W. Persekutuan, Malaysia. 2Medical Molecular Biology 
Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, 
W. Persekutuan, Malaysia. 3Department of Surgery, UKM Medical Center, UKM, Cheras, Malaysia. *email: 
azmawati@ppukm.ukm.edu.my; rahmanj@ppukm.ukm.edu.my

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-75760-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18670  | https://doi.org/10.1038/s41598-020-75760-9

www.nature.com/scientificreports/

Results
Comparative analysis of environmental risk factors and serum TE levels between CRC and 
non-CRC patients. The environmental risk factors between the CRC and non-CRC samples were signifi-
cantly different for sex, smoking status, physical activity, obesity, and between red meat and white meat intake. 
Most patients with CRC were men (61.8%) while women outnumbered the men in those without CRC (52.9%). 
Among the CRC patients, 48% were smokers, 66% were overweight and obese, 59.8% were physically inactive, 
56.9% had higher red meat intake and 53.9% had lower white meat intake. Fourteen TEs (Li, Be, Al, Co, Cu, 
Zn, As, Se, Cd, Rb, Ba, Hg, Tl, Pb) showed significant mean/median differences between the patients with and 
without CRC. Patients with CRC had lower Zn and Se levels but higher Li, Be, Al, Co, Cu, As, Cd, Rb, Ba, Hg, Tl, 
and Pb levels compared to patients without CRC (Fig. 1).

Linkage analysis of trace elements identifies disturbed clustering in colorectal cancer. Our 
results showed a clear alteration of the TE levels in CRC samples compared to non-CRC samples. The correlation 
between the 25 TEs were observed more in CRC patients (Table 1), with a clear clustering formed between CRC 
and non-CRC samples. The linkage analysis showed three clusters with a distance of 10–15 in the CRC group, 
and two clusters in the non-CRC group (Fig. 2). The essential TEs with antioxidant function, i.e., Se and Zn, 
clustered together in the non-CRC group but were in different clusters in the CRC group. PCA using 14 selected 
TEs clustered the CRC patients in a clear grouping compared to the non-CRC patients, and this clustering per-
formed better than using the 25 TEs (Fig. 3). The variance for the 14 TEs improved to 56.3% for the three main 
components compared to the 40.8% from 25 TEs. However, it increased to 70.4% for the five main components 
compared to 54.1% for 25 TEs.

Serum TEs as biomarkers. The levels of the 14 significant TEs were analysed further to obtain the respec-
tive cut-off screening values for CRC (Table 2). The cut-off points obtained were compared with the values from 
the Agency for Toxic Substances and Disease Registry (ATSDR). From the comparison, only Be and As were 
within the normal range by the ATSDR but not the others. Most of the TE levels by the ATSDR were measured 
using AAS (atomic absorption spectrometry) and the reference values were derived from mainly the Western 
population. Only Be and Zn had AUC values ≥ 0.80; therefore, the subsequent analysis for determining TEs as 
biomarkers used the ratio of Be and Zn with the other 12 TEs. The Co/Zn ratio had the highest AUC, followed 
by the ratios of Be/Zn (0.86) and Rb/Zn (0.85) (Table 2).

The interaction between serum TE levels and environmental factors. CRC patients with red meat 
intake ≥ 50 g/day showed the highest contribution of risk due to interaction with Co ≥ 4.77 µg/L followed by 
Zn < 1103.06 µg/L and Al ≥ 95.02 µg/L. After controlling the confounder factors, the interactions contributed 
97% (Co), 95% (Zn), and 88% (Al) of CRC risk (Table 3). Only Zn < 1103.06 µg/L with white meat intake < 50 g/
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Figure 1.  Selected 14 trace elements with significant difference concentration among CRC and non-CRC 
patients.
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day showed positive interaction through multiplicative calculation in determining CRC risk, which was 39 
times. The interaction between obesity with Co ≥ 4.77 µg/L or Zn < 1103.06 µg/L contributed to increased CRC 
risk of 88% and 65%, respectively.

Development of Risk Prediction Model for CRC (CRC RPM). CRC RPM for high and low CRC 
risk. We used two datasets for developing the CRC RPM using TE levels, environmental risk factors, and the 

Table 1.  Comparison of trace elements correlation (correlation coefficient, r ≥ 0.5) between CRC and non-
CRC groups.

Correlation

CRC Non CRC 

r value p value r value p value

Ba–Ga 0.68  < 0.001 0.56  < 0.001

Ag–Ga 0.67  < 0.001 0.57  < 0.001

Ga–Mn 0.61  < 0.001 0.72  < 0.001

Ba–Ag 0.58  < 0.001 0.61  < 0.001

Ni–Cr 0.57  < 0.001 0.65  < 0.001

Ba–Sr 0.57  < 0.001 0.60  < 0.001

Mn–Li 0.55  < 0.001 0.63  < 0.001

U–Ag 0.50  < 0.001 0.65  < 0.001

Ba–Cs 0.68  < 0.001 NS

Cs–Ga 0.68  < 0.001 NS

U–Li 0.66  < 0.001 NS

Cs–Ag 0.64  < 0.001 NS

Ba–Mn 0.63  < 0.001 NS

U–Ba 0.62  < 0.001 NS

Ag–Sr 0.61  < 0.001 NS

Cs–Sr 0.60  < 0.001 NS

Pb–TI 0.60  < 0.001 NS

Pb–Al 0.59  < 0.001 NS

Ba–Li 0.59  < 0.001 NS

Sr–Ga 0.58  < 0.001 NS

Ga–Be 0.56  < 0.001 NS

Ag–Be 0.56  < 0.001 NS

Mn–Al 0.54  < 0.001 NS

Cs–Be 0.53  < 0.001 NS

Cs–Mn 0.52  < 0.001 NS

TI–Al 0.52  < 0.001 NS

Cs–V 0.52  < 0.001 NS

Pb–C0 0.52  < 0.001 NS

V–Be 0.51  < 0.001 NS

U–Ga 0.51  < 0.001 NS

U–Mn 0.51  < 0.001 NS

Ba–Be 0.51  < 0.001 NS

U–Sr 0.50  < 0.001 NS

Ag–Mn 0.50  < 0.001 NS

V–Al 0.50  < 0.001 NS

Ba–Al NS 0.81  < 0.001

Ni–Al NS − 0.67  < 0.001

Ga–Li NS 0.64  < 0.001

Cr–Al NS − 0.60  < 0.001

Ba–Ni NS − 0.60  < 0.001

Ag–Al NS 0.56  < 0.001

Ga–Al NS 0.56  < 0.001

Cr–Mg NS 0.55  < 0.001

Sr–Mn NS 0.54  < 0.001

Sr–Rb NS 0.52  < 0.001

U–TI NS 0.51  < 0.001
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TE–environmental risk factor combination (Table 4). The ANN algorithm analysis of the training data (n = 159) 
yielded higher values for accuracy, sensitivity, specificity, PPV, and NPV for the CRC RPM using a panel of the 
14 TEs. For CRC RPM using environmental risk factors, the SVM algorithm determined higher accuracy for 
the training data (83.0%), followed by the results using the ANN algorithm (79.8%). However, with the test data, 
the SVM and ANN algorithms determined 10% and 2% accuracy, respectively, for the CRC RPM. Therefore, the 
lower RMSE (root mean square error) value was required to select the best algorithm for the CRC RPM. The 
ANN algorithm determined a low RMSE value for the RPM using environmental risk factors. The best algorithm 
for the CRC RPM for the TE–environmental risk factor combination was LR. This model had the highest ac-
curacy and AUC value compared to using the 14 TEs or environmental factors alone.

The CRC RPM was further tested with the ASX CRC cases and showed that the 14-TE panel (81.1%) was the 
best model (Fig. 4). Although the RPM using the 14-TE panel yielded higher accuracy and AUC value, it was 
not specific. The RPM analysis showed that the 14-TE panel could predict CRC risk among the asymptomatic 
population.

CRC RPM for high, moderate, and low CRC risk. The CRC RPM developed in the discovery phase showed good 
accuracy in predicting high and low CRC risk. However, the accuracy decreased when tested with ASX CRC 

Figure 2.  Dendogram using Ward Linkage for 25 trace elements. Different cluster patterns were observed 
among (a) CRC patients, (b) non-CRC patients.
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samples. This might have been because the data used in RPM development were from patients with CRC, hence 
reflecting a late stage pathology as compared to the asymptomatic stage. Therefore, the CRC RPM required 
improvement with the inclusion of data from ASX CRC itself. The improved CRC RPM could evaluate CRC risk 
simultaneously into three levels: high (CRC), moderate (ASX CRC), and low (non-CRC). Before the new CRC 
RPM was developed, selection of variables for the TEs and environmental risk factors was required that could 
differentiate the CRC, ASX CRC, and non-CRC groups. Only the selected variables were included in the CRC 
RPM development. The level of 24 TEs (Ag, Al, As, Ba, Be, Cd, Co, Cr, Cs, Cu, Ga, Li, Mg, Mn, Ni, Pb, Rb, Se, 
Sr, Tl, U, V, Zn, Hg) and eight environmental risk factors (age, ethnicity, comorbidities, smoking status, physical 
activity, obesity, red meat intake, white meat intake) were significantly different between the three groups and 
were included in model development.

The CRC RPM using the 24-TE panel produced the highest accuracy (100%) after testing with the test data 
(Table 5). This was followed by the CRC RPM using the TE–environmental risk combination (86.5%) and envi-
ronmental risk factors alone (67.3%). Besides that, the LR algorithm was selected for all three CRC RPMs, with 
the training data yielding high accuracy. Although the SVM algorithm yielded higher accuracy for the CRC RPM 
using environmental risk factors as compared to LR, the accuracy decreased by almost 25% for the SVM algo-
rithm as compared to LR (7.1%). Therefore, LR was selected for the CRC RPM using environmental risk factors.

CRC RPM accuracy was evaluated using the validation data (n = 69). The highest accuracy for the CRC 
RPM was based on the 24-TE panel (Fig. 5). The findings confirm the model’s consistency in predicting CRC 
risk with good accuracy, sensitivity, specificity, PPV, NPV, and AUC value. It showed that the CRC RPM could 
perform accurate predictions using the 24-TE panel compared to RPMs using the TE–environmental risk fac-
tor combination or environmental risk factors alone. The CRC RPM was not only able to predict high CRC risk 
in individuals, but also among individuals with moderate CRC risk and who did not have any CRC symptoms.

Discussion
Determination, comparison, and classification of TE levels between CRC and non-CRC 
cases. In the present study, we identified a panel of 14 TEs (Li, Be, Al, Co, Cu, Zn, As, Se, Cd, Rb, Ba, Hg, Tl, 
Pb) that separated CRC from the non-CRC samples. We noted that 10 of the 14 TEs (Li, Be, Al, Co, Rb, Ba, As, 
Hg, Tl, Pb) have not been reported to be altered in patients with CRC. Be, Al, Co, Rb, Ba, As, Hg and Pb have 
been reported for other cancer types, but not for CRC 17–24. High or low levels of TEs can possibly contribute to 
CRC through various mechanisms. Among the mechanisms that have been reported is inhibition of DNA repair, 
inhibition of DNA methylation, increased oxidative stress, and altered gene  expression25.

Figure 3.  Trace elements distribution. (a) PCA showed a distribution of 25 trace elements in the CRC and 
non-CRC group in the adjacent cluster and can be distinguished by the three main components. (b) PCA shows 
a clear cluster for CRC and non-CRC group based on the distribution of 14 significant trace elements (c) Plot 
scree shows the variance explained with the three main components of the 25 trace elements is 40.8% while 
the addition to the five components can improve the explained of the variance to 54.1%. (d) Plot scree shows 
the variance explained with the three main components of 14 trace elements is 56.3% while adding to five 
components can increase the variance explained to 70.4%.
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Table 2.  Evaluation of single/ratio trace elements as a biomarker for CRC and comparison with the reported 
normal range. AUC  area under curve, PPV positive predictive value, NPV negative predictive value.

Trace elements
Suggested cut off value 
(ug/L) AUC ( 95CI) p value

Reported normal range 
(ug/L) Reference

Li 3633.62 0.60 (0.52–0.68) 0.016 NA NA

Be 0.93 0.80 (0.75–0.86)*  < 0.001 0.28–1.00 ATSDR 2002

Al 95.02 0.73 (0.65–0.80)  < 0.001 1.00–3.00 ATSDR 2011

Co 4.77 0.72 (0.65–0.79)  < 0.001 5.70–7.90 ATSDR 2004

Cu 1892.77 0.59 (0.51–0.67) 0.026 2390.00–3460.00 ATSDR 2004

Zn 1103.06 0.83 (0.77–0.89)*  < 0.001 1000 ATSDR 2005

As 0.94 0.64 (0.60–0.72)  < 0.001  < 1.00 ATSDR 2007

Se 81.74 0.66 (0.58–0.73)  < 0.001 125 ATSDR 2003

Rb 12.63 0.67 (0.60–0.74)  < 0.001 NA NA

Cd 0.19 0.71 (0.64–0.78)  < 0.001 0.31 ATSDR 2012

Ba 151.03 0.66 (0.58–0.73)  < 0.001 NA NA

Hg 0.76 0.62 (0.54–0.70) 0.003 0.5 ASTDR 1999

TI 0.41 0.63 (0.56–0.71) 0.001 NA NA

Pb 0.53 0.65 (0.58–0.73)  < 0.001 15 ASTDR 2007

Single/ratio trace elements AUC (95CI) Sensitivity Specificity PPV NPV

Co/Zn 0.87 (0.82–0.92) 79.4 76.5 75.9 79.1

Be/Zn 0.86 (0.81–0.91) 77.5 75.5 75.2 76.8

Rb/Zn 0.85 (0.80–0.90) 76.5 73.5 74.8 79.6

Cd/Zn 0.84 (0.78–0.90) 79.4 76.5 70 83.1

Zn 0.83 (0.77–0.89) 80.4 77.5 79.8 78.1

Cu/Zn 0.83 (0.77–0.88) 76.5 73.5 74.3 75.8

Pb/Zn 0.83 (0.77–0.88) 77.5 74.5 75 74

As/Zn 0.81 (0.76–0.86) 77.5 74.5 75 76

Al/Zn 0.80(0.74–0.86) 77.5 74.5 75.2 76.8

Be 0.80(0.75–0.86) 67.6 77.5 75 70.5

Table 3.  Interaction analysis between red meat intake with Zn, Co and Al levels. OR odds ratio, ORINT odds 
ratio due to interaction. a Not adjusted to other factors, bAdjusted to all environmental risk factors.

Trace 
elements

Red meat 
intake CRC Non-CRC Univariatea Adjustedb

(ug/L) (g/day) n n OR (95% CI) Interaction ORINT
ORINT 
95%CI OR 95%CI Interaction ORINT

ORINT 
95%CI

Zn ≥ 1103.06 − 6 66 1 Multiplica-
tive 5.49 (3.48, 8.65) 1 Multiplica-

tive 0.53 (0.04, 7.34)

Zn < 1103.06 − 22 16 15.13 (5.27, 43.44) RERI 0.27 (0.03, 0.50) 25.87 (4.49, 
149.10) RERI 0.22 (− 0.13, 0.57)

Zn ≥ 1103.06  + 18 16 12.37 (4.23, 36.19)
AP 0.92 (0.83, 1.01)

16.8 (1.02, 
102.89)

AP 0.95 (0.89, 1.03)
Zn < 1103.06  + 56 4 154 (41.37, 

573.21) 150.35 (5.51, 
4103.67)

Co < 4.77 − 14 68 1 Multiplica-
tive 5.6 (3.45, 9.09) 1 Multiplica-

tive 0.72 (0.04, 12.16)

Co ≥ 4.77 − 14 14 4.86 (1.90, 12.41) RERI 0.49 (0.06, 0.92) 8.63 (1.58, 47.09) RERI 0.52 (− 0.42, 1.46)

Co < 4.77  + 29 16 8.8 (3.81, 20.36)
AP 0.89 (0.79, 0.98)

25.93 (2.21, 
303.90)

AP 0.97 (0.91, 1.03)
Co ≥ 4.77  + 45 4 54.64 (16.90, 

176.64) 55.5 (3.98, 
773.62)

Al < 95.02 − 6 60 1 Multiplica-
tive 6.6 (4.01, 10.83) 1 Multiplica-

tive 72.76 (0.55, 
9673.37)

Al ≥ 95.02 − 22 22 10 (3.58, 27.91) RERI 0.25 (0.03, 0.47) 10.69 (1.73, 66.13) RERI 0.21 (− 0.11, 0.53)

Al < 95.02  + 18 19 9.47 (3.29, 27.30)
AP 0.89 (0.78, 1.01)

28.34 (1.50, 
536.77)

AP 0.88 (0.68, 1.09)
Al ≥ 95.02  + 56 1 560 (65.35, 

4798.38) 32.97 (1.93, 
562.08)
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We found that the levels of Se, Zn, and Cd are in concordance with the results of a previous study on patients 
with CRC 26–28. The low levels of Se and Zn we found in the patients with CRC have also been reported previously. 
It is believed that Se acts through an antioxidant defence system to reduce oxidative stress and minimise DNA 
 damage29. Similar to Se, Zn is an important co-factor in antioxidant enzymes (superoxide dismutase [SOD], 
GPx) and is involved in the defence systems of the  body30. In vivo and in vitro studies have proven that Zn can 
prevent cancer development through apoptosis  mechanisms31. High Cd levels in  serum32 and  tissue33 have also 
been reported in patients with CRC. Cd is also a heavy metal and has been categorised as a human  carcinogen34. 
The mechanisms involved in CRC formation are through oncogene activation and the inhibition of  apoptosis35.

For Cu, our findings were inconsistent when compared to previous studies. We found that patients with CRC 
had high Cu levels, but Milde et al.36 found that such patients had low Cu levels. The difference may be due to 
sample size, where Milde et al. studied only 20 patients, while our study involved 102 patients. Other researchers 
have reported similar findings to ours, where CRC patients with Dukes’ stage C and D had higher Cu  levels37. 
In the present study, most patients with CRC were diagnosed at Dukes’ stage C. This indirectly explains why 
the patients with CRC in the present study had high Cu levels compared to the patients without CRC. Khoshdel 
et al.38 reported the same finding in a large sample of patients with CRC from Iran (n = 119), but unlike the 
present study using ICPMS, they used AAS. Therefore, the difference in Cu level findings in patients with CRC 
should be investigated further in a different and larger cohort of samples.

We found that there was more correlation between TEs and CRC than with non-CRC cases. Ba, Cs, Ga, U, 
Li, Ag, Mn, U, Sr, Pb, Tl, Sr, Be, Al, V, and Co had positive correlation values > 0.5. These TEs were all present in 
high quantities in the patients with CRC compared to the values recommended by the accredited ATSDR. When 

Table 4.  Development of CRC RPM (high and low risk) using trace element, environmental risk factors and a 
combination of trace element-environmental risk factors. SVM support vector machine, ANN artificial neural 
network, LR logistic regression, RMSE root mean square error, PPV positive predictive value, NPV negative 
predictive value.

Evaluation 
criteria

Trace element-based Environmental factor-based
Trace element-based & environmental factor-
based

Training data 
(n = 159) Test data (n = 40)

Training data 
(n = 159) Test data (n = 40) Training data (n = 159) Test data (n = 40)

SVM ANN LR SVM ANN LR SVM ANN LR SVM ANN LR SVM ANN LR SVM ANN LR

Correctly clas-
sified 146 157 147 39 37 37 132 127 126 29 31 30 155 157 159 39 38 39

Incorrectly clas-
sified 13 2 12 1 3 3 27 32 33 11 9 10 4 2 0 1 2 1

Accuracy (%) 91.8 98.7 92.5 97.5 92.5 92.5 83.0 79.8 79.3 72.5 77.5 75.0 97.5 98.7 100.0 97.5 95.0 97.5

Sensitivity 0.89 0.99 0.92 1.00 0.95 1.00 0.85 0.83 0.81 0.85 0.79 0.81 1.00 0.98 1.00 1.00 0.91 0.95

Specificity 0.94 0.99 0.93 0.95 0.90 0.87 0.81 0.77 0.78 0.67 0.76 0.71 0.95 1.00 1.00 0.95 1.00 1.00

PPV 0.95 0.99 0.94 0.95 0.90 0.85 0.82 0.77 0.78 0.55 0.75 0.65 0.95 1.00 1.00 0.95 1.00 1.00

NPV 0.88 0.99 0.91 1.00 0.95 1.00 0.84 0.83 0.81 0.90 0.80 0.85 1.00 0.97 1.00 1.00 0.90 0.95

Variable 14 14 14 14 14 14 6 6 6 6 6 6 20 20 20 20 20 20

Kappa Statistic 0.84 0.97 0.85 0.95 0.85 0.85 0.66 0.60 0.59 0.45 0.55 0.50 0.95 0.97 1.00 0.95 0.90 0.95

RMSE NA NA NA 0.0045 0.0034 0.0046 NA NA NA 0.0041 0.0039 0.0039 NA NA NA 0.005 0.0047 0.0035

AUC 0.98 0.99 0.98 1.00 0.98 0.99 0.90 0.84 0.87 0.78 0.87 0.88 0.99 1.00 1.00 1.00 1.00 0.99

Figure 4.  Validation of CRC RPM among ASX CRC (n = 90).
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there is a correlation between TEs, especially at high levels, it is likely to have a toxic effect on the human body 
and thus could lead to CRC  formation39.

Patients with CRC also have disrupted TE distribution, especially for essential TEs such as Cu, Zn, and Se. 
These TEs were grouped into different clusters in patients with CRC patients compared to non-CRC cases. Feng 
et al.40 studied patients with breast cancer and found that these three TEs are closely related to the status of oxi-
dative stresses that can contribute to cancer formation. There are few findings on the correlation between TEs 
and their distribution patterns in CRC. However, there is a significant relationship between the TEs and their 
distribution in patients with CRC as compared to patients without CRC.

Biomarkers using TEs attracted more attention following the reporting of evidence from previous studies 
on TEs and disease  risk41. TEs have been used for differentiating to patients with and without cancer such as 
in breast  cancer42, lung  cancer43, prostate  cancer44, and CRC 45. Although TEs have attracted a lot of attention 
as potential cancer biomarkers, the cut-off values of the respective TEs have not been determined. Reference 
sources remain scarce, and the normal level values   are typically referred through the ATSDR website (https ://
www.atsdr .cdc.gov/). The TE values   on the ATSDR website are more relevant to the general population rather 

Table 5.  Development of CRC RPM (high, moderate and low risk) using trace element, environmental risk 
factors and a combination of trace element-environmental risk factors. SVM support vector machine, ANN 
artificial neural network, LR logistic regression, RMSE root mean square error, PPV positive predictive value, 
NPV negative predictive value.

Evaluation 
Criteria

Trace element-based Environmental factor-based
Trace element-based & Environmental factor-
based

Training data (n = 168) Test data (n = 52) Training data (n = 168) Test data (n = 52) Training data (n = 168) Test data (n = 52)

SVM ANN LR SVM ANN LR SVM ANN LR SVM ANN LR SVM ANN LR SVM ANN LR

Correctly classified 161 141 168 46 39 47 142 110 125 31 32 35 168 157 168 42 45 45

Incorrectly clas-
sified 7 27 0 6 13 5 26 58 43 21 20 17 0 11 0 10 7 7

Accuracy (%) 95.8 84.0 100.0 88.5 75.0 100.0 84.5 65.5 74.4 59.6 61.5 67.3 100.0 93.5 100.0 80.8 86.5 86.5

High risk (CRC)

Sensitivity 0.97 0.82 1.00 0.85 0.70 1.00 0.84 0.70 0.69 0.50 0.65 0.65 1.00 1.00 1.00 0.75 1.00 0.85

Specificity 0.97 0.89 1.00 0.94 0.81 1.00 0.93 0.71 0.86 0.78 0.72 0.78 1.00 0.94 1.00 0.88 0.81 0.91

PPV 0.95 0.81 1.00 0.89 0.70 1.00 0.86 0.58 0.74 0.59 0.59 0.65 1.00 0.90 1.00 0.79 0.77 0.85

NPV 0.98 0.90 1.00 0.91 0.81 1.00 0.91 0.81 0.83 0.71 0.77 0.78 1.00 1.00 1.00 0.85 1.00 0.91

Moderate risk (ASX CRC)

Sensitivity 0.98 0.92 1.00 1.00 0.04 1.00 0.88 0.59 0.82 0.64 0.45 0.73 1.00 0.86 1.00 1.00 0.82 0.91

Specificity 0.97 0.97 1.00 0.98 0.72 1.00 0.93 0.94 0.91 0.88 0.90 0.90 1.00 1.00 1.00 0.93 1.00 0.98

PPV 0.93 0.92 1.00 0.92 0.04 1.00 0.85 0.81 0.81 0.58 0.56 0.67 1.00 1.00 1.00 0.79 1.00 0.91

NPV 0.99 0.97 1.00 1.00 0.67 1.00 0.95 0.84 0.92 0.90 0.86 0.93 1.00 0.94 1.00 1.00 0.95 0.98

Variable 24 24 24 24 24 24 8 8 8 8 8 8 32 32 32 32 32 32

Kappa Statistic 0.94 0.76 1.00 0.82 0.61 0.85 0.77 0.48 0.62 0.38 0.40 0.50 1.00 0.90 1.00 0.71 0.79 0.79

AUC 0.98 0.99 1.00 0.99 0.86 1.00 0.88 0.88 0.90 0.86 0.77 0.83 1.00 0.97 1.00 0.88 0.88 0.94

Figure 5.  Validation of CRC RPM using validation data (n = 69).

https://www.atsdr.cdc.gov/
https://www.atsdr.cdc.gov/
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than to respective diseases including cancers. Moreover, the reference values were established in the last decade 
based on the Western population. Therefore, a screening cut-off value for patients with CRC itself is much needed 
to be used for identifying those with high CRC risk. Our findings cut off value for differenting CRC population 
almost similar with ATSDR value for Be and Zn.

In the present study, though the level of 14 TEs could differentiate CRC and non-CRC samples, only Be and 
Zn levels had AUC value of ≥ 0.8. The cut-off values   for Be and Zn which we have proposed are in the range set 
by the ATSDR in the general  population46,47. For the other 12 TEs the AUC values were < 0.8 hence they are less 
useful as individual  biomarkers48. Therefore, the cut-off values   for Be and Zn we have proposed can be used as ref-
erence   or screening values for patients with CRC. The cut-off values from this findings may varies with different 
population but our finding cut off value are in line with ATSDR suggestion in differentiating CRC and non-CRC.

Apart from the individual TE, it has also been suggested that TE ratios can be used as biomarkers. We found 
that the AUC value can be improved through the use of the TE ratio rather than a single TE. In the present 
study, the Co/Zn ratio yielded the highest AUC value. However, no study to date has assessed Co or even the 
Co/Zn ratio as a biological marker for CRC. However, it has been suggested that the Cu/Zn ratio be used as a 
biomarker, but no AUC or sensitivity values have been specified for the  ratio37. Although previous studies have 
focused on the Cu/Zn ratio, our findings on the Co/Zn ratio require further validation of its potential use as a 
CRC screening test.

The interaction between serum TEs and environmental factors. We also showed that the interac-
tion between excessive red meat intake with low Zn levels could increase CRC risk. Red meat is a rich source of 
 Zn49. Excessive red meat intake increases Zn levels, but its bioavailability depends on homeostasis. Homeostasis 
is maintained in the gastrointestinal system through the absorption of exogenous Zn, and the secretion and 
excretion of Zn  endogenously50. Imbalanced diet, such as food with high-phytate composition (e.g., grains and 
legumes)51 and the presence of certain intestinal  microbes52 are two examples of factors that can interfere with 
the effectiveness of Zn homeostasis. This decreases the amount of Zn in the body even with excessive red meat 
intake. Low Zn levels reduce antioxidant responses for neutralising oxidative  stress53. Also, the carcinogenic 
mechanisms of red meat  content54 can double CRC risk.

Cooking with utensils made from Al or wrapping food in Al foil can cause Al leaching into  food55.  Turhan56 
showed that Al content was increased by 89–378% if red meat was cooked and wrapped with Al foil. Marinating 
meat with a mixture of citric acid and lactic acid and wrapping it with Al foil can further enhance the Al content 
of the meat through  leaching57. Red meat also has high quantities of Co compared to white  meat58. The increased 
Co in red meat can occur through the provision of foods containing high quantities of Co, such as alfalfa seeds 
or linseed (animal food)59. Consequently, excessive red meat consumption indirectly increases Al and Co lev-
els in the human body. The combination of red meat intake with high Al or Co levels stimulates carcinogenic 
mechanisms in CRC  formation60,61.

We also showed that the interaction between low intake of white meat (< 50 g/day) and low Zn levels contrib-
uted to higher CRC risk. Unbalanced  diets51 and the presence of certain intestinal  microbes52 can cause decreased 
Zn levels due to disturbance of Zn homeostasis. White meat does not produce carcinogens as compared to red 
meat, but as a result of low Zn levels, oxidative stress remains  uncontrolled62, increasing CRC risk.

The factor of obesity combined with low Zn levels or high Co levels also increases CRC risk. Zn levels 
decrease with increased body mass  index63. Adipose tissue causes systemic changes in the human body, includ-
ing altering the levels of insulin, insulin-like growth factor-1, leptin, adiponectin, steroids, and  cytokines64. This 
can interfere with Zn homeostasis and cause Zn  deficiency65. In addition, lower levels of a Zn transporter gene, 
ZIP14 (SLC39a15), have been reported in obese  individuals66 and result in Zn reduction in the  body67. Obesity-
induced endocrine changes and gene expression cause low Zn levels. Thus, it can increase oxidative stress and 
DNA  damage30,68,69, which further contribute to CRC formation. However, the association between obesity and 
Co levels remains  unknown70, as does its relation to the mechanism of disease.

CRC RPM. We developed RPMs for CRC based on TEs and environmental risk factors. The model was tested 
on three groups of patients: high-risk (CRC), moderate-risk (ASX CRC), and low-risk (non-CRC). Early in the 
CRC RPM development, the addition of environmental risk factors to the TEs increased the accuracy of the CRC 
RPM. However, the accuracy decreased when tested on the ASX CRC group. This may have been due to an inac-
curacy of the environmental risk factors information, which relied heavily on the patient’s memory. Hence, the 
environmental risk factor information obtained is more likely to be  biased71 than the quantitative measurement 
of TEs in the patient’s blood.

The 14-TE panel (Li, Be, Al, Co, Cu, Zn, As, Se, Cd, Rb, Ba, Hg, Tl, Pb) could predict high and low CRC risk 
but was less precise for the moderate risk group. The development of a new CRC RPM using a 24-TE panel (Ag, 
Al, As, Ba, Be, Cd, Co, Cr, Cs, Cu, Ga, Li, Mg, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn, Hg) increased the value of 
each performance parameter, especially accuracy. This enabled CRC risk assessment to be classified into three 
categories, i.e., high, medium, and low. This risk stratification method is useful for early detection of patients 
with high CRC  risk72. Hence, colonoscopy and tissue biopsy for determining CRC diagnosis may be prioritized 
to high-risk individuals first, followed by moderate-risk individuals. Early detection of CRC can be performed 
through this predictive model even if the patient does not show any clinical symptoms of CRC.

To date, there is no CRC RPM using TEs. However, previous studies have shown that TEs can be used to pre-
dict the risk of other cancers and diseases. For example, Guo et al.73 used a panel of 10 TEs from hair specimens 
(Mg, P, K, Ca, Cr, Mn, Fe, Cu, Zn, Se) to predict prostate cancer with 95.8% accuracy. In addition, demographic, 
clinical, and trace elements have been incorporated for predicting Parkinson’s  disease74,75. This demonstrates the 



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18670  | https://doi.org/10.1038/s41598-020-75760-9

www.nature.com/scientificreports/

importance of knowledge of the TEs in the human body for use as a predictor of CRC risk. The futher validation 
may needs from other source population before CRC RPM can be performed in the community.

The main study strength are the novelity of the findings related to TE and less invasive biomarker contribu-
tion for early detection of CRC. However, futher validation needs to be done for a more accurate and sensitive 
results. Information bias is an avoidable situation as we mainly depends on self-reported information. We try to 
reduce the bias by confirming the self-reported information with family members.

In conclusion, public awareness of healthy and balanced nutrition needs to be improved. Increased aware-
ness of environmental risk factors in the community can reduce the risk of CRC. In Malaysia, various awareness 
programs have been organised therefore including CRC screening. We would like to recommend the 24-TE panel 
developed in this study as a screening test for individual stratification with different levels of CRC risk, i.e., high, 
moderate, or low risk. High-risk individuals should take priority in colonoscopy and tissue biopsy procedures 
for determining CRC diagnosis, followed by moderate- and low-risk individuals.

Materials and methods
Participants. Discovery Phase. All participants were newly diagnosed CRC patients from the Universiti 
Kebangsaan Malaysia (UKM) Medical Centre, Malaysia. Patients were excluded if they had more than one can-
cer, history or finding of polyps, inflammatory bowel disease (IBD) during colonoscopy, and history of toxic 
exposure during work. We enrolled 102 patients with CRC and 102 patients without CRC. The participants were 
interviewed to obtain information on environmental risk factors and underwent blood-taking for TE analysis 
after histopathology result confirm CRC or not.

Validation phase. All participants from The Malaysian Cohort (TMC)76 who are diagnosed with CRC during 
follow up were included as asymptomatic (ASX) CRC. Initial recruitment started in April 2006 through to the 
end of September 2012. The information on CRC diagnosis was based on self-reporting during follow-up or 
from mortality data from the Malaysian National Registration Department. Based on information obtained until 
June 2017, 85 ASX CRC cases were included in this study.

All participants accepted the terms of the study and provided written informed consent. The study was 
approved by the UKM Medical Research Ethical Committee (FF-2015–380) as following by the guidelines set 
out in the Declaration of Helsinki.

Environmental risk factors. All participants completed a set of questionnaires adapted from TMC study, 
which consisted of information on demographics, socioeconomic status, family history of cancer, comorbidity, 
smoking status, alcohol consumption, diet intake, body mass index, and physical activity. Diet intake and physi-
cal activity were assessed using the food frequency questionnaire and International Physical Activity Question-
naire-Malaysia (IPAQ-M),  respectively77. The information gather are self-reported and the interview were done 
by several enumerator. A training session on questionnaire was conducted to minimise the potential interview 
bias. For the validation phase, the information was extracted from the TMC database.

Quantification of trace elements. Fasting blood was processed to obtain the serum and stored at − 80 °C 
until analysis. Samples were pre-treated with acid digestion. The multi-element analysis of 25 TEs (lithium [Li], 
beryllium [Be], magnesium [Mg], aluminum [Al], vanadium [V], chromium [Cr], manganese [Mn], iron [Fe], 
cobalt [Co], Ni, copper [Cu], Zn, gallium [Ga], arsenic [As], selenium [Se], rubidium [Rb], strontium [Sr], silver 
[Ag], cadmium [Cd], cesium [Cs], barium [Ba], mercury [Hg], thallium [Tl], lead [Pb], uranium [U]) was per-
formed using an Agilent 7700 inductively coupled plasma mass spectrometer (ICP-MS)78.

Statistical analysis. Statistical analyses were performed using STATA/SE 13.0, SPSS Modeler version 18, 
and MetaboAnalyst 4.0. The normality distributions of quantitative data such as TE levels were checked by 
histogram and the Kolmogorov–Smirnov test. The 25 TEs between the CRC, non-CRC, and ASX CRC samples 
were compared using the independent t-test or analysis of variance for data with a normal distribution; the 
Mann–Whitney U or Kruskal–Wallis tests were used for data with non-normal distribution. The inter-relation-
ship between each pair of TEs was investigated using Pearson correlation analysis. The distribution pattern of 
circulating TEs was plotted based on principal component analysis (PCA) and cluster analysis (CA). The best 
cut-off value for CRC was determined using receiver operating curve (ROC) analysis and the Youden index. The 
significance level was established at p < 0.05.

Risk Prediction Model for CRC . The Risk Prediction Model (RPM) was developed based on machine 
learning (ML) algorithms. First, in the CRC RPM for discovery phase, the data were divided into two sets by the 
partition node of SPSS Modeler for developing a prediction model using three common ML algorithms: logistic 
regression (LR), support vector machine (SVM), and artificial neural network (ANN). Of the overall data, 80% 
(n = 159) were used for model development; the remaining 20% (n = 40) were used for model testing. The CRC 
RPM was validated among the ASX CRC cases (n = 85). Next, an improved CRC RPM with the inclusion of ASX 
CRC was developed using the same three ML algorithms. The data were divided into three sets: model develop-
ment, 60% (n = 168); model testing, 20% (n = 52); and model validation, 20% (n = 69).

The independent variables data consisted of different units and therefore required data normalisation. The 
normalisation was scaled within the range of 0–179. This scaling is suitable for improving the accuracy of numeric 
computation by the ML algorithms. Accuracy (the percentage of testing data correctly predicted by the model), 
sensitivity (the proportion of patients with CRC), specificity (the proportion of patients without CRC correctly 
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identified by the model), positive predictive value (PPV), negative predictive value (NPV), and area under the 
curve (AUC) were used for measuring the performance of the prediction models. Ten-fold cross-validation was 
used to measure the unbiased estimate of the three prediction models for comparing their performance.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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