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Basement membranes (BMs) are specialised extracellular matrix (ECM) structures and col-
lagens are a key component required for BM function. While collagen IV is the major BM
collagen, collagens VI, VII, XV, XVII and XVIII are also present. Mutations in these collagens
cause rare multi-systemic diseases but these collagens have also been associated with
major common diseases including stroke. Developing treatments for these conditions will
require a collective effort to increase our fundamental understanding of the biology of these
collagens and the mechanisms by which mutations therein cause disease. Novel insights
into pathomolecular disease mechanisms and cellular responses to these mutations has
been exploited to develop proof-of-concept treatment strategies in animal models. Com-
bined, these studies have also highlighted the complexity of the disease mechanisms and
the need to obtain a more complete understanding of these mechanisms. The identification
of pathomolecular mechanisms of collagen mutations shared between different disorders
represent an attractive prospect for treatments that may be effective across phenotypically
distinct disorders.

Introduction
Basement membranes (BMs) are specialised extracellular matrix (ECM) structures that compartmentalise
tissues, provide structural support and influence cell behaviour and signalling. BMs underlie epithelial
and endothelial cells, surround smooth muscle, fat and Schwann cells, and occur in the synaptic cleft.
They also link cells with the interstitial matrix which contains fibrillar collagens such as collagen I. BMs
contain approximately 60–200 proteins and the composition of individual BMs differs to provide different
biomechanical and biochemical properties to support their individual functions [1].

Vertebrates express 28 types of collagen, which are divided into classes based on protein domain struc-
ture and supramolecular assembly including fibrillar (e.g. collagen I), network forming (collagen IV),
beaded microfibril (collagen VI), multiplexin (e.g. collagen XV and XVIII) and FACIT (fibril-associated
collagens with interrupted triple helices, e.g. collagen VII and XVII) collagens. All collagens contain a
triple helical collagen domain consisting of a Gly-X-Y repeat in which every third residue is a glycine and
X-Y can be any amino acid. Collagens are folded within the endoplasmic reticulum (ER) and their secre-
tion can require enlargement of COPII vesicles through TANGO1 (transport and Golgi organisation 1)
and HSP47 (heat shock protein 47) proteins [2].

BM collagens are associated with a wide variety of diseases for which there is a need for treatments.
Recent advances in elucidating disease mechanisms and gene/cell therapy-based approaches has identified
therapeutic targets and guided proof-of-concept therapies. Here, we will provide a brief overview of recent
progress in mechanisms of disease caused by mutations in BM collagens, and development of therapeutic
strategies. For more in depth reviews on collagens and their diseases we refer the reader to the following:
collagen IV [3–5], collagen VI [6], collagen VII and XVII [7,8], collagen XV and XVIII [9].
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Collagen IV
Collagen IV is the most abundant structural BM component and is essential for BM integrity but not initial BM
formation [10]. Vertebrates express six collagen IV α chains (α1(IV)–α6(IV)), encoded by the COL4A1–COL4A6
genes, forming three networks: α1α1α2(IV), α3α4α5(IV), and α5α5α6(IV). While α1α1α2(IV) is expressed in
nearly every BM, α3α4α5(IV) and α5α5α6(IV) expression is more restricted [5]. Collagen IV alpha (α) chains
contain a N-terminal 7S domain, a central collagen domain with approximately 20 interruptions, and a C-terminal
NC1 domain, which initiates collagen folding in the ER. Following secretion, collagen IV molecules form a network
in the BM that interacts with integrins, discoidin domain receptors (DDR) and G protein-coupled receptors [3,11].

Mutations affecting α3α4α5(IV) and α5α5α6(IV)
COL4A3–COL4A5 mutations cause glomerular BM (GBM) defects leading to Alport syndrome (AS) (OMIM #
301050, # 203780, # 104200), which causes renal disease, deafness and eye pathology [3]. AS now also covers thin
BM nephropathy and familial benign haematuria phenotypes [12], while deletions spanning COL4A5 and COL4A6
cause AS with diffuse leiomyomatosis (OMIM # 308940). The production of auto-antibodies against the NC1 do-
main of α3(IV) underlies the autoimmune disorder Goodpasture syndrome [3]. Besides AS, COL4A3/COL4A4 mu-
tations are associated with kidney disorders including diabetic kidney disease [13], focal segmental sclerosis [14] and
steroid-resistant nephrotic syndrome [15], while COL4A5/COL4A6 mutations affect axogenesis in zebrafish [16],
and COL4A6 mutations can cause non-syndromic hearing loss [17], indicating a growing role of these mutations in
disease.

Autosomal dominant AS due to COL4A3/COL4A4 mutations is milder compared with autosomal recessive or
X-linked AS (due to COL4A5 mutations), and nonsense mutations cause more severe disease compared with mis-
sense mutations, the majority of which affect the glycine residue in the Gly-X-Y repeat [3]. Reduced levels or ab-
sence of α3α4α5(IV) and associated GBM defects (Figure 1) is a major causative mechanism. Induced α5α5α6(IV)
expression in Col4a3−/−mice (Table 1), a well-established model of AS, reduced disease severity [18] but mosaic
α5α5α6(IV) expression in patients was not associated with improved outcome [19]. Similarly, X-linked AS patients
exhibited persistent α1α1α2(IV) expression [3]. These data underscore the specific nature of the networks and po-
tential species differences. Interestingly, a laminin β 2 missense variant which was not pathogenic of itself in mice,
increased progression to kidney failure in Col4a3−/− mice and proteinuria in female Col4a5+/− mice, supporting the
hypothesis that GBM components can act as genetic modifiers [20].

Reduced α3α4α5(IV) GBM levels cause matrix defects, remodelling and fibrosis in AS. Recent evidence from
Col4a3−/− mice supports a central role for mechanical strain [54] on the GBM in this process as it causes endothelin
expression in mesangial cells, which results in endothelin A receptor expression in glomeruli. This leads to mesan-
gial cell invasion [55], expression of laminin α 2-chain containing laminins, and focal adhesion kinase activation in
podocytes, producing an inflammatory state and matrix metalloproteinase (MMP) activation [56], indicating ma-
trix remodelling. In part, the fibrosis and MMP activation is influenced by LOXL2 (lysyl oxidase-like 2) collagen
cross-linking activity [54], matrix-cell signalling via integrins α1β1 and α2β1, as well as DDR receptors [3,57].

The pathomolecular mechanisms of dominant AS can also include primary intracellular responses to expressing
dominant mutations as a Col4a3 glycine mutation in cultured podocytes and Col4a3 knockin mice caused ER stress,
a stress response activated by misfolded protein accumulation (Figure 1) [29]. Similarly, COL4A5 glycine mutations
can induce ER stress and activate autophagy in patient fibroblasts [58] (Figure 1). Intracellular signalling involving
STAT3 and TGFβ1 [59,60], which leads to fibrosis, have also been implicated but how they are activated remains less
clear. Similarly, the relative contribution of ER stress to dominant AS remains unknown, but it may influence disease
expressivity, similar to COL4A2-associated stroke [61].

Mutations affecting α1α1α2(IV)
The role of COL4A1/COL4A2 in human disease was identified through analysis of mice with Col4a1/Col4a2 mis-
sense mutations (Table 1) [21–23]. These mutations cause a dominant multisystemic disorder including cerebral small
vessel disease, intracerebral haemorrhage (ICH), glomerular and tubular kidney phenotypes, eye defects and myopa-
thy [24,62,63] (OMIM 120130, 120090). The location and nature of mutations affects clinical outcome with muta-
tions affecting the CB3 region of α1(IV) causing the clinical subentity HANAC (hereditary angiopathy, nephropathy,
aneurysm and cramps) syndrome, [63] and those in the miRNA-29 binding site of the 3′-UTR of COL4A1 the is-
chaemic small vessel disease PADMAL (pontine autosomal dominant microangiopathy with leukoencephalopathy)
[64]. In mice, Col4a1 mutations affecting the X or Y residue of the Gly-X-Y repeat are less severe compared with
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Table 1 Frequently used animal models of collagen-related genetic diseases

BM component Affected gene Animal model
Disease phenotype (or human
equivalent) References

Collagen IV Col4a1 Mouse missense mutations Cerebrovascular disease intracerebral
haemorrhage
Kidney disease
Myopathy
Eye defects
HANAC syndrome

[21–24]

Col4a1/ Col4a2 double null Mouse Embryonically lethal, growth
retardation,vascular defects

[10]

Col4a1 (Cg25c) and Col4a2 (Vkg) Drosophila missense and loss of
function mutation

Intestinal defects, myopathy [25]

emb-9; let-2 (Cola4a1, Col4a2) Caenorhabditis elegans misssense
mutations

Embryonically lethal [26]

Col4a2 Mouse missense mutations Cerobrovascular, ocular, renal and
muscle defects

[21]

Col4a3 Mouse knockout and missense
mutation

Autosomal recessive and dominant AS
[27,28,29]

Col4a3 & Col4a4 double null Mouse Juvenile form of AS [30]

Col4a4 Mouse missense mutation Autosomal recessive AS [31]

Col4a5 Mouse knockout and nonsense
mutation

X-linked AS [32,33]

Col4a5 Zebrafish in-frame deletion Defective retinal axon guiding [34]

Col4a6 Zebrafish
In-frame deletion

Defective axon guiding, cerebellar
granule cells defects

[16]

Collagen VI Col6a1 Mouse knockout, heterozygous in
frame deletion

Bethlem myopathy. Mitochondrial
dysfunction, defective autophagy, fibre
necrosis and osteoarthritis, abnormal
collagen fibrillogenesis, CNS defect

[35,36]

Zebrafish morpholino knockdown Bethlem myopathy, UCMD [37]

Zebrafish knockdown Bethlem myopathy, UCMD,
myosclerosis

[38]

Col6a3 Mouse in-frame deletion Dominant mild myopathy with
decreased muscle mass

[39]

Zebrafish knockdown, in frame
deletion

Bethlem myopathy (knockdown), Ullrich
syndrome (in frame deletion)

[37,40]

Col6a4 Zebrafish knockdown Abnormal motoneuron axon growth [38]

Collagen VII Col7a1 Mouse knockout hypomorph mutation Recessive dystrophic epidermolysis
bullosa

[41,42]

Collagen XV Col15a1 Mouse Mild skeletal myopathy Cardiomyopathy
Vascular dysfunction
Defects in nerve development and
myelination

[43]

Drosophila hypomorph mutant:
piggybac transposon

Neuronal function defects,
cardiomyocyte, skeletal muscle defects

[44,45]

Zebrafish morpholino knockdown of
Col15a1a; Col15a1b knockdown

Defective notochord and muscle
development; motor axon guidance
defects and muscle atrophy

[46,47],

Collagen XVII Col17a1 Mouse knockout Non-Herlitz epidermolysis bullosa,
growth retardation, enamel hypoplasia

[48]

Zebrafish col17a1a knockdown;
Col17a1b knockdown

Junctional epidermolysis bullosa
(Col17a1a); neuronal defect (Col17a1b)

[49]

Collagen XVIII Col18a1 Mouse Col18a1 knockout Knobloch syndrome; human pigment
dispersion syndrome, hydrocephalus,
kidney defect, adipocyte differentiation
defect-metabolic defect

[50]

Col15a1 and Col18a1 knockout [51]

Col18a1 isoform-specific knockout [52]

cle-1 (Col18) C. elegans Defects in cell and axon migration and
neuromuscular synapse function

[53]

Due to space limitations, only the original references describing the animal model could be included. HANAC (hereditary angiopathy with
nephropathy aneurysm and cramps), CNS (central nervous system) UCMD (Ullrich congenital muscular dystrophy)
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Figure 1. Overview of disease mechanisms caused by mutations in BM collagens

Collagen IV (COL4, black arrows) proteins harbouring nonsense mutations are processed in the ER, resulting in reduced secretion

of proteins that are incorporated in the ECM, causing matrix defects (indicated by holes). Missense mutations in collagen IV and VII

(COL7) can result in their ER retention and ER stress, and subsequent reduction in secretion (dashed arrows). COL4A5 mutations

can also induce autophagy. Mutant collagen IV may also be incorporated in the ECM, resulting in BM defects. Nonsense mutations

in collagen VI (COL6), VII (COL7), XVII (COL17), XV (COL15) and XVIII (COL18) (solid arrows) do not result in ER retention but rather

in reduced incorporation in the ECM (yellow dashed arrow). Matrix defects resulting from COL6 mutations (light green) lead to

failure to induce autophagy (via an as yet unknown mechanism) and result in mitochondrial defects and production of reactive

oxygen species (ROS). Matrix defects, resulting from COL15 deficiency (brown arrow) also cause mitochondrial defects and ROS

production.

glycine mutations [23], as are Col4a2 mutations [4]. Importantly, data from patients, mice and Caenorhabditis el-
egans indicate that disease outcome is influenced by genetic and environmental modifiers such as matrix proteins,
vaginal birth and exercise [4,65]. The vast majority (approximately 80%) of COL4A1/4A2 mutations are missense
mutations but nonsense or 3′-UTR mutations also occur, supporting pathogenicity of altered levels [4,64]. Inter-
estingly, common variants in COL4A1/COL4A2 are risk factors for major vascular disease such as ICH [66] and
coronary artery disease [67], but the proportion of patients in which these mutations occur remains unclear. Insight
is emerging regarding the cellular origin of the phenotypes whereby both endothelial cell and smooth muscle cells
contribute to ICH [68], vascular defects to the myopathy [69] and the lens to the eye disease [70].

Several non-mutually exclusive pathomolecular disease mechanisms have been proposed: intracellular retention
of misfolded protein causing ER stress; reduced collagen IV incorporation in the BM and/or incorporation of mutant
protein (Figure 1). Structural matrix defects alongside reducedα1α1α2(IV) levels in the BM, which can be associated
with MMP activity and fibrosis [24,68], are almost universally observed [4,61,22,23,62], and data from patients with
nonsense mutations [4] indicate matrix defects can be sufficient to cause cerebrovascular disease. However, the mech-
anism for dominant missense mutations is potentially more complicated given the possible contribution of ER stress
due to collagen retention. In a family with a COL4A2 mutation, we uncovered that ER stress and not matrix defects
was associated with disease [61], while in mice ICH severity correlated with levels of ER retention [68]. However, not
every glycine mutation induces ER retention and stress [4]. These data suggest that ER stress can have a modifier effect
for ICH and that cellular consequences and, potentially, mechanisms are mutation dependent. Moreover, our analysis
of renal disease in mice revealed that the glomerulopathy was associated with matrix defects but tubular disease with
ER stress [62,71], indicating cell/tissue-specific disease mechanisms [62,71]. This was subsequently confirmed for
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myopathy and ICH [72]. Given this mechanistic interplay of mutation-, cell- and tissue-dependent mechanisms, de-
lineating the relative contribution of cellular consequences and matrix defects to the different phenotypes for different
mutations will be informative and important.

Collagen VI
Vertebrates express six collagen VI α chains, encoded by genes COL6A1–COL6A6, which form beaded microfibrils
that anchor BMs to the interstitial matrix. The major collagen VI monomer is α1α2α3(VI) but the roles of α4(VI),
α5(VI) or α6(VI) remain less clear [73]. The central collagen domain of collagen VI is flanked by a globular N- and
C-terminal domains, containing motifs with homology to von Willebrand factor type A domains. Within the ER, α
chains form antiparallel dimers and then tetramers, which after secretion generate beaded microfibrils [6].

COL6A1/COL6A2/COL6A3 mutations cause severe Ullrich congenital muscular dystrophy (UCMD) and milder
Bethlem myopathy, which can be inherited as autosomal dominant or recessive disorders, but collagen VI mutations
can also affect the skin and tendon [6]. The role of COL6A4–COL6A6 in disease remains unclear [6] but in mice
increased Col6a4 levels causes Hirschsprung’s disease type defects [74]. Similar to collagen IV diseases, genetic and
environmental modifiers contribute to the large variability in clinical presentation.

Collagen VI diseases are associated with reduced levels or aberrant incorporation into the matrix of α1α2α3(VI)
fibrils with a complete absence causing severe forms of disease [75] (Figure 1). Some heterozygous premature termi-
nation codon (PTC) mutations in COL6A1 cause Bethlem myopathy [76] but they are non-pathogenic when they
occur in COL6A2/COL6A3 [6]. There is also clustering of dominant glycine mutations within the N-terminal end
and recessive glycine mutations in more C-terminal regions, suggesting functional domains in these regions [6,77].
The N-terminal dominant glycine mutations and in-frame deletions often affect tetramer and microfibril assembly
[78], while more C-terminal in-frame deletions and recessive glycine mutations can affect trimer formation [79]. ER
stress has not been reported, and these data strongly support absence of collagen VI or presence of mutant collagen
VI in the ECM as being causal.

Analysis of Col6a1−/−mice (Table 1) that develop Bethlem myopathy provided key insights into the disease mecha-
nisms, including a role for neuromuscular junction and muscle stem cell defects [80,81]. Key steps in the pathomolec-
ular mechanism includes the failure to induce autophagy, associated with reduced Bnip3 (Bcl2 Interacting Protein 3)
and Beclin levels, to remove defective mitochondria [82]. This affects the permeability transition pore, reducing ATP
synthesis [83], and causing mitochondrial dysfunction and reactive oxygen species (ROS) generation. Further insight
is needed into how matrix defects cause these cellular defects and the interplay between them (Figure 1).

Collagen VII
Collagen VII is encoded by the COL7A1 gene, and three pro-α1(VII) α chains interact to form α1α1α1(VII)
monomers which contain a central collagen domain, with 19 interruptions in the Gly-X-Y sequence, flanked by
N-terminal (NC-1) and C-terminal (NC-2) domains [8]. Secreted pro-collagen VII molecules form antiparallel
dimers, which are cleaved at the NC-2 domain by bone morphogenic protein 1 during their aggregation to form
anchoring fibrils [84]. These anchoring fibrils mediate dermal–epidermal adhesion via binding of collagen VII to
laminin-332 and collagen IV in the BM, and collagen I in the interstitial matrix [8]. Auto-antibodies against epitopes
in the NC-1 domain cause the autoimmune skin blistering disorders epidermolysis bullosa acquisita (EBA) [85] and
bullous systemic lupus erythematosus [86].

Mutations in COL7A1 cause dystrophic epidermolysis bullosa (DEB) (OMIM # 131750 # 226600) whereby the
generally milder dominant DEB (DDEB) and non-syndromic congenital nail disorder-8 (OMIM # 607523) are due
to missense mutations. The generally more severe recessive form of DEB (RDEB) is due to homozygous or compound
heterozygous COL7A1 mutations, most frequently leading to nonsense mediated decay (NMD) and absence of col-
lagen VII [8]. This causes blisters, wounding, inflammation, reduced myofibroblast removal and fibrosis. Collagen
VII also plays a direct role in would healing by affecting keratinocyte migration via organising laminin-332 and im-
pacting integrinα6β4 signalling, and supporting fibroblast migration and controlling their cytokine production [87].
Disease severity may also be subject to genetic modifiers as increased severity has been associated with a functional
variant in MMP1 [88], which degrades collagen VII, causing increased degradation and increased RDEB severity.
However, this association has been questioned [89].

The pathomolecular mechanism of RDEB is the absence of α1α1α1(VII) in the matrix affecting anchoring fibrils,
weakening the BM and causing blistering (Figure 1). However, dominant missense mutations can cause ER retention,
suggesting that α1α1α1(VII) production, secretion and storage are altered in patients [90]. However, its effect on ER
stress and downstream effects has not been reported.
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Collagen XVII
Collagen XVII (aka BPAG2, BP180) is a transmembrane homotrimer α1α1α1(XVII), consisting of three α1(XVII)
chains that is important for cell–matrix interactions as a component of hemidesmosomes, securing the attachment
of epithelial cells to BMs through binding laminin-332 and potentially collagen IV [91]. Collagen XVII plays a role in
autoimmune blistering disease as autoantibodies to collagen XVII cause Bullous Pemphigoid (BP), the most common
autoimmune blistering skin disease [48] and linear IgA dermatosis [91]. The latter is caused by auto-antigens within
the ectodomain of soluble collagen XVII, which can be generated by ADAM (A Disintegrin And Metalloproteinase)
-mediated protease cleavage of collagen XVII [92].

A series of elegant papers has recently identified non-structural functions of collagen XVII. This includes a key role
in stem cell maintenance/homeostasis as depletion of collagen XVII in skin, which occurs with normal ageing [93],
causes stem cells in the hair follicle to terminally differentiate, causing hair loss [94]. An important role in ageing was
also uncovered as replenishment of collagen XVII reverses the hyperproliferation of interfollicular epidermis induced
with ageing skin [93], and promotes symmetrical division of epidermal stem cells, which outcompete asymmetrically
dividing stem cells. This reversed skin ageing and improved wound healing [95].

COL17A1 mutations cause junctional epidermolysis bullosa (OMIM # 226650), which can also be caused by mu-
tations in the laminin genes LAMA3, LAMB3, LAMC2 and integrin genes ITGA3, ITGA6 and ITGB4 [7,96,97], and
is characterised by dermal–epidermal separation leading to skin blistering, and epithelial recurrent erosion dystro-
phy, alopecia and nail dystrophy [96]. The majority of mutations are nonsense mutations but some glycine missense
mutations occur, which cause intracellular retention and thermal instability of the protein [98], indicating protein
misfolding. However, it is unclear if this results in ER stress (Figure 1). The reduction or complete absence of col-
lagen XVII in the matrix affects the hemidesmosomes and stability of the dermal BM zone leading to EB (Figure
1), and genotype–phenotype analysis revealed approximately 12–25% of normal protein is required for skin stability
[96]. Dominant COL17A1 missense mutations have recently been identified as a cause of epithelial recurrent corneal
erosion dystrophy (OMIM# 122400) [99] but no functional analysis was performed.

Collagen XV and XVIII
Collagen XV and XVIII are multiplexin (multiple triple-helix domains with interruptions) collagens that are struc-
turally closely related heparan sulphate proteoglycans. The collagen domain of collagen XVIII is flanked by a
N-terminal non-collagenous domain containing thrombospondin-1-like and frizzled motifs [100], and a C-terminal
trimerisation domain, which harbours the fragment endostatin that shares homology with restin in collagen XV [9].
The variable length of the N-terminal fragment of α1(XVIII) generates three isoforms with different expression pat-
terns and functions [9]. For example, the short isoform is essential for retinal development while the medium and
long isoforms are required for hepatocyte survival following injury [101] and adipose tissue formation [102]. Colla-
gen XVIII is embedded into the BM by its C-terminal domain that binds perlecan and laminin, while its N-terminal
domain extends into the ECM. Protease cleavage releases the anti-angiogenic fragment endostatin which inhibits en-
dothelial cell migration and tumour growth. However, its efficacy for human cancer remains debated [9]. In addition,
endostatin affects processes such as autophagy [103], its absence causes glomerular and tubular kidney defects, and
exacerbates nephritis [104], and an endostatin-derived peptide can reduce fibrosis [105]. Elegant recent work using
mouse models established that the frizzled motif in the N-terminal domain is required for preadipocyte differentia-
tion and the ability of white adipose tissue to store fat by inhibiting Wnt signalling [102] (Table 1).

COL18A1 mutations, the vast majority of which are nonsense mutations, cause recessive Knobloch syndrome
(OMIM # 267750) that is characterised by eye defects (e.g. myopia, vitreoretinal degeneration, macular abnormalities)
and occipital encephalocele. Deficiency of Col18a1 in mice mimics Knobloch syndrome (Table 1 and Figure 1) but
also affects the kidney and fat metabolism [9]. Many vascular defects of Knobloch syndrome, including persistence
of the hyaloid vasculature, have been attributed to the absence of the short isoform and endostatin which generates a
pro-angiogenic environment, although absence of the thrombospondin domain may also contribute [9,52]. This pro
angiogenic environment due to the absence of endostatin, potentially combined with its effects on proteostasis and
autophagy [106], are also associated with age-related retinal pigment epithelium degeneration in Col18a1−/− mice,
a hallmark of age-related macular degeneration.

Collagen XV and XVII are structurally similar molecules with anti-angiogenic fragments, although data have chal-
lenged that for collagen XV this is mediated via its restin fragment [9,107]. Despite this structural similarity, these
collagens have different functions. Collagen XV is highly expressed in tissues such as heart and skeletal smooth mus-
cle, and structural analysis combined with muscle and vascular defects in Col15a1−/− deficient mice supports it
acts as a spring between the BM and interstitial matrix to protect against contractile forces [108,43]. Investigation
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Figure 2. Overview of therapeutic strategies for BM collagen disorders

Gene therapy approaches have been implemented to silence disease alleles of COL6A1 and COL7A1 mutations using AONs

and siRNAs. RNA trans-splicing strategies have also been implemented. Targeted pathomolecular effects of mutations include

intracellular retained misfolded proteins and ER stress, which has been used for collagen IV mutations via chemical chaperones to

increase protein folding and increase secretion of proteins. Additionally, promoting autophagy and the proteasome may promote

degradation of misfolded proteins. Autophagy and mitochondrial defects due to COL6A1/COL15A1 mutations have also been

targeted pharmacologically and through diet. As an example of targeting downstream cellular responses or signalling to modulate

disease, TGF-β signalling has been targeted in epidermolysis bullosa due to COL7A1 mutations. For a more detailed overview of

therapeutic strategies, we refer the reader to Table 2. Abbreviation: AON, antisense oligonucleotide.

of Col15/18-deficient muscle defects in Drosophila uncovered they are due to altered integrin activity causing mi-
tochondrial defects, reduced ATP generation and ROS production [44] (Figure 1). Treatment with cyclosporin A or
losartan reduced these phenotypes [44], indicating a pathomolecular mechanism shared with COL6A1 mutations
(see above) (Figure 1).

Analysis of zebrafish, which has two Col15a1 isoforms, Col15a1a and Col15a1b, suggests a potential develop-
mental origin to this muscle phenotype as Col15a1a deficiency causes defective notochord and muscle development
[46]. Deficiency of Col15a1b leads to motor axon guidance defects and muscle atrophy [47], establishing a role in
neuromuscular development, while in mice α1α1α1(XV) contributes to peripheral nerve development and myeli-
nation [109]. In line with its high levels of expression in the heart, deficiency of collagen XV causes cardiomyopathy
associated with matrix remodelling, defects in vascular permeability and haemodynamics, and increased stiffness
[110]. Recent genetic analysis suggested COL15A1 can act as a modifier of thoracic aortic aneurysm severity [111]
and has indicated a potential role in primary open angle glaucoma [112] and patients with Cuticular drusen (CD),
a subtype of age-related macular degeneration [113]. These data indicate a growing role for collagen XV in human
biology and disease.

Treatment intervention
The identification of underlying disease mechanisms has instigated a plethora of different approaches to modulate
disease outcome. Broadly, these strategies can be divided into those that attempt to cure or overcome the genetic defect
(gene therapy-based approaches), those that aim to modulate the pathomolecular disease mechanisms or cellular
responses of mutations, and those that target further downstream targets (Figure 2 and Table 2). While an in-depth
overview is beyond the scope of this review, a few examples of each class are discussed below.
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Table 2 Mechanism-based therapeutic strategies for collagen-related disease

Gene Disease Mechanism-target Treatment References

COL4A1, COL4A2,
COL4A5

Col4a1 disease and AS ER retained protein, ER stress
pathway

Chemical chaperones, e.g.
4-phenylbutyrate (4PBA) to reduce ER
stress and increase secretion of
correctly folded protein

[58,61,68,71]

COL4A5 AS Blood pressure by targeting
renin–angiotensin system

Angiotensin-converting enzyme
inhibitors, e.g. ramipril

* [114]

Angiotensin II type 1 receptor blockers,
e.g. losartan

*[115]

Fibrosis-Transforming growth factor-β
1 (TGF-β), Connective tissue growth
factor, miR-21

HMG-CoA-reductase inhibitor
(cerivastatin)

[116]

Vasopeptidase inhibitor AVE7688 [117]

Anti-miR-21 oligonucleotides [118]

Oxidative stress, inflammation and
fibrosis: Nrf2

Nrf2 activator, e.g. bardoxolone methyl
(BARD)

*[119]

STAT3 signalling STAT3 inhibitor, e.g. stattic [59]

Functional correction Gene therapy: restoration of network
proof of concept

[120]

Cell therapy
Bone marrow-derived stem cells

[121]

Amniotic fluid stem cells [122]

COL6A1 Bethlem myopathy, Ullrich congenital
muscular dystrophy

Reactivation of autophagy mTOR inhibitor, e.g. Rapamycin [82]

Low protein diet *[123]

Spermidine [124]

Mitochondrial defect: opening of
Mitochondrial permeability transition
pore (mPTP)

Cyclosporin A Cyclophilin inhibitor, e.g.
NIM811, Debio25 (alisporivir) *[125,83,37,126,127]

Metabolic defects Adiponectin [128]

Functional correction Collagen
VI-producing cells

Cell therapy: fibroblast grafting [81]

Adipose-derived stem cell transplant [129]

Dominant negative mutation Gene silencing with AONs or siRNAs
[130,131,132,133]

Splice mutations AON-mediated exon skipping [134]

COL7A1 DEB Wound healing Injecting fibroblast cells *[135]

Grafting revertant mosaicism
skin-keratinocytes

*[136]

Genome editing patient-derived IPSC
cells and transplant

[137]

Mesenchymal stromal cell therapy
transplant

*[138]

Human placental-derived stem cell
transplant

[139]

Functional correction Exon skipping [140]

RDEB Functional correction Ex vivo TALEN gene editing [141]

Ex vivo CRISPR Genome editing
keratinocytes

*[142]

RNA trans-splicing [143]

Polymer-mediated cDNA delivery [144]

Ex vivo retroviral transduction [145]

AON-mediated exon skipping [146]

Read through of Premature termination
codons (PTCs)

See
review
[147]

Fibrosis: TGF-β Angiotensin II type 1 receptor
antagonist: losartan

[148]

DDEB Functional correction Allele-specific silencing via siRNA [149]

Gene editing using NHEJ to knockout
mutant allele

[146,150]

Deficient collagen VII levels in ECM Protein replacement therapy [151,152]

Continued over
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Table 2 Mechanism-based therapeutic strategies for collagen-related disease (Continued)

Gene Disease Mechanism-target Treatment References

COL15A1/COL18A1 Muscular defect Mitochondrial defect (opening
permeability transition pore) and ROS
production

Cyclosporine A Angiotensin II type 1
receptor antagonist, e.g. losartan

[44]

Clinical trials are indicated by *. Abbreviation: AON, antisense oligonucleotide.

Gene therapy approaches
Gene therapy approaches are attractive as they are independent of disease mechanism and provide an actual cure.
For missense mutations, allelic silencing using siRNA or gapmer antisense oligonucleotides (AONs) has been suc-
cessfully applied to COL6A1 and COL7A1 mutations, with AONs affecting wild-type allele expression to a lesser
extent [132,133], although this requires mutation specific compounds. Splice mutations in COL6A1/COL7A1 have
also been countered using AONs that mediate exon skipping [134], but trans-splicing to obtain wild-type protein
expression can be applied to splicing and PTC-generating mutations [143].

Skin disorders are particularly amenable to ex vivo genome editing using CRISPR-Cas9 from patient-derived in-
duced pluripotent stem cells combined with skin grafting. This has been successful for junctional EB due to laminin
mutations [153,145]. While, stem cell treatment employing iPSCs for some tissues/diseases may have its challenges,
enormous progress has been made, making this an exciting approach [154]. For RDEB clinical trials employing ex vivo
retroviral transduction of patient keratinocytes or fibroblasts to induce collagen VII expression followed by grafting
or fibroblast injection, respectively, has shown promise [145,155]. These represent mutation-independent approaches
for BM collagens.

ER stress and other disease mechanisms
Dominant missense mutations occur across collagen types and resultant protein misfolding, ER retention and ER
stress represent potential convergent disease mechanisms. Promoting protein degradation, as performed for collagen
X mutations [156] or protein folding through chaperones are potential strategies to address this. We and others es-
tablished that the chemical chaperone 4-PBA reduces ER stress due to COL4A2 or COL4A5 mutation in patient cells
[58,61]. Importantly, 4-PBA reduced cerebrovascular disease severity in mice carrying Col4a1 missense mutations
at the C-terminal end of the collagen domain that cause intracellular retention [68,71], as a preventative approach
and as a treatment for established disease [71]. However, we also established that 4-PBA was not effective for eye and
kidney disease due to the same glycine mutation and that PBA increased secretion of collagen IV and weakened the
BM [71]. Therefore, 4-PBA treatment may be contra-indicative for matrix-related phenotypes or missense mutations
that do not cause ER stress [71]. This was subsequently confirmed for Col4a1 myopathy in mice carrying a more
N-terminal mutation that does not induce ER stress [72]. Therefore, treatments will need stratification according to
the mechanisms of mutations.

Mitochondrial dysfunction and dysregulation of autophagy resulting from collagen VI or XV/XVIII deficiency was
ameliorated by dietary and pharmacological treatments when tested in mice and patient-derived cells [82,37,123,126],
indicating a convergent mechanism and treatment. Re-instating collagen expression via cell graft or cell transplant
represents a different approach and has shown promise for collagen VI and VII [81,145,155,129]. Re-instating Col6a1
expression also rescued the defective muscle stem cell renewal in Col6a1−/− mice, which was recalcitrant to au-
tophagy treatment [81], suggesting a combinatorial therapy may be required.

While the above approaches target the intracellular consequences, due to our relatively poor understanding of
the matrix defects and the subsequent aberrant matrix–cell signalling, limited progress has been made. An emerging
example is the pharmacological inhibition of DDR1 to preserve renal function and reduce renal fibrosis in Col4a3−/−

mice [157], illustrating the potential power of this approach.

Targeting downstream effect and treatment of symptoms
Alternatively, interventions have focused on particular disease symptoms or further downstream consequences. For
example, inhibitors of the renin–angiotensin system (e.g. ramipril) are used to reduce blood pressure in AS to delay
kidney failure [3].

Fibrosis is a common feature of matrix disorders and targeting TGF-β-induced matrix deposition has been un-
dertaken via anti-miR-21 or pharmacological STAT3 inhibition in Alport mice [118,59]. Interestingly, inhibition of
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TGF-β signalling using losartan was also effective in RDEB, indicating that convergent downstream pathways repre-
sent a potential effective target for different phenotypes. Finally, the compound bardoxolone, which reduces inflam-
mation and fibrosis in chronic kidney disease, is currently in a clinical trial for AS [119]. However as bardoxolone
increases glomerular filtration rate, which may elevate the stress on the damaged GBM of Alport patients, this ap-
proach remains debated [158].

Outlook
BM collagen disorders are archetypical rare disorders for which treatment development can represent an economic
challenge. Therefore, identifying convergent mechanisms and targets represent a very attractive proposition for both
industry and patients, as it stands to accelerate treatment development. However, the multi-systemic nature, variable
expressivity and disease severity pose a huge challenge. Therefore, there is an urgent need to increase our funda-
mental understanding of BM biology and acquire in-depth knowledge of disease mechanisms from gene to patient
level. This includes, but is not limited to, the identification of genetic modifiers, a complete description of pheno-
types in which BM collagens play a role, and establishing the relative contribution of intra/extracellular mechanisms
including matrix–cell signalling to disease. In addition, the multi-systemic nature of these diseases with mutation-,
cell- and tissue-specific mechanisms needs to be considered. However, while a ‘one-size-fits-all’ therapy is not possi-
ble, the identification of convergent aspects does raise the possibility that several diseases or mutation types may be
amenable to manipulation of a shared mechanism. The stratified treatments would therefore focus on pathophysio-
logical mechanisms and unite clinically disparate phenotypes.

Summary
• Basement membrane collagens play an important role in a growing number of Mendelian disorders

and common traits, and increasing our knowledge of basement membrane biology and disease
mechanisms will help address the need for treatments.

• Mechanistic studies have provided insight into the pathomolecular mechanisms of BM diseases,
revealing that intra- and extracellular mechanisms are associated with disease.

• The identification of disease mechanisms shared between distinct diseases raises the potential
that several diseases or mutation types may be treated by manipulation of a shared mechanism.

• Disease mechanism-based therapies are being explored using preclinical animal models and sev-
eral have been taken forward to clinical trials.
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15 Bullich, G., Trujillano, D., Santı́n, S., Ossowski, S., Mendizábal, S., Fraga, G. et al. (2014) Targeted next-generation sequencing in steroid-resistant
nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity. Eur. J. Hum. Genet. 23, 1192,
https://doi.org/10.1038/ejhg.2014.252

16 Takeuchi, M., Yamaguchi, S., Yonemura, S., Kakiguchi, K., Sato, Y., Higashiyama, T. et al. (2015) Type IV collagen controls the axogenesis of cerebellar
granule cells by regulating basement membrane integrity in zebrafish. PLoS Genet. 11, e1005587, https://doi.org/10.1371/journal.pgen.1005587

17 Rost, S., Bach, E., Neuner, C., Nanda, I., Dysek, S., Bittner, R.E. et al. (2013) Novel form of X-linked nonsyndromic hearing loss with cochlear
malformation caused by a mutation in the type IV collagen gene COL4A6. Eur. J. Hum. Genet. 22, 208, https://doi.org/10.1038/ejhg.2013.108

18 Kang, J.S., Wang, X.-P., Miner, J.H., Morello, R., Sado, Y., Abrahamson, D.R. et al. (2006) Loss of α3/α4(IV) collagen from the glomerular basement
membrane induces a strain-dependent isoform switch to α5α;6(IV) collagen associated with longer renal survival in Col4a3−/− Alport mice. J. Am.
Soc. Nephrol. 17, 1962–1969, https://doi.org/10.1681/ASN.2006020165

19 Murata, T., Katayama, K., Oohashi, T., Jahnukainen, T., Yonezawa, T., Sado, Y. et al. (2016) COL4A6 is dispensable for autosomal recessive Alport
syndrome. Sci. Rep. 6, 29450, https://doi.org/10.1038/srep29450

20 Funk, S.D., Bayer, R.H., Malone, A.F., McKee, K.K., Yurchenco, P.D. and Miner, J.H. (2018) Pathogenicity of a human laminin β2 mutation revealed in
models of Alport syndrome. J. Am. Soc. Nephrol. 29, 949–960, https://doi.org/10.1681/ASN.2017090997
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