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Background: Soft tissue sarcomas (STS) are heterogeneous tumors derived from
mesenchymal cells that differentiate into soft tissues. The prognosis of patients who
present with an STS is influenced by the regulation of a complex gene network.

Methods: Weighted gene co-expression network analysis (WGCNA) was performed to
identify gene modules associated with STS (Samples = 156).

Results: Among the 11 modules identified, the black and blue modules were
highly correlated with STS. However, using preservation analysis, the black module
demonstrated low preservation, therefore the blue module was chosen as the module
of interest. Furthermore, a total of 20 network hub genes were identified in the blue
module, 12 of which were also hub nodes in the protein-protein interaction network
of the module genes. Following additional verification, 4 of 12 genes (RRM2, BUB1B,
CENPF, and KIF20A) demonstrated poorer overall survival and disease-free survival rate
in the test datasets. In addition, gene set enrichment analysis (GSEA) demonstrated that
samples with a high level of blue module eigengene (ME) were enriched in cell cycle and
metabolism associated signaling pathways.

Conclusion: In summary, co-expression network analysis identified four hub genes
associated with prognosis for STS, which may diminish the prognosis by influencing
cell cycle and metabolism associated signaling pathways.

Keywords: soft tissue sarcoma, weighted gene co-expression analysis, RRM2, BUB1B, CENPF, KIF20A

INTRODUCTION

Soft tissue sarcoma (STS) is a rare group of tumors that accounts for approximately 1% of adult
cancers. In 2009, it was estimated that 3,300 new cases were diagnosed in Britain and 10,000
in the United States (Linch et al., 2014). There are approximately 50 STS subtypes, which differ
significantly in their disease presentation, response to currently available treatments and risk of
tumor progression (Casali et al., 2018). Multiple factors have been reported to be related to the
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progression of STS, including capillary morphogenesis gene 2
(CMG2) (Greither et al., 2017), HIF-2α protein (Nakazawa et al.,
2016), epidermal growth factor receptor (EGFR) protein (Yang
et al., 2017) and microRNAs (Smolle et al., 2017). However,
no molecular biomarkers have been defined for predicting
the prognosis of the disease in clinical. Therefore, a better
understanding of the molecular pathogenesis is required.

To date, microarray-based expression data have been used
to identify genes related to tumor progression and prognosis.
Takahashi et al. (2014) identified 25 survival-associated genes
using a knowledge-based filtering and multiple testing approach.
Beck et al. (2010) has reviewed the manner in which gene
expression profiling has been used to understand sarcoma
pathobiology and identify clinically useful biomarkers. However,
most studies have focused on screening genes that have different
patterns of expression with explanations gained from gene
ontology (GO) analysis. Such approaches, however, have failed
to address the large number of interconnections between genes,
because genes with similar expression profiles are most likely to
function closely together. Therefore, weighted gene co-expression
network analysis (WGCNA) clusters genes co-expressed in a
network, based on similarities in expression profiles among
samples and in clinical traits, to define sub-network regions
(known as modules) (Langfelder and Horvath, 2008).

In this study, we utilized WGCNA to identify the most
relevant module in STS. Key genes in the module were identified
and validated using survival and protein-protein interaction
(PPI) analyses. These key genes may shed new light on the
biological mechanisms underlying STS progression and could
potentially be used as prognostic biomarkers or therapeutic
targets.

MATERIALS AND METHODS

Study Design and Data Collection
Study design, data preparation, preprocessing, analysis and
validation are described in a flowchart (Figure 1). Core codes
used to reproduce the results were provided in Supplementary
Table S1. Firstly, normalized RNAseq data and associated
clinical data were downloaded from the NCBI Gene Expression
Omnibus (GEO). Dataset GSE21122 (Barretina et al., 2010),
which was generated using an Affymetrix human genome U133A
microarray (HG-U133A), was used as a training set to construct
the co-expression network and identify key modules in this
study. This dataset included 149 STS samples and 9 normal fat
tissue samples. The STS samples contained 116 different types
of liposarcoma and 34 malignant fibrous histiocytomas (MFHs).
Most STSs (68.8%) were primary tumors at the time of sample
procurement from patients whose mean age was 56 years. In
addition, two test datasets were used to test the preservation of
identified modules and survival significance of hub genes. The
first one, which included RNA sequencing data and associated
clinical information of 265 STS samples, were downloaded from
The Cancer Genome Atlas (TCGA) database1. The other one,

1https://genome-cancer.ucsc.edu/

GSE21050 dataset (Chibon et al., 2010), which included RNA
sequencing data and associated clinical information of 310 STS
samples were downloaded from the NCBI GEO.

Data Preprocessing
Firstly, we extracted training expression data from the GSE21122
MINiML file. The expression data was background corrected
using the Robust Multi-array Average (RMA) algorithm and log
base 2 normalized. The data were then checked to ascertain
whether there was a batch effect. No apparent batch effect
was observed after analysis of expression clusters, box plots
and principal components analysis (PCA) (Supplementary
Figure S1). In order to detect outliers for WGCNA analysis,
sample network was calculated based on squared Euclidean
distance. The connectivity of each sample was defined as the
sum of the connectivity of that sample with all other samples.
Outliers were identified after normalization of the connectivity
of each sample, by use of the threshold z.k < 0.6. Generally, genes
whose expression varies greatly are more biologically relevant.
To reduce background noise, we selected genes that were varied
expressed across samples and removed those whose expression
was the same across samples. The median absolute deviation
(MAD) was calculated for each gene as a robust measure of
variability. Then, genes were sorted based on the MAD value
and the top 3,000 ranked genes were used for the subsequent
WGCNA analysis.

Co-expression Network Construction
and Module Preservation Analysis
The WGCNA package (Langfelder and Horvath, 2008) was used
to construct the co-expression network. The concordance of
genes in the expression dataset was measured with Pearson
correlation, then the Pearson correlation matrix was transformed
to weighted network with the power adjacency function. The
first step in this process was selection of an appropriate soft
power, in which strong connections between genes are promoted
and weak connections penalized, so as to transform the network
into one meeting the requirements of a scale-free network.
Modules were identified using the dynamic tree-cutting function
with a deepSplit argument value of 2 and a minimum size
cutoff of 30. To test whether the identified modules were
stable in the test TCGA dataset, the downloaded fragments
per million (FPKM) expression data of 265 samples were
transformed to the transcripts per million (TPM). A total of
2704 common genes in the training and TCGA datasets were
used for preservation analysis. The module Preservation function
(nPermutations = 200) of the WGCNA package (Langfelder et al.,
2011) was utilized, in which the preservation statistic Zsummary
was used to quantify the preservation of gene modules between
datasets.

Finding Modules of Interest and
Functional Annotation
Because the module eigengene (ME) provides the most
appropriate synopsis of gene expression profiles of any given
module, we correlated MEs with clinical traits. In this study,
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FIGURE 1 | Flow diagram of strategy for data preparation, preprocessing and analysis used in this study.

clinical traits refer to whether the sample was a STS or normal fat
tissue. Correlations were then calculated using linear regression
model. The modules for which the eigengenes showed high
correlation were chosen as the modules of interest. In an attempt
to ascertain possible mechanisms of genes within a module

FIGURE 2 | Determination of soft-thresholding power in the weighted gene
co-expression network analysis (WGCNA). (A) Analysis of scale-free fit index
for various soft-thresholding powers (β). (B) Analysis of mean connectivity for
various soft-thresholding powers. (C) Linear model fitting of R2 index showed
good quality of fit. (D) Frequency distribution of connectivity.

affecting STS progression, functional enrichment analyses using
the KEGG and GO databases of the hub module was performed
with the “clusterProfile” package in R (Yu et al., 2012).

Identification of Hub Genes and
Correlation Analysis
Hub genes are those that have a high degree of intra-module
connectivity. In this study, hub genes were defined as the 20
module genes with highest connectivity in the interested module.
A PPI network was constructed in order to identify hub nodes
by uploading all genes in the hub module to the Search Tool for
the Retrieval of Interacting Gene (STRING) database2. The PPI
network was then imported into the Cytoscape software platform
and a comprehensive analysis of the relationship between nodes
was performed using the Maximal Clique Centrality (MCC)
function, reported to be the most effective method of finding hub
nodes in a co-expression network (Chin et al., 2014), within the
“cytoHubba” application. In this way, the most cohesive genes
were marked as “first stage nodes.” In the PPI network of blue
module genes, the 30 most highly ranked nodes were identified
as “first stage nodes.” Genes that were defined as both hub genes
in the module and “first stage nodes” in the PPI network were
chosen as primary hub genes.

Survival Analysis and Efficacy Evaluation
The internet tool, Gene Expression Profiling Interactive Analysis
(GEPIA)3, was used to perform overall survival and disease-
free survival analyses for all hub genes. The platform utilizes
all expression data and survival information of the TCGA
database. Users are able to accomplish survival analysis by
simply submitting a gene name and selecting a tumor type.
Patients were divided into two groups (high vs. low) based

2http://www.string-db.org
3http://gepia.cancer-pku.cn
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FIGURE 3 | Color coding of co-expression network modules for mRNAs.

on the hub gene expression level in comparison to the
mean expression level of that hub gene. Furthermore, dataset
GSE21050, which includes 310 STS samples in which metastasis
status and survival time were provided, was used to test the
significance of hub genes for metastasis survival. A Kaplan-
Meier survival plot was constructed using the “survival” package
in R (Li, 2003). Differential expression between STS and
normal tissue in the training set was plotted as a box plot
graph.

Gene Set Enrichment Analysis (GSEA)
In the training data set, 156 samples were dichotomized into two
groups (High vs. Low) based on the ME value of blue module
in comparison to the mean ME level of blue module of all

samples. GSEA was then performed between the two groups. The
3,000 most variable genes from the WGCNA were imported for
enrichment. In this way, GSEA was used to validate the results of
GO and KEGG analysis of the blue module. The cut-off criterion
for GSEA was FDR < 0.05.

RESULTS

Co-expression Network Construction
and Module Preservation Analysis
After discarding two outlier samples (GSM528297 and
GSM528333), WGCNA was performed on the 3,000 most
variable genes of 156 samples. Soft threshold power was set to 6,
in which R2 was 0.916, ensured a scale-free network (Figure 2).
Following this, 11 co-expression modules were identified,
ranging in size from 43 to 669 genes (with each module assigned
a color) (Figure 3).

By comparing the training dataset GSE21122 with the TCGA
test dataset, we were able to establish whether the co-expression
modules produced in the training dataset could be reproduced
in the test dataset through summary preservation statistics.
Three modules (black, brown, and magenta) demonstrated
poor preservation with each Zsummary statistic < 10. The
remaining modules, including the blue module were stable
enough, suggesting they were preserved between the training data
set and the test data set (Figure 4).

Finding Modules of Interest and
Functional Annotation
It is important to identify the most significant modules related
to STS. Both black and blue modules showed a significantly high

FIGURE 4 | medianRank and Zsummary statistics of the most variant gene modules in module preservation. In the preservation medianRank graph (left), a
medianRank value close to zero indicates a high degree of module preservation. In the preservation Zsummary graph (right), the dashed black lines indicate the
thresholds Z = 2, 10. These horizontal lines indicate Zsummary thresholds for strong evidence of conservation (above 10) and for low to moderate evidence of
conservation (above 2).
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FIGURE 5 | Heat map of correlation between eigengene modules and STS.

correlation with sarcomas (Figures 5, 6). However, due to the
lack of stability of the statistical data (Zsummary < 10), the black
module was not further analyzed. Therefore, the blue module
was defined as an important module of clinical significance and
extracted for further analysis.

For the sake of exploration of the biological relevance of the
blue module, GO functional and KEGG pathway enrichment
analyses were performed on 414 genes in the blue module. The
biological processes of the genes in the blue module were found
to associate with the cell cycle, such as mitotic nuclear division,
chromosome segregation and sister chromatid segregation. In the
KEGG pathway analysis, cell cycle associated signaling pathways
such as DNA replication, cell cycle, p53 signaling pathway, oocyte
meiosis, mismatch repair and metabolism associated pathways
such as pyrimidine metabolism and purine metabolism were
enriched (Figure 7).

Identification of Sarcoma Hub Genes in
the Blue Module
Highly connected hub genes within a module perform important
roles in tumor biological processes. Therefore, the 20 genes with
greatest module relevance in the blue module were selected as
candidate hub genes for STS (Supplementary Data Sheet S1).
In addition, a PPI network in the blue module was constructed
in accordance with the STRING database (Figure 8). Twelve of

FIGURE 6 | Scatter plot of eigengene modules in the blue and black modules.

FIGURE 7 | Bioinformatic analysis of genes in the blue module. GO analysis: (A) Biological process. (B) Cellular component. (C) Molecular function. KEGG
analysis:(D) Pathway analysis.
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FIGURE 8 | Protein-protein interaction network of the top 30 genes in the
blue module (Node color: deeper colors indicates higher scores in the MCC
analysis).

the 20 candidate genes in the co-expression network were also
identified as hub nodes of the PPI network. Finally, these 12 genes
were considered “primary” hub genes associated with STS and
therefore selected for additional analyses.

Survival Analysis and Efficacy Evaluation
While testing the TCGA dataset, four out of 12 hub genes
demonstrated significant connectivity with overall and disease-
free survival (Figure 9). When testing the GSE21050 dataset,
these four hub genes showed significant correlation with

metastasis free survival (Figure 10). Furthermore, they were
significantly highly expressed in STS tissue compared to normal
fat tissue (Figure 11).

Gene Set Enrichment Analysis
In order to find out the potential function of both blue
module and hub genes, GSEA was performed to identify KEGG
pathways enriched in samples with higher level of ME of
blue module. In GSEA analysis, five signaling pathways were
significantly enriched, including ubiquitin mediated proteolysis
(FDR = 0.01), pyrimidine metabolism (FDR = 0.03), oocyte
meiosis (FDR = 0.02), cell cycle (FDR = 0.04) and DNA
replication (FDR = 0.04) (Figure 12). Moreover, the last four
pathways were consistent with the results of KEGG pathway
analysis (Figure 7D).

DISCUSSION

Soft tissue sarcomas remain among the most challenging
diseases for medical oncologists to treat. STSs are mesenchymal
neoplasms that can arise from any site within the body, including
extremities, the trunk, retroperitoneum, head, and neck. These
are biologically heterogeneous diseases of which greater than
50 subtypes exist, varying by molecular, histological and clinical
characteristics.

In this study, WGCNA was utilized to construct a co-
expression network for identification of gene co-expression
modules associated with STS. The blue module was positively
identified and 20 hub genes selected from this module. In
addition, as a result of the PPI network, 12 genes were
identified as hub nodes of the co-expression module and
PPI network, indicating that these 12 hub genes were closely

FIGURE 9 | Survival analysis of association between RRM2, BUB1B, CENPF, and KIF20A expression levels and survival rates in STS based on TCGA microarray
data. (A) Overall survival analysis. (B) Disease free survival.
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FIGURE 10 | Survival analysis of association between RRM2, BUB1B, CENPF, and KIF20A expression levels and metastasis-free survival rates in STS based on
GSE21050 microarray data.

FIGURE 11 | RRM2, BUB1B, CENPF, and KIF20A were strongly upregulated in STS tissues compared to normal fat tissue, based on GSE21122 microarray data.
∗∗p < 0.01.
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FIGURE 12 | Gene set enrichment analysis (GSEA). Cell cycle and metabolism associated pathways were enriched.

related to STS and had important biological significance.
Subsequent survival analysis established that four of the 12 hub
genes (RRM2, BUB1B, CENPF, and KIF20A) were significantly
associated with survival. We, therefore, focused on these four
genes.

The ribonucleotide reductase regulatory subunit M2 (RRM2)
is one of two subunits that constitute ribonucleotide reductase,
the enzyme responsible for catalyzing the conversion of
ribonucleotides into deoxyribonucleotides, and thus performing
an important role in DNA synthesis. RRM2 is important in
controlling cellular function in a number of human malignant
tumors, including DNA repair, cell proliferation and senescence.
Importantly, RRM2 functions as a driver in a variety of tumors,
with in vivo and in vitro experiments confirming that knocking
down expression using siRNA significantly inhibits tumor cell
proliferation (Fang et al., 2016).

The BUB1 mitotic checkpoint serine/threonine kinase B
(BUB1B) is a member of the spindle assembly checkpoint protein
family, crucial for ensuring correct chromosome separation
during cell division (Fu et al., 2016). BUB1B perfoms a role
in the inhibition of APC expression, established as a tumor
suppressor gene in most colorectal cancers. Accordingly, many
reports have shown that upregulation of BUB1B is related to the
recurrence and progression of bladder cancer (Yamamoto et al.,
2007), gastric cancer (Ando et al., 2010), esophageal squamous
cell carcinoma (Tanaka et al., 2008), breast cancer (Yuan et al.,
2006), hepatocellular carcinoma (Liu et al., 2009) and others.

Centromere protein F (CENPF) is another important
protein involved in chromosome segregation during mitosis.

Upregulation of CENPF protein expression, especially
through a gene amplification effect, suggests that high levels
of CENPF protein may affect the occurrence of tumors,
especially in the early stages of tumor development (Varis
et al., 2006). Clinical research has demonstrated that high
expression levels of CENPF results in poor prognosis in
nasopharyngeal carcinoma (Cao et al., 2010), colorectal
gastrointestinal stromal tumors (Chen et al., 2011), esophageal
squamous cell carcinoma (Mi et al., 2013) and prostate
cancer (Zhuo et al., 2015). It has also been shown to play an
important role in driving hepatocellular carcinoma (Dai et al.,
2013).

Kinesin family member 20A (KIF20A, also known as
RAB6KIFL) belongs to the kinesin superfamily-6, located in
the Golgi apparatus and contributes to intracellular organelle
transport and cell division (Echard et al., 1998). Recently, it
has been reported that KIF20A is associated with mitosis,
cell adhesion, migration and proliferation. Furthermore, recent
studies have demonstrated that KIF20A is involved in tumor
progression and angiogenesis. High expression of KIF20A results
poor prognosis in glioma patients (Duan et al., 2016; Saito et al.,
2017), nasopharyngeal cancer (Liu et al., 2017), hepatocellular
carcinoma (Shi et al., 2016), melanoma (Yamashita et al., 2012)
and early-stage cervical squamous cell carcinoma (Zhang et al.,
2016).

Regarding GSEA, it was found that cell cycle and metabolism
associated pathways were significant enriched in samples with
higher level of ME of blue module. This is consistent with
the initial GO and KEGG analysis results of the blue module
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and are related to the physiological function of these four hub
genes.

In summary, through WGCNA and other related analysis
methods, we identified four genes (RRM2, BUB1B, CENPF, and
KIF20A) related to the progression and prognosis of STS. These
genes may play a role by regulating the cell cycle and metabolism
associated signaling pathways.
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