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Abstract

Brain tissue segmentation from multimodal MRI is a key building block of many neuroimaging 

analysis pipelines. Established tissue segmentation approaches have, however, not been developed 

to cope with large anatomical changes resulting from pathology, such as white matter lesions or 

tumours, and often fail in these cases. In the meantime, with the advent of deep neural networks 

(DNNs), segmentation of brain lesions has matured significantly. However, few existing 

approaches allow for the joint segmentation of normal tissue and brain lesions. Developing a DNN 

for such a joint task is currently hampered by the fact that annotated datasets typically address 

only one specific task and rely on task-specific imaging protocols including a task-specific set of 

imaging modalities. In this work, we propose a novel approach to build a joint tissue and lesion 

segmentation model from aggregated task-specific hetero-modal domain-shifted and partially-

annotated datasets. Starting from a variational formulation of the joint problem, we show how the 

expected risk can be decomposed and optimised empirically. We exploit an upper bound of the risk 

to deal with heterogeneous imaging modalities across datasets. To deal with potential domain 

shift, we integrated and tested three conventional techniques based on data augmentation, 

adversarial learning and pseudo-healthy generation. For each individual task, our joint approach 

reaches comparable performance to task-specific and fully-supervised models. The proposed 

framework is assessed on two different types of brain lesions: White matter lesions and gliomas. In 

the latter case, lacking a joint ground-truth for quantitative assessment purposes, we propose and 

use a novel clinically-relevant qualitative assessment methodology.
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1 Introduction

Traditional approaches for tissue segmentation used in brain segmentation / parcellation 

software packages such as FSL (Jenkinson et al., 2012), SPM (Ashburner and Friston, 2000) 

or NiftySeg (Cardoso et al., 2015) are based on subject-specific optimisation. FSL and SPM 

fit a Gaussian Mixture Model to the MR intensities using either a Markov Random Field 

(MRF) or tissue prior probability maps as regularisation. Alternatively, multi-atlas methods 

rely on label propagation and fusion from multiple fully-annotated images, i.e. atlases, to the 

target image (Cardoso et al., 2015; Iglesias and Sabuncu, 2015). These methods typically 

require extensive pre-processing, e.g. skull stripping, correction of bias field and registration. 

They are also often time-consuming and are inherently only adapted for brains devoid of 

large anatomical changes induced by pathology, such as white matter lesions and brain 

tumours. Indeed, it has been shown that the presence of lesions can significantly distort any 

registration output (Sdika and Pelletier, 2009). Similarly, lesions introduce a bias in the 

MRF. This leads to a performance degradation in the presence of lesions for brain volume 

measurement (Battaglini et al., 2012) and any subsequent analysis.

While quantitative analysis is expected to play a key role in improving the diagnosis and 

follow-up evaluations of patients with brain lesions, current tools mostly focus on 

quantification of the lesions themselves and effectively discard contextual tissue 

information. Existing quantitative neuroimaging approaches allow the extraction of imaging 

biomarkers such as the largest diameter, volume, and count of the lesions. Such automatic 

segmentation of the lesions promises to speed up and improve the clinical decision-making 

process but more refined analysis would be feasible from tissue classification and region 

parcellation. In particular, brain atrophy at a global level (Popescu et al., 2013; Giorgio and 

De Stefano, 2013), at a cerebral level (Bermel and Bakshi, 2006), and, even more 

specifically, at the grey matter level (Geurts et al., 2012) have been correlated with the speed 

of disease progression and with physical disability (Fisniku et al., 2008). Consequently, 

atrophied tissue volumes in the presence of lesions are clinically relevant imaging markers 

(Dwyer et al., 2018). We believe that, although very few work have addressed this problem 

yet, a joint model for lesion and tissue segmentation is expected to bring significant clinical 

benefits. As representative exemplars of the technical challenges involved to build such joint 

models, we focus, in this work, on patients with white matter lesions or brain tumours.

Deep Neural Networks (DNNs) have become the state-of-the-art for most segmentation 

tasks (Simpson et al., 2019) and one would now expect these to be able to jointly perform 

brain tissue and pathology segmentation. However, annotated databases required to train 

DNNs are usually dedicated to a single task (either brain tissue segmentation or pathology 

delineation). In addition, the information required for brain tissue or pathology segmentation 

may come from different scans, leading to hetero-modal (i.e. more than one set of input 

imaging sequences) datasets. While T 1 -weighted images provide the best grey/white matter 
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contrast for the delineation of anatomical tissue, T 2 -weighted sequences are usually more 

sensitive to pathological changes (Bitar et al., 2006). Choice of the used sequence or 

combination of sequences may also differ across pathologies. T 2 -weighted FLAIR images 

are often used for the assessment of white matter lesions (Maillard et al., 2013) while a 

combination of T 1 contrast-enhanced (T 1 c), T 2 and FLAIR is often preferred for the 

characterisation of gliomas (Wen et al., 2010). Similarly, the scans may have been acquired 

with different magnetic resonance parameters leading to differences in resolution and 

contrast among databases. Consequently, the data distribution may differ between the 

datasets, i.e. the datasets may be domain-shifted. Given 1) the large amount of resources, 

time and expertise required to annotate medical images, 2) the varying imaging requirement 

to support each individual task, and 3) the availability of task-specific databases, it is 

unlikely that large databases for every joint problem, such as lesion and tissue segmentation, 

will become available. There is thus a need to exploit existing task-specific databases to 

address the joint problems. Learning a joint model from task-specific hetero-modal and 

domain-shifted datasets is nonetheless challenging. As shown in Fig. 1, this problem lies at 

the intersection of Multi-Task Learning (Zhang and Yang, 2017), Domain Adaptation (Ben-

David et al., 2010; Zhao et al., 2019) and Weakly Supervised Learning (Oquab et al., 2015; 

Bilen and Vedaldi, 2016; Xu et al., 2014) with singularities making individual methods from 

these underpinning fields insufficient to address it completely, as explained in more depth in 

the related work section 2.

Our approach is rooted in all these sub-domains of deep learning. The main contributions are 

summarised as follows:

1. We propose a joint model that performs tissue and lesion segmentation as a 

unique joint task and thus exploits the interdependence between the lesion and 

tissue segmentation tasks. Starting from a variational formulation of the joint 

problem, we exploit the disjoint nature of the label sets to propose a practical 

decomposition of the joint loss, transforming the multi-class segmentation 

problem into a multi-task problem.

2. We introduce feature channel averaging across modalities to adapt existing 

networks for our hetero-modal problem.

3. We develop a new method to minimise the expected risk under the constraint of 

missing modalities. Under the assumption that the network is not affected by a 

potential domain shift, we show that the expected risk can be further decomposed 

and minimised via a tractable upper bound. To our knowledge, no such 

optimisation method for missing modalities in deep learning has been published 

before.

4. Given that, in practice, the heterogeneous task-specific datasets may have been 

acquired with different protocols, i.e. they are domain-shifted, we integrate 

several existing DA techniques in our framework. These methods are based on 

data augmentation and adversarial training, or pseudo-healthy brain generation.

5. We demonstrate the performance of our joint approach on two clinical use cases: 

White matter lesions and gliomas. Our method outperforms a fully-supervised 
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model trained on a smaller fully-annotated dataset for white matter lesions. To 

assess the performance of the joint model for tissue and glioma segmentation, for 

which no ground-truth is available, we propose a new qualitative evaluation 

protocol based on the ASPECTS score (Barber et al., 2000). Higher accuracy is 

obtained compared to time-consuming pipelines that require to mask the lesions 

using manual annotations.

6. Experiments show that generating pseudo-healthy annotated scans outperforms 

the other DA techniques, even with very few pseudo-healthy annotated scans.

This work is a substantial extension of our conference paper (Dorent et al., 2019b). 

Improvements include: 1) Additional mathematical proofs; 2) integration and validation of 

three different domain adaptation techniques to cope with domain-shifted datasets; 3) new 

experiments on joint brain tissue and glioma segmentation; and 4) a new quantitative 

evaluation protocol for assessing tissue segmentation in the absence of ground-truth.

2 Related work

Multi-Task Learning (MTL) aims to perform several tasks simultaneously, on a single 

dataset, by extracting some form of common knowledge or representation and introducing a 

task-specific back-end. When relying on DNN for MTL, the first layers of the network are 

typically shared, while the last layers are trained for the different tasks (Ruder, 2017). MTL 

has been successfully applied to medical imaging for segmentation (Bragman et al., 2018; 

Moeskops et al., 2016) combined with other tasks such as detection (Saha et al., 2019) or 

classification (Chen et al., 2019; Le et al., 2019). The global loss function is a weighted sum 

of task-specific loss functions. Recently, Kendall and Gal (2017) proposed a Bayesian 

parameter-free method to estimate the MTL loss weights and Bragman et al. (2018) 

extended it to spatially adaptive task weighting and applied it to medical imaging. Although 

the aforementioned approaches generate different outputs from the same features, no direct 

interaction between the task-specific outputs is modelled in these techniques. While a joint 

tissue and lesion segmentation can be pursued in practice, a strong underpinning assumption 

is that the two outputs are conditionally independent. Consequently, these approaches do not 

address the problem of aggregating these outputs to generate a joint segmentation. 

Moreover, MTL approaches, such as (Moeskops et al., 2018; Roulet et al., 2019), do not 

provide any mechanism for dealing with heteromodal datasets or changes in imaging 

characteristics across task-specific databases.

Domain Adaptation (DA) is a solution for dealing with domain-shifted datasets, i.e. datasets 

acquired with different settings. A classical strategy consists in learning a domain-invariant 

feature representation of the data. Csurka (2017) proposed an extensive review of these 

methods in deep learning. Some DA approaches have been developed to tackle a specific 

and identified shift. For example, data augmentation has been used for shifts caused by 

different MR bias fields (Sudre et al., 2017) or the presence of motion artefacts (Shaw et al., 

2019); Havaei et al. (2016) and Dorent et al. (2019a) proposed network architectures for 

dealing with missing modalities that encodes each modality into a shared modality-agnostic 

latent space. Recent studies have proposed to learn a mapping between healthy and decease 

scans, using Cy-cleGANs (Xia et al., 2019; Sun et al., 2018) or Variational Autoencoders 
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(Chen and Konukoglu, 2018). Although these techniques have shown promising results, they 

are inherently limited to a specific type of shift. Combining causes of shift, for instance the 

presence/absence of lesions with different protocols of acquisition, remains an unsolved 

problem. In contrast, general DA approaches do not make assumptions about the nature of 

the shift. These methods aim to directly minimise the discrepancy between the feature 

distributions across the domains. Distribution dissimilarity can be assessed using correlation 

distances (Sun et al., 2016) or maximum mean discrepancy (Pan et al., 2011; Long et al., 

2015). However, more recent techniques are mostly focused on adversarial methods, 

achieving promising results in medical imaging (Kamnitsas et al., 2017; Dou et al., 2018; 

Orbes-Arteaga et al., 2019). However, these methods are usually focus on solving a single 

task across domain.

Weakly-supervised Learning (WSL) deals with missing, inaccurate, or inexact annotations. 

Our problem is a particular case of learning with missing labels since each task-specific 

dataset provides a set of labels where the two sets are disjoint. Li and Hoiem (2017) 

proposed a method to learn a new task from a model trained on another task. This method 

combines DA through transfer learning and MTL. In the end, two models are created: One 

for the first task and one for the second one. Kim et al. (2018) extended this approach by 

using a knowledge distillation loss in order to create a unique multi-task model. This aims to 

alternatively learn one task without forgetting the other one. The WSL problem was thus 

decomposed into an MTL problem with aforementioned limitations for our specific use case.

This work proposes a new framework to perform a joint segmentation while dealing with 

task-specific, domain-shifted and hetero-modal datasets.

3 Tissue and lesion segmentation learning from hetero-modal and task-

specific datasets: Problem definition

In order to develop a joint model, we first propose a mathematical variational formulation of 

the problem and introduce a network architecture to leverage existing hetero-modal and 

task-specific datasets for tissue and lesion segmentation.

3.1 Formal problem statement

Let x = (x 1,., xM) ϵ X = ℝN×M be a vectorized multimodal image and y ϵ Y = {0,., C}N its 

associated tissue and lesion segmentation map. Ν, M and C are respectively the number of 

voxels, modalities and classes. Note that images modalities are assumed to be co-registered 

and resampled in the same coordinate space containing N voxels. Our goal is to determine a 

predictive function, parametrised by the weights θ ϵ Θ, hθ: X ↦ Y that minimises the 

discrepancy between the ground truth label vector y and the prediction hθ(x). Let L be a loss 

function that estimates this discrepancy. Following the formalism used by Bottou et al. 

(2018), given a probability distribution D over (X, Y) and random variables under this 

distribution, we want to find θ* such that:

θ* = argminθΕ x, y ∼D L ℎθ x , y (1)
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As is the norm in data-driven learning, we do not have access to the true joint probability D. 

In supervised learning, the common method is to estimate the expected risk using training 

samples. Given a set of n ε ℕ independently drawn multimodal scans with their associated 

tissue and lesion segmentation map xk, yk k = 1
n , we want to find θ* that minimises the 

empirical risk:

θ* = argminθ ∑
k=1

n
L ℎθ xk , yk (2)

However, in our multitask scenario, we cannot directly estimate the empirical risk since we 

do not have access to a fully annotated dataset for the joint task. Instead, we propose to 

leverage task-specific and hetero-modal datasets.

3.2 Task-specific and hetero-modal datasets

Let us assume that we have access to two datasets with either the tissue annotations yT or the 

lesion annotations yL (task-specificity). Let

Scontrol = xk
1, . , xk

MT , yk
T

k = 1

nT

Slesion = xk
1, ..., xk

ML , yk
L

k = 1

nL

denote these two training sets, where MT, ML, nT and nL are respectively the number of 

modalities in the control and the lesion sets and the size of these sets. Note that although we 

use the term control for convenience, we may expect to observe pathology with “diffuse” 

anatomical impact, e.g. from dementia. In addition, for the clarity of presentation, we 

highlight that the considered lesions in this work are either White Matter Hyperintensities 

(WMH) or gliomas.

Since such datasets are typically developed in the scope of either tissue or lesion 

segmentation (but not both), the set of observed modalities may vary from one dataset to 

another (hetero-modality). Importantly, in this work, we consider that only T1 scans are 

provided in the control dataset, while the lesion set contains either 1) the T1 and the FLAIR 

scans for WMH segmentation, or 2) the T1, contrast-enhanced T1 (T1c), T 2 and FLAIR 

scans for glioma segmentation. The full set of modalities is consequently given by the 

modalities in the lesion set, while the control dataset will have missing modalities. In our 

specific use cases, the T1 modality is a shared modality across the different datasets. It will 

nonetheless be apparent that our method can be trivially adapted for other shared modalities.

3.3 On the distribution D in the context of heterogeneous databases

As we expect different distributions across heterogeneous databases, two probability 

distributions of (X Y) over (X, Y) can be distinguished:

• under Dcontrol, (X Y) corresponds to a multimodal scan and joint segmentation 

map of a patient without lesions (Y effectively being a tissue segmentation map).
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• under Dlesion, (X Y) corresponds to a multimodal scan and joint lesion and tissue 

segmentation map of a patient with lesions.

Since traditional tissue segmentation methods are not adapted in the presence of lesions, the 

most important and challenging distribution D to address is the one for patients with lesions, 

Dlesion. In the remainder of this work, we thus assume that:

D ≜ Dlesion (H1)

3.4 Hetero-modal network architecture

In order to learn from hetero-modal datasets, we need a network architecture that allows for 

missing modalities. Specifically, the input modalities are either a T1 scan or a full set of 

modalities. To deal with missing modalities, arithmetic operations are employed, as 

originally proposed in HeMIS (Havaei et al., 2016). The network architecture is based on a 

U-Net (Çiçek et al., 2016b), as shown in Fig. 2. Note that, while the proposed method 

requires a hetero-modal network, any specific architecture can be used. The proposed 

network is composed of two input branches, one for the T1 scan and one for the full set of 

modalities. Although HeMIS originally proposed to encode each modality independently, i.e 

one branch per modality, we experimentally found higher performance with these two 

branches. In the presence of the full set of modalities, features extracted from the T1 scan 

and all the modalities are averaged. Consequently, the network allows for missing 

modalities, i.e. is hetero-modal. This hetero-modal network with weights θ is used to capture 

the predictive function hθ that can accept either T1 or the full set of modalities as input.

4 Optimising tissue and lesion segmentation as a joint task

Given the mathematical formulation of the problem and the hetero-modal network 

architecture, we propose a method to empirically optimise the joint problem of tissue and 

lesion segmentation.

4.1 Loss decomposition

Let CT, CL and 0 be respectively the set of tissue classes and lesion classes and the value of 

the background class in the segmentation masks. Since CT and CL are disjoint, the 

segmentation map y can be decomposed into two segmentation maps y =yL +yT with 

yT ∈ CT ∪ 0 , yL ∈ CL ∪ 0 .

Let us assume that the loss function L can also be decomposed into a tissue loss function LT 

and a lesion loss function LL. This is common for multi-class segmentation loss functions in 

particular for those with one-versus-all strategies (e.g. Dice loss, Jaccard loss, Generalized 

Cross-Entropy). Then, the joint and multi-class segmentation problem can be formulated as 

a multi-task problem:

L ℎθ x , y = LT ℎθ x , yT + LL ℎθ x , yL (H2)

In combination with (H1 ), (1) can be rewrittern as:
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θ* = argminθEDlesion LT ℎθ x , yT +

RT

EDlesion LL ℎθ x , yL

RT
(3)

While the second expected risk RL can be estimated using the full set of modalities and the 

lesion annotations provided in the lesion dataset, the first expected risk RT appears to be 

intractable due to the missing tissue annotations in the lesion dataset. In the next sections, 

we first propose an upper bound of the expected tissue risk RT and then a means to estimate 

this upper bound using the control dataset.

4.2 Upper bound of the expected tissue risk RT 

Although, thanks to its hetero-modal architecture, hθ may handle inputs with varying 

number of modalities, the current decomposition (3) assumes that all the modalities of x are 

available for evaluating the loss. In our scenario, the control set of scans with tissue 

annotations only contains the T1 scans. Consequently, as we do not have all the modalities 

with tissue annotations, and as naively evaluating a loss with missing modalities would lead 

to a bias, estimating RT is not straightforward.

Let us assume that the tissue loss function LT satisfies the triangle inequality:

∀ a, b, c ∈ y3:LT a, c ≤ LT a, b + LT b, c (H3)

Although not all losses satisfy (H3 ), it is known that the binary Jaccard is a distance (Späth, 

1981; Kosub, 2018) and thus satisfies the triangle inequality.

Definition 4.1. (Binary Jaccard distance)

The binary Jaccard distance Jbin is defined such that:

∀a, b ∈ 0, 1 N, Jbin a, b = 1 − ∑i = 1
N aibi

∑i = 1
N ai + bi − aibi

(4)

However, network outputs are typically pseudo-probabilities, and the soft version of (4) does 

not satisfy the triangle inequality. To satisfy (H3), we extend the binary Jaccard distance to a 

multi-class probabilistic formulation that coincides with the binary Jaccard for binary inputs 

but preserves the metric property for probabilistic inputs.

Definition 4.2. (Probabilistic multi-class Jaccard distance)

Let C be the number of classes in C, N be the number of voxels and P ⊂ 0, 1 C × N denote 

the set of probability vector maps such that for any p = pc, i c ∈ C, i ∈ 0; N ∈ P :

∀i ∈ 0; N , ∑
c ∈ C

pc, i = 1
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The probabilistic multi-class Jaccard distance is defined for any (u, v) ∈ P2 as:

J u, v = ∑c ∈ Cωc
2∑i = 1

N uc, i − vc, i
∑i = 1

N uc, i + vc, i + uc, i − vc, i
(5)

where ωc are the class weights such that with ∑c ∈ CωC = 1

As shown in A.1, the binary and probabilistic Jaccard distance coincide on the set of binary 

vectors {0, 1}N. Furthermore, (5) satisfies (H3 ).

Lemma 4.1. The probabilistic multi-class Jaccard distance is a distance and thus satisfies the 
triangle inequality.

Proof. The proof, detailed in A.2, follows from the Steinhaus transform (Späth, 1981) 

applied to the metric space ([0, 1]N, d1) where d1 is the distance induced by the L1 norm. D

Under (H3 ), LT satisfies the following inequality:

LT ℎθ x , yT ≤ LT ℎθ x , ℎθ xT1 + LT ℎθ xT1 , yT (6)

where xT 1 denotes the T1 scan associated to x. Consequently, we find an upper bound of the 

expected tissue risk:

ℜT θ ≤ EDlesion LT ℎθ x , ℎθ xT1 +

ℜT1 Full
T

EDlesion LT ℎθ xT1 , yT

ℜT1
T (7)

Minimising ℜT1
T  enforces the network to generate accurate tissue segmentation using only 

T1 as input. Minimising ℜT1 Full
T  encourages consistency between the outputs when given 

only T1 or the full set of modalities as input. This latter term allows for transferring the 

knowledge learnt on the T1 scan to the full set of modalities.

An empirical estimation of RT
TFull can be obtained by comparing the network outputs using 

either T1 or the full set of modalities as input. In contrast, RT
T requires comparison of 

inference done, under Dlesion, from T1 inputs with ground truth tissue maps yT. While this 

provides a step towards a practical evaluation of RT, we still face the challenge of not having 

tissue annotations yT under D lesion.

4.3 Estimating ℜT1
T  using the control dataset 

To estimate ℜT1
T , we assume that the neural network hθ is invariant to a potential domain 

shift between the T1 scans of the control and lesion datasets on the non-lesion regions. 

Specifically, we assume that the restriction of the feature distributions (rather than the image 

intensity distributions) over Dlesion and Dcontrol to the non-lesion parts of the brain (i.e. the 

voxels i such that yi ∈ CT) are comparable, i.e.:
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PDlesion ℎθ xT1
i, yi yi ∈ CT = PDcontrol ℎθ xT1

i, yi yi ∈ CT (H4)

This means that the neural network hθ generates similar outputs on the non-lesion parts of 

the brain between the two datasets, leading to:

ℜT1
T = EDlesion LT ℎθ xT1 , yT = EDcontrol LT ℎθ xT1 , yT (8)

Consequently, under (H4 ), RT
T can be estimated using the T 1 scans and their tissue 

annotations in the control dataset. Section 5 presents means of ensuring that assumption 

(H4 ) is satisfied even in the presence of domain shift in the image intensity distributions.

4.4 Summary of the expected risk decomposition

Bringing all the terms together, given (3), (7) and (8), we seek the parameters θ ∗ that 

optimise the tractable upper bound Rseg of the (intractable) expected risk:

θ* = argminθ ℜseg = EDcontrol LT ℎθ xT1 , yT

+ EDlesion LL ℎθ x , yL + LT ℎθ x , ℎθ xT1 (9)

5 Matching feature distributions across datasets

In this section, we explore different approaches that ensure the feature distributions extracted 

from the control and lesion T1 scans are comparable, i.e. we want to satisfy (H4 ) even in the 

presence of domain shift.

5.1  Similar acquisition protocols for the control and lesion datasets 

Let’s first assume that the acquisition protocols are similar for the control and lesion 
datasets, i.e. they are not domain-shifted. Specifically, we assume that the T1 images have 

been acquired with similar sequences, spacial resolution and field strength. In this case, 

similar to Chen and Konukoglu (2018), the restriction of the distributions Dlesion and Dcontrol 

to the non-lesion parts of the brain can be assumed to be the same on the T1 scans, i.e.:

PDlesion χi
T1, yi yi ∈ CT = PDcontrol χi

T1, yi yi ∈ CT (10)

In the absence of domain shift, we can reasonably assume that the network produces similar 

outputs on the non-lesion parts of the brain for the two distributions, i.e. that (H4 ) is 

satisfied. No specific additional action thus needs to be implemented.
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5.2 Generating pseudo-healthy scans to learn tissue segmentation from domain-shifted T 

1 scans

Let’s now consider the presence of a domain shift between the T1 control and lesion scans 

due to different acquisition protocols. In this section, we propose to synthesise pseudo-

healthy scans from domain-shifted T1 lesion scans in order to extend the control dataset with 

control scans associated to the protocol of acquisition of the lesion dataset. Since the control 
and lesion datasets are domain-shifted, existing lesion removal approaches, based either on 

CycleGANs (Xia et al., 2019; Sun et al., 2018) or Variational Autoencoders (Chen and 

Konukoglu, 2018), are not adapted as they require training data with no domain shift beyond 

the presence of absence of pathology.

To tackle the presence of an acquisition-related domain shift, we propose to generate 

pseudo-healthy scans and their annotations using traditional image computing techniques 

that are inherently robust to different acquisition protocols. For example, for white matter 

lesions, lesion filling methods allow for transforming scans with lesions into pseudo-healthy 

scans (Valverde et al., 2014; Prados et al., 2016). For large and unilateral pathology, we 

propose to synthesise pseudo-healthy T1 scans by symmetrising the “healthy” hemisphere of 

the patients with lesions located in one hemisphere only. The inter-hemispheric symmetry 

plane is estimated via the technique described in Prima et al. (2002). Finally, the “healthy” 

hemisphere of those patients is mirrored in order to create a symmetric pseudo-healthy 

brain. Having generated pseudo-healthy images, traditional methods, designed for control 
scans, such as the GIF framework (Cardoso et al., 2015), can then be employed to generate 

the corresponding bronze standard tissue annotations.

With this set of scans Spseudo
T1 , we have access to a pseudo-control dataset acquired with a 

similar protocol as in the lesion dataset and similar on the non-lesion part of the brain, and 

thus are in the scenario described in 5.1. Let denote Dpseudo
T1  the distribution of those scans. 

The expected tissue risk ℜT1
T  is then equal to the expect tissue risk under Dpseudo

T1 :

ℜT1
T = EDlesion LT ℎθ xT1 , yT = EDpseudo

T1 LT ℎθ xT1 , yT (11)

To take advantage of the manual annotations in the control dataset, we resort to averaging 

the two formulations (8,11):

ℜT1
T ≈

EDcontrol LT ℎθ xT1 , yT + EDpseudo
T1 LT ℎθ xT1 , yT

2
(12)

Consequently, the expected tissue risk RT
T can be estimated using the control and pseudo-

control T1 scans.
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5.3 Alternative unsupervised DA techniques

In order to satisfy (H4 ), the feature representation of the non-lesion parts of the brain has to 

be invariant to the changes induced by the different protocols. A direct way to align the 

feature distributions restricted to the non-lesion parts would be to match the representations 

of pairs of scans acquired with the different settings. However, in our scenario, we do not 

have access to such pairs of domain-shifted scans.

In contrast, unsupervised DA allows to perform domain adaptation using unpaired and non-

annotated domain-shifted scans. Unsupervised DA techniques commonly introduce an 

additional term (RDA) that encourages the network to be invariant to the domain shift. Then, 

the total expected risk reads:

ℜtotal = ℜseg + λℜDA (13)

where λ is a hyper-parameter that allows for balancing the segmentation risk Rseg ((9)) with 

the DA regularisation RDA.

The definition of the DA term depends on the DA technique. In this work, two common 

unsupervised DA methods are considered, based either on data augmentation or adversarial 

learning.

5.3.1 Unsupervised DA via physically-inspired data augmentation—Since T1 

scans play a key role for structure analysis, we expect high-resolution T1 scans for datasets 

developed in the scope of tissue segmentation, such as the control dataset. Conversely, T1 

scans are often less critical for lesion segmentation and T1 scans may have been acquired 

with a lower resolution.

Let’s assume that, less effort has been done to acquire high-resolution T1 lesion scans, 

explaining the differences in acquisition protocols. Specifically, we assume that the domain 

shift is caused by the presence of T1 lesion scans with artefacts (e.g. related to the MR bias 

field or the presence of motion artefacts) and a lower acquisition resolution. We additionally 

assume that differences of scanner characteristics (manufacturer, field strength) are 

excluded.

Then, physically-informed augmentation such as random bias field (Sudre et al., 2017) and 

motion artefacts (Shaw et al., 2019) and spacial smoothing can be employed to generate 

scans that are similar to the T1 lesion scans. Let denote Tψ the composition of these 

transformations parametrised by the parameters ψ ∼ Dψ. For any T1 control scan xC
T1, we 

can thus generate an augmented version Tϕ xC
T1 , i.e. getting access to pairs of domain-

shifted T1 scans. This allows to minimise the discrepancy between the feature 

representations learnt by the neural network across the two domains by enforcing 

consistency across outputs from paired domain-shifted inputs, i.e.:

ℜDA = EDψEDcontrol LT ℎθ xc
T1 , ℎθ ∘ Tϕ xc

T1 (14)
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An empirical estimation of the DA regularisation term RDA is obtained by comparing the 

network outputs using the T1 control scans and their augmented versions as input.

Consequently, if the domain shift is due to different spatial resolutions and the presence of 

the aforementioned artefacts, the network can be trained to be invariant to the domain shift, 

i.e. to satisfy (H4 ).

5.3.2 Unsupervised DA via adversarial learning—Let’s now assume that the 

domain shift cannot easily be simulated. In this case, we can use adversarial learning. 

Adversarial approaches for domain adaptation can be seen as a two-player game: A 

discriminator Dφ, parametrised by the weights φ ∈ Φ, is trained to distinguish the source 

domain features from the target domain features, while the segmentation network hθ is 

simultaneously trained to confuse the domain discriminator.

The discriminator aims to predict the probability that extracted features are part of the lesion 
feature distributions. The discriminator accuracy can thus be seen as a measurement of the 

discrepancy between the lesion and control feature distributions and used as a DA 

regularisation term:

ℜDA ϕ, θ = EDlesion 1 − Dϕ ℎθ x + EDcontrol Dϕ ℎθ x (15)

This DA term can be estimated by using features extracted from T 1 control and lesion scans 

as input of the discriminator.

The following proposition shows that the discriminator accuracy is a principled 

measurement of the feature distribution discrepancy:

Proposition 1. Let assume that L satisfies the triangle inequality and is bounded. Let us also 
assume that the family of domain discriminators HΦ = Dϕ ϕ ∈ Φ is rich enough. Then there 

is a constant K such that:

EDlesion L ℎθ x , y ≤ ℜseg + Ksup
ϕ

ℜDA ϕ, θ + ∈ Θ (16)

where ε(Θ) is independent of the network parameters θ and corresponds to the accuracy of 
the best (and unknown) segmenter in the family of functions parametrised in Θ.

Proof. The proof uses (3), (7), is based on Ben-David et al. (2010) and Long et al. (2018) 
and detailed in Appendix B. D

(16) shows that the intractable expected loss is bounded by a weighted sum of the tractable 

segmentation risk (9) and the accuracy of the best discriminator, up to a constant w.r.t the 

network parameters.

Moreover, the alternative optimisation strategy can be seen as a way to estimate the best 

discriminator while minimising the upper bound defined in (16).
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Note that (16) stands for features extracted at any level of hθ. In this work and similarly to 

Orbes-Arteaga et al. (2019), the contracting path features from the U-Net are used as input 

of the discriminator.

6 Implementation of the joint model optimisation

Given the formulation of the joint model and our proposed computationally tractable 

decomposition, we present in this section the implementation of our framework.

6.1 Stochastic optimisation of the joint model

We use a stochastic gradient descent approach to minimise the expected risk decomposition 

(9) and to enforce the network to be invariant to a potential domain shift between the 

datasets. The total loss function reads:

Ltotal = Lseg + λLDA (17)

where λ is a hyper-parameter that allows for balancing the segmentation loss Lseg 
(associated to Rseg) with the domain adaptation loss LDA (associated to RDA). Fig. 3 shows 

the training procedure without DA. The weights of the segmentation loss are given by the 

decomposition of the problem. The domain adaptation parameter λ is a hyper-parameter that 

is experimentally chosen.

At each training iteration, we draw pairs of samples xl, yl
L  and xC

T1, yC
T  from Slesion and 

Scontrol and compute in each mini-batch the following loss functions and associated gradient. 

Note that there is no natural pairing between xl, yl
L  and xC

T1, yC
T . Our paired sampling 

procedure thus exploits random pairing.

As presented in Section 5, different scenarios are considered.

Similar acquisition protocols If the datasets are not domain-shifted, no DA is required (λ = 

0 ), and the segmentation loss is:

Lseg = LL ℎθ x1 , yl
L + LL ℎθ x1 , ℎθ xl

T1

+LL ℎθ xc
T1 , ycT

(18)

We experimentally found that the inter-modality tissue loss ℜT1 Full
T  has to be skipped for 

few epochs (50 in our experiments).

Pseudo-healthy generation Given a pseudo-healthy annotated set of scans 

Spseudo
T1 = xpseudo

T1 , ypseudo
T , no DA is employed (λ = 0), and the segmentation loss, defined 

by (12), is:
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Lseg = LL ℎθ x1 , yl
L + LL ℎθ x1 , ℎθ xl

T1

+ 1
2 LT ℎθ xpseudo

T1 , ypseudo
T + LL ℎθ xc

T1 , ycT
(19)

DA via augmentation If we assume that the differences of protocols can be simulated 

(random bias field, motion artefacts and spatial smoothing), the domain invariance (14) is 

learnt by minimising the inter-domain feature discrepancy defined as:

LDA = LT ℎθ xc
T1 , ℎθ Tϕ xc

T1

where Tφ corresponds to a composition of theses transformations. The segmentation loss 

Lseg is the same as in (18).

DA via adversarial learning If adversarial learning is employed, a discriminator D is 

trained to discriminate scans from the two domains by maximising the domain classification 

accuracy. For computational stability, the L1 distance defined in (15) has been replaced by 

the cross-entropy. Conversely, the segmenter hθ is train to minimise this domain 

classification accuracy, i.e.:

LDA = log Dψ ℎθ xc
T1 + log 1 − Dψ ℎθ xl

T1

As in Kamnitsas et al. (2017); Orbes-Arteaga et al. (2019), the DA loss is skipped for few 

epochs (20 in our experiments) in order to initialise the discriminator. The segmentation loss 

Lseg is the same as in (18).

6.2 Implementation details

We implemented our network in PyTorch, using TorchIO (Pérez-García et al., 2020). Codes 

are available at http://github.com/ReubenDo/jSTABL.

Convolutional layers are initialised such as proposed in He et al. (2015). The scaling and 

shifting parameters in the batch normalisation layers were initialised to 1 and 0 respectively. 

As suggested by Ulyanov et al. (2016), we used instance normalisation. We used the same 

discriminator as in Orbes-Arteaga et al. (2019).

We performed a 3-fold cross validation. For each fold, we randomly split the data into 70% 

for training, 10% for validation and 20% for testing. We used a batch of 2 lesion scans, and 2 

control scans. Note that, for the DA approach based on data augmentation, the batch of 2 

control scans consists in a pair of non-augmented/augmented control scans. As a data 

augmentation, a rotation with a random angle in [-10◦, 10◦] and a random Gaussian noise 

are employed. The network was trained using Adam optimiser (Kingma and Ba, 2015) the 

learning rates lR, β1, β2 were initially respectively set up to 5.10-4, 0.9 and 0.999. lR was 

progressively reduced by a factor of 2 every 10,000 iterations. We employed the training 

strategy used for the nnU-Net (Isensee et al., 2019): The learning rate is reduced by a factor 
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2 after 15 epochs without reduction of the exponential moving average of the loss on the 

validation split.

We used the probabilistic version of the multi-class Jaccard distance (5) as the segmentation 

loss function. In order to give the same weight to the lesion segmentation and the tissue 

segmentation, we choose ω such that

∑
c ∈ Ctissue

ωc = ∑
c′ ∈ Clesion

ωc′ = 1
2

7 Experiments and results

7.1 Joint white matter lesion and tissue segmentation

7.1.1 Task and datasets—In this first set of experiments, we focus on the segmentation 

of white matter lesions and six tissue classes (white matter, grey matter, basal ganglia, 

ventricles, cerebellum, brainstem), as well as the background. As detailed in Table 1, we 

used 2 control datasets and 2 lesion datasets:

• Lesion data Slesion: The White Matter Hyperintensities (WMH) training 

database (Kuijf et al., 2019) consists of 60 sets of brain MR images (T1 and 

FLAIR, M = 2) with manual annotations of WMHs. The data comes from three 

different institutes. Note that images modalities are be co-registered and 

resampled in the FLAIR coordinate space.

• Tissue data Scontrol: Consists of 35 T1 scans (M’ = 1 ) from the OASIS project 

(Marcus et al., 2007) with annotations of 143 structures of the brain provided by 

Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) under academic 

subscription. From the 143 structures, we deduct the 6 tissue classes. In order to 

have balanced training datasets between the two datasets, to include data 

acquired at the same field strength (3T) as the lesion data, and similar to Li et al. 

(2017), we added 25 T1 control scans from the Alzheimer’s Disease 

Neuroimaging Initiative 2 (ADNI-2) database (Jack Jr. et al. (2008), adni.loni. 

usc.edu) with bronze standard parcellation of the brain structures computed with 

the accurate but time-consuming algorithm of Cardoso et al. (2015).

• Fully annotated data Sfully: MRBrainS18 (http://mrbrains18.isi.uu.nl/) is 

composed of 30 sets of brain MR images with tissue and lesion manual 

annotations. 7 scans are publicly available for training and validation. Although 

the cerebrospinal fluid (CSF) has been annotated in MRBrainS18, it was 

considered as background to have the same set of tissue classes as in Scontrol 
where the CSF was not labelled. Note that image modalities are be co-registered 

and resampled in the FLAIR coordinate space.

7.1.2 Similar acquisition protocol for the T1 scans—Despite the differences in 

scanners, all T1 acquisitions across the datasets followed very similar protocols (MP-RAGE) 

(see Table 1). Therefore, they were considered as following a similar distribution and the 

data was only pre-processed as follows.
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• Skull stripping: All the scans were skull-stripped using ROBEX (Iglesias et al., 

2011).

• Resampling: All the scans in Scontrol are resampled into the transversal direction 

with slices of 3 mm thickness to obtain a similar spacing 1×1×3 mm3 in the 

datasets.

• Intensity normalisation: We used a zero-mean unit-variance normalisation in 

order to match the intensity distributions.

7.1.3 Description of the compared models—We considered three different models 

in our experiments.

• Pipeline model (Pipeline): This model corresponds to the com bination of two 

task-specific models:

A Tissue segmentation model that only performs tissue segmentation and is 

trained on the T 1 scans from the dataset with tissue annotations Scontrol.

A Lesion model that only performs lesion segmentation and is trained using the 

T 1 and FLAIR scans from the dataset with lesion annotations Slesion.

The two models are combined such that the predicted lesion mask has the 

priority over the predicted tissue mask. Consequently, the background of the 

Lesion output is replaced by the Tissue output.

• Fully-supervised model (Fully-Sup): This joint model performs tissue and 

lesion segmentation and is trained using the T 1 and FLAIR scans from the small 

fully-annotated dataset Sfully.

• Proposed joint model (jSTABL): Our proposed model for joint Segmentation of 

Tissues and Brain Lesions is trained using both the T 1 scans from Scontrol with 

the tissue annotations and the T 1 and FLAIR scans from Slesion with the lesion 

annotations.

Each model used the architecture presented in Fig. 2. Consequently, the Pipeline model has 

twice as many parameters as the other models.

In this set of experiments, the skull-stripped images are first cropped to remove the blank 

spaces and then padded to size of (144,192,48).

7.1.4 Method for assessing the models—The performance of the three models was 

evaluated on the three datasets using Dice Score and 95% Hausdorff distance. On the control 
data (OASIS1+ADNI2) and WMH, scores were computed on the testing splits, while on 

MRBrainS18, models were submitted to the challenge MRBrainS18.

For the control data (OASIS1+ADNI2) and MRBrainS18, the full set of annotations allows a 

direct assessment of the tissue and the lesion segmentation performance. For WMH, only the 

lesion annotations are provided. In order to assess both the tissue and lesion segmentation on 

WMH, the lesions are filled as normal-appearing white matter on T 1 images using the 

method described in Prados et al. (2016) and implemented in NiftySeg (Cardoso et al., 
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2015). Then, GIF framework (Cardoso et al., 2015) was performed on the modified T 1 

scans to obtain bronze standard tissue annotations. The tissue mask and lesion annotations 

were then merged by completing the non-lesion parts with the tissue mask. Finally, the 

model outputs are compared to the merged tissue and lesion masks. In the end, for each 

model and each dataset, we can assess the performance of tissue and lesion segmentation.

Given that participants to the MRBrainS18 challenge do not have access to the held-out 

evaluation data set and that the Jac-card score is not provided by the challenge organisers, 

only the Dice Similarity Coefficient (DSC) and 95th-percentile Hausdorff distance are 

reported for each class.

7.1.5 Results—The main results are shown in Table 2 for the Dice Similarly Coefficient 

and in Table 3 for the 95th-percentile Hausdorff distance.

Firstly, our proposed method (jSTABL) achieves comparable performance to the single-task 

models on the control data (Tissue) and on WMH (priority of Lesion in Pipeline). This 

suggests that learning from hetero-modal datasets via our method does not degrade the 

performance on the tasks characterising the task-specific datasets.

Secondly, jSTABL slightly outperforms Pipeline on segmenting the tissues in WMH for the 

two sets of metrics. This shows that the tissue knowledge learnt from T 1 scans has been 

well generalised to multi-modal scans. Although we could have expected that the presence 

of lesions would create perturbations for the Tissue model, this latter model in fact ignores 

the lesions and mostly classifies them as white matter. Given that the white matter lesions 

are usually surrounded by white matter, the Pipeline predictions are consequently not too 

degraded. However, some artefacts around the lesions in the Pipeline outputs can be 

observed, in particular in the ventricles for patients with large lesions surrounding them. Fig. 

4(a) shows an example for which parts of the ventricles are classified as background. In 

contrast, we did not observe such artefacts with jSTABL predictions.

Thirdly, jSTABL outperforms the fully-supervised model (Fully-Sup) on the control data 

(OASIS1+ADNI2) and WMH, while reaching comparable performance on MRBrainS18. 

This demonstrates the two main advantages of our method. First, without using any fully-

annotated data, our model performs as well as a fully-supervised model that could be 

considered as an upper bound for our method, especially when the testing and training splits 

are from the same dataset (MRBrainS18). Secondly, our method takes advantage of large 

task-specific datasets: Unlike the fully-supervised model (Fully-Sup), jSTABL generalises 

well on unseen data (MRBrainS18). While the fully-supervised model (Fully-Sup) fails to 

segment scans from OASIS1, ADNI2 and WMH, the jSTABL model obtains relatively good 

performance on all the datasets we use for tissue and lesion segmentation. In particular, 

jSTABL outperforms SPM on 6 of the 7 classes. In fact, the only class that is significantly 

underperformed compared to the fully-supervised model (Fully-Sup) is the brain stem. This 

is due to observed differences in the annotation protocol across the control and MRBrainS 

datasets. Fig. 5 shows these differences and the consequences on the prediction.
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7.2 Glioma and tissue segmentation

7.2.1 Task and datasets—Additionally, we assess our framework on another main 

types of brain lesions: Gliomas. Our goal is to segment the 6 tissue classes and three tumour 

classes (whole tumour, core tumour, enhancing tumour). In this case, domain adaptation was 

required and its evaluation is the focus of this section. We used two sets of data in these 

experiments.

• Tissue data Scontrol: again we used OASIS1 data and the same 25 T 1 control 
scans from ADNI2 with tissue annotations as pre sented in section 7.1.1.

• Lesion data Slesion: We evaluate our method on the training set of BraTS18 

(Menze et al., 2015; Bakas et al., 0000) which con tains the scans of 285 

patients, 210 with high grade glioma and 75 with low grade glioma. 129 patients 

have a tumour located in one hemisphere only. Four scans (T 1, T 1 c, T 2 and 

FLAIR) have been acquired for each patient and pre-processed by the or 

ganisers: Co-registration, skull-stripping and re-sampling to an isotropic 1mm 

resolution. Manual annotations include three tu mour labels: 1) Necrotic core and 

non-enhancing tumour; 2) oedema; and 3) enhancing core.

The acquisition protocols of the T 1 scans in the two datasets are inconsistent. Specifically, 

MP-RAGE was used for the tissue data Scontrol, while we observed other protocols such as 

fast spin echo (SE) for Slesion. Note that the detailled acquisition settings for Slesion are not 

publicly available.

7.2.2 Description of the compared models—In order to evaluate our framework 

with and without the domain adaptation (DA) component, different models are considered, 

as presented in 5.

• Pipeline model (Pipeline): This model corresponds to the com bination of two 

task-specific models:

A Tissue segmentation model that only performs tissue segmentation and is 

trained on the T 1 scans from the dataset with tissue annotations Scontrol.

A Lesion model that only performs lesion segmentation and is trained using the 

T 1, T 1 c, T 2 and FLAIR scans from the dataset with lesion annotations Slesion.

• Proposed joint model without DA (jSTABL): Our joint Segmen tation Tissue 

And Brain Lesion model is trained using our train ing procedure without domain 

adaptation, tissue segmentation is learned from the T 1 scans in Scontrol.

• jSTABL + data augmentation (jSTABL+Augm): Corresponds to our jSTABL 
model with DA based on data augmentation.

• jSTABL + adversarial DA (jSTABL+Adv): Corresponds to our jSTABL model 

with DA based on adversarial learning.

• jSTABL + 5 synthetic control scans (jSTABL+5): Corresponds to our jSTABL 
model with only 5 additional pseudo-healthy scans.
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• jSTABL + 90 synthetic control scans (jSTABL+90): Corresponds to our 

jSTABL model with 90 additional pseudo-healthy scans.

Note that the pseudo-healthy scans used for training were generated from the training lesion 
scans to avoid introducing bias at testing stage.

In this set of experiments, the skull-stripped images are first cropped to remove the blank 

spaces and then random patches of size (112,112,112) are fed to the network.

7.2.3 Method for assessing the models—While the evaluation of the tumour 

segmentation on BraTS18 and the tissue segmentation on the control data 

(OASIS1+ADNI2) is straightforward using the manual annotations, the tissue segmentation 

performance cannot be assessed on BraTS18 due to the missing tissue annotations. For this 

reason we propose two methods to assess quantitatively and qualitatively the tissue 

segmentation on BraTS18.

Quantitative assessment using the symmetrised data Firstly, we propose to use the 129 

patients from BraTS18 with a tumour located in one side to generate 129 pseudo-healthy 

symmetrised data with the bronze standard tissue annotations from GIF as ground truth. 

Examples are shown in Fig. C.9. By computing the Dice Score Coefficient between the 

predictions on the symmetrised BraTS18 data and the bronze standard ground truth, we 

quantitatively evaluate our model on the pseudo-healthy hemisphere of BraTS18 samples.

Qualitative assessment on anatomical landmarks Secondly, in order to assess the accuracy of 

the models on the tissues surrounding the tumour, we propose a new qualitative protocol. 

This protocol is based on the Alberta Stroke Program Early CT Score (ASPECTS) which 

was originally proposed to assess early ischaemic cerebral changes on CT or MRI scans 

(Barber et al., 2000). The stroke scores are obtained by assessing the integrity of 10 

anatomical landmarks as shown on 8. Scores and associated template are commonly used in 

clinical practice.

The landmarks were chosen because they are easily identifiable, reliable amongst readers 

and capture a large cerebral coverage. The landmarks include or delineate our tissue classes 

of interest: Grey matter; white matter; basal ganglia; and ventricles. Instead of evaluating 

loss of clarity of landmarks due to ischemia we evaluated loss of clarity of landmarks due to 

incorrect tissue predictions. Unlike ASPECTS, which excludes infratentorial structures 

which are difficult to evaluate on CT, we added the brainstem and the cerebellum as two 

additional landmarks for a total of 12 anatomical landmarks. We named our assessment 

method Anatomy ASPECTS+. For each landmark, 3 scores are possible: 0 = anatomy 

inaccurate; 0.5 = anatomy mostly accurate; and 1 = anatomy highly accurate. Anatomical 

landmarks that were infiltrated with substantial tumour were excluded.

For our experiments, we randomly drew 20 patients from the testing sets of BraTS18 and 

two senior neuro-radiologists independently evaluated the quality of the predictions using 

Anatomy ASPECTS+ for 4 methods: 1) Les. Ann. + GIF pipeline that uses the tumour 

annotations and tissue segmentation obtained by GIF while the tumour is masked; 2) 
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Pipeline; 2) jSTABL; 3) jSTABL+5; 4) jSTABL+10. The neuro-radiologists assessed blindly 

the 4 methods, in a randomised order, for the 20 patients.

7.2.4 Results— Table 4 shows the DSC for the 6 tissue classes and the three tumour 

classes on BraTs18.

Firstly, jSTABL model outperforms Pipeline on tissue segmentation. We observed that the 

presence of a large tumour creates major perturbations for the Tissue model. For example, 

we found samples for which the tumour and the surrounding tissues were partially classified 

as cerebellum, even though the tumour was far from the cerebellum, as shown in Fig. 6. In 

contrast, such artefacts were not observed for jSTABL model, demonstrating again 

advantages of our method compared to a simpler Pipeline approach.

Secondly, while obtaining relatively good performance on most of the tissue classes, 

jSTABL model fails to segment correctly grey matter and basal ganglial. This highlights the 

needs for domain adaptation.

Thirdly, learning from pseudo-healthy annotated scans (jSTABL+5 and jSTABL+90) 

outperforms the other unsupervised DA strategies based either on data augmentation 

(jSTABL+Augm) and adversarial learning (jSTABL+Adv). This demonstrates the benefits 

of using a supervised approach for our problem. Moreover, only 5 pseudo-healthy annotated 

scans are required to obtain an accuracy similar to the one on the control data (see Table 2), 

i.e. to bridge the domain gap. Fig. 6 shows that learning from pseudo-healthy annotated 

scans allows the network to be robust to variations in resolution, contrast or glioma grade, 

even with few samples used for domain adaptation.

Finally, Anatomy ASPECTS+ is employed to provide a quantitative assessment of the 

segmentation of the tissues surrounding the tumour. Four models are compared by two 

neuro-radiologists: Pipeline, jSTABL, jSTABL+5 and the time-consuming Les. Ann. + GIF 
pipeline that requires manual annotations of the lesions. Results are presented in Fig. 7. 

First, jSTABL is more often “mostly accurate” than the Pipeline (mean score - 75% vs 

66%). Again, this highlights the strength of our joint model compared to a pipeline 

approach. Secondly, jSTABL+5 is more often “highly accurate” than the Les. Ann. + GIF 
pipeline (mean score - 46% vs 24%). This shows that our fast and fully automatic method 

can be considered as a new state-of-the-art for performing joint tissue and lesion 

segmentation.

8 Discussion

In this section, we discuss some of the limitations of the different methods.

Firstly, a common modality across the task-specific dataset is required to transfer the 

knowledge learn between the task-specific sets of modality. Without this common modality, 

the upper bound is not tractable anymore and our method cannot be applied.

Secondly, our approach relies on a simple hetero-modal architecture that aims to encode 

modalities in a common shared feature space. Ye t, averaging the feature maps doesn’t 
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enforce the network to learn a shared feature representation. To tackle this problem, a 

hetero-modal variational auto-encoder architecture has been recently introduced Dorent et 

al. (2019a). Based on a principled formulation of the problem, the induced loss function is 

the cross-entropy, which does not satisfy the triangle inequality. Consequently, without 

further research, this approach cannot be directly integrated in the formulation of our 

problem.

Thirdly, we found that the presence of lesions does not always perturbed a network trained 

on control data, especially for small lesions. Consequently, our method didn’t always show 

large improvements compared to a simpler Pipeline approach on WMH. However, we 

observed that Pipeline can be perturbed by larger pathology and thus is less robust.

9 Conclusion

This work addresses the challenge of learning a joint brain tissue and lesion segmentation 

with disjoint heterogeneous annotations. Our novel approach is mathematically grounded, 

conceptually simple, and relies on reasonable assumptions.

The main contribution of this work is to overcome the challenge of the lack of fully-

annotated data for joint problems. We demonstrate that a model trained on databases 

providing either the tissue or the lesion annotations and with different modalities can achieve 

similar performance to a model trained on a fully-annotated joint dataset. Our work also 

shows that the knowledge learnt from one modality can be preserved when more modalities 

are used as input. Finally, domain adaptation for image segmentation can be performed with 

a small set of data related to the target distribution.

In the future, we will evaluate our approach on new datasets with other lesions. Furthermore, 

we would like to extend our method to include the full parcellation of the brain (143 

structures). Finally, we plan to integrate uncertainty measures in our framework as a future 

work. As one of the first work to methodologically address the problem of joint learning 

from hetero-modal and domain-shifted datasets, we believe that our approach will help DNN 

make further impact in clinical scenarios.
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Fig. 1. Tissue and lesion segmentation, a problem at the intersection of multiple branches of 
Machine Learning: Multi-Task Learning (tissue + lesion segmentation), Weakly-Supervised 
Learning (missing annotations), Hetero-Modality (missing modalities), Domain Adaptation 
(different acquisition protocols).
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Fig. 2. The proposed fully-convolutional network architecture: A mix a 3D U-Net (Çiçek et al., 
2016a) and HeMIS (Havaei et al., 2016).
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Fig. 3. The training procedure using samples from the control and lesion datasets. The different 
elements of the decomposed loss upper bound are computed and minimised at each training 
iteration. The same network is used for all the different hetero-modal inputs. Note that domain 
adaptation is not represented.
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Fig. 4. Examples of output for the different models: Pipeline; Fully-sup; jSTABL ; and the 
combination of the manual annotation and GIF. (a) Tissue model used in Pipeline can be 
perturbed by the presence of lesions (arrow). (b) Example for which the fully-supervised model 
largely fails to segment the tissue and the lesions.
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Fig. 5. Comparison of the brainstem annotations by Neuromorphometrics and in MRBrainS18 
and between the outputs of the Fully-Sup and jSTABL models. Arrows show the annotations 
protocol differences.
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Fig. 6. Examples of multi-modal outputs shown on T1 scans from BraTS18 for the different 
models: Pipeline, jSTABL, jSTABL+Augm, jSTABL+Adv, jSTABL+5, jSTABL+90 and Les. Ann. + 
GIF pipeline. Scans with different resolutions, contrasts and grades (High Grade for (a) and (b), 
Low Grade for (c)) are presented.
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Fig. 7. Comparison of our method (jSTABL) with the GIF framework using the proposed 
Anatomy ASPECTS+ qualitative assessment methodology.
BR = Brainstem, C = Caudate, CE = Cerebellum, I = Insula, IC = Internal Capsule, L = 

Lentiform Nucleus, M1 = Frontal operculum, M2 = Anterior temporal lobe, M3 = Posterior 

temporal lobe, M4 = Anterior MCA, M5 = Lateral MCA, M6 = Posterior MCA.
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Fig. 8. 
ASPECTS anatomical landmarks (Barber et al., 20 0 0) used in our qualitative assessment 

methodology in the absence of joint ground truth. C = Caudate, I = Insula, IC = Internal 

Capsule, L = Lentiform Nucleus, M1 = Frontal operculum, M2 = Anterior temporal lobe, 

M3 = Posterior temporal lobe, M4 = Anterior MCA, M5 = Lateral MCA, M6 = Posterior 

MCA Illustration courtesy of P.A. Barber.
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Table 1
Summary of data characteristics for white matter lesion segmentation.

Control data Lesion data Fully anno. data

OASIS1 
(Marcus et al., 
2007)

ADNI2 (Jack 
Jr. et al., 2008)

WMH-Utrech 
(Kuijf et al., 
2019)

WMH-
Singapore

WMH-
Amsterdam

MRBrainS18 (Kuijf 
and Bennink, 2018)

Sequences 3D MP-RAGE 
T1

3D MP-RAGE 
T1

3D MP-RAGE 
T1

3D MP-RAGE 
T1

3D MP-RAGE T1 MP-RAGE 3D T1

× × 2D FLAIR 2D FLAIR 3D FLAIR 2D FLAIR

MRI scanner Siemens Vision Various Philips Achieva Siemens 
TrioTim

GE Signa HDxt Philips Achieva

Field Strengh 1.5T 3T 3T 3T 3T 3T

Voxel size 
(mm3)

1.00 × 1.00 × 
1.00

1.20 × 1.05 × 
1.05

0.96 × 0.95 × 
3.00 WMH

1.00 × 1.00 × 
3.00 WMH

1.20 × 0.98 × 3.00 
WMH

0.96 × 0.96 × 3.00

Annotations 143 structures 143 structures WMH WMH WMH 6 Tissues + WMH
+CSF

# scans 
available

35 25 20 20 20 30 (7 available)

Training data 
in:

Tissue + 
jSTABL

Tissue + 
jSTABL

Lesion + 
jSTABL

Lesion + 
jSTABL

Lesion + jSTABL Fully

Med Image Anal. Author manuscript; available in PMC 2021 March 04.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Dorent et al. Page 36

Table 2
Evaluation of our framework (jSTABL) on patients with White Matter Lesion in 
comparison with baseline methods. We report means and standard deviations for Dice 
scores. Means only are reported in the online leader-board, leading to missing standard 
deviations.

Classes OASIS1 + ADNI2 WMH MRBrainS18

Tissue Fully-Sup jSTABL Pipeline Fully-Sup jSTABL SPM Pipeline Fully-
Sup

jSTABL

Grey matter 88.3 (3.4) 81.6 (2.5) 88.3 (3.4) 88.3 (2.1) 85.4 (2.7) 88.8 (2.1) 76.5 82.3 83.7 82.2

White mater 92.8 (2.3) 83.3 (2.6) 92.3 (2.7) 92.1 (1.8) 85.4 (2.6) 92.4 (1.5) 75.7 85.0 85.7 85.6

Brainstem 93.5 (1.0) 71.7 (2.7) 93.0 (0.9) 93.6 (1.0) 77.1 (2.4) 94.2 (0.9) 76.5 72.8 85.0 73.3

Basal ganglia 89.5 (3.0) 69.6 (4.1) 88.4 (2.7) 86.3 (4.3) 74.2 (2.0) 85.1 (3.4) 74.7 77.4 79.7 78.0

Ventricles 90.3 (4.3) 70.5 (18.0) 90.6 (3.8) 94.7 (2.3) 92.1 (4.2) 95.7 (1.4) 80.9 91.8 92.2 92.9

Cerebellum 95.0 (1.2) 92.0 (1.4) 94.9 (1.1) 95.7 (1.0) 93.8 (2.0) 96.0 (0.9) 89.4 89.2 93.2 90.4

White matter 
Lesion

77.4 (9.6) 60.1 (19.1) 77.6 (9.2) 40.8 58.4 56.2 59.4
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Table 3
Evaluation of our framework (jSTABL) on patients with White Matter Lesion in 
comparison with baseline methods. We report means and standard deviations for 95th-
percentile Hausdorff distances. Means only are reported in the online leader-board, 
leading to missing standard deviations.

Classes OASIS1 + ADNI2 WMH MRBrainS18

Tissue Fully-Sup jSTABL Pipeline Fully-Sup jSTABL SPM Pipeline Fully-Sup jSTABL

Grey matter 1.3 (0.4) 2.0 (0.4) 1.4 (0.5) 1.2 (0.2) 1.3 (0.3) 1.1 (0.2) 2.9 1.9 1.9 2.1

White mater 1.2 (0.5) 3.0 (0.1) 1.2 (0.5) 1.1 (0.2) 2.0 (0.3) 1.1 (0.1) 4.9 3.2 2.9 3.2

Brainstem 1.4 (0.4) 10.5 (2.3) 1.7 (0.4) 1.7 (0.4) 8.8 (2.2) 1.3 (0.4) 25.3 11.6 6.65 11.6

Basal ganglia 1.8 (0.5) 4.9 (0.8) 2.1 (0.3) 2.0 (0.6) 3.6 (0.4) 2.5 (0.3) 7.1 4.3 4.3 4.0

Ventricles 1.9 (2.5) 20.4 (12.2) 1.8 (2.5) 1.4 (1.2) 5.1 (10.5) 1.0 (0.1) 5.8 3.2 3.0 2.9

Cerebellum 2.3 (0.6) 3.3 (0.4) 2.4 (0.6) 1.8 (0.7) 3.2 (1.7) 1.8 (0.6) 4.3 5.1 3.7 4.8

White matter Lesion 4.6 (3.8) 11.0 (9.4) 4.2 (3.6) 25.3 10.2 13.3 7.2
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Table 4
Evaluation of our framework (jSTABL) on patients with gliomas in comparison to 
baseline methods. We report means and standard deviations for Dice scores. Metrics were 
computed on the BraTS 2018 validation dataset.

Models w/o DA w/ DA w/ pseudo-healthy gen.

Pipeline jSTABL jSTABL + Adv jSTABL + Augm jSTABL + 5 jSTABL + 90

Grey Matter 76.1 (8.4) 79.1 (5.2) 81.1 (4.6) 82.8 (4.7) 88.3 (3.9) 88.8 (4.0)

White Matter 85.4 (5.7) 87.0 (4.4) 88.1 (4.4) 90.3 (2.8) 93.1 (2.5) 93.3 (2.6)

Brainstem 81.5 (17.6) 92.4 (2.5) 92.6 (1.9) 92.4 (2.0) 94.9 (1.4) 95.5 (1.5)

Basal Ganglia 72.7 (20.1) 73.1 (7.3) 77.7 (7.1) 84.7 (5.1) 89.7 (3.5) 90.5 (3.2)

Ventricles 75.0 (26.9) 91.8 (6.4) 92.5 (4.5) 93.4 (4.4) 94.7 (4.2) 95.1 (3.8)

Cerebellum 86.5 (11.3) 93.2 (4.6) 93.7 (3.5) 94.0 (2.4) 94.7 (4.5) 95.1 (2.9)

Whole Tumour 87.9 (8.7) 88.1 (6.7) 87.7 (8.1) 88.3 (9.0) 88.2 (8.1) 88.1 (9.4)

Core Tumour 78.6 (20.5) 79.1 (19.6) 79.5 (18.9) 80.4 (18.6) 80.5 (18.1) 80.9 (17.9)

Enhancing Tumour 69.9 (29.1) 70.0 (28.6) 70.0 (28.9) 71.4 (27.7) 70.3 (28.8) 71.0 (28.3)
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