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Abstract

Non-visual photoreceptors (ipRGCs) and rods both exert a strong influence on the human

pupil, yet pupil models regularly use cone-derived sensitivity as their basis. This inconsis-

tency is further exacerbated by the fact that circadian effects can modulate the wavelength

sensitivity. We assessed the pupillary reaction to narrowband light stimuli in the mesopic

range. Pupil size for eighty-three healthy participants with normal color vision was measured

in nine experimental protocols with varying series of continuous or discontinuous light stimuli

under Ganzfeld conditions, presented after 90 seconds of dark adaptation. One hundred

and fifty series of stimulation were conducted across three experiments, and were analyzed

for wavelength-dependency on the normalized pupillary constriction (nPC), conditional on

experimental settings and individual traits. Traits were surveyed by questionnaire; color

vision was tested by Ishihara plates or the Lanthony D15 test. Data were analyzed with gen-

eralized additive mixed models (GAMM). The normalized pupillary constriction response is

consistent with L+M-cone derived sensitivity when the series of light stimuli is continuous,

i.e., is not interrupted by periods of darkness, but not otherwise. The results also show that a

mesopic illuminance weighing led to an overall best prediction of pupillary constriction com-

pared to other types of illuminance measures. IpRGC influence on nPC is not readily appar-

ent from the results. When we explored the interaction of chronotype and time of day on the

wavelength dependency, differences consistent with ipRGC influence became apparent.

The models indicate that subjects of differing chronotype show a heightened or lowered sen-

sitivity to short wavelengths, depending on their time of preference. IpRGC influence is also

seen in the post-illumination pupil reflex if the prior light-stimulus duration is one second.

However, shorter wavelengths than expected become more important if the light-stimulus

duration is fifteen or thirty seconds. The influence of sex on nPC was present, but showed

no interaction with wavelength. Our results help to define the conditions, under which the dif-

ferent wavelength sensitivities in the literature hold up for narrowband light settings. The

chronotype effect might signify a mechanism for strengthening the individual´s chronotype.

It could also be the result of the participant’s prior exposure to light (light history). Our explor-

ative findings for this effect demand replication in a controlled study.
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Introduction

The human pupil is of interest to various research fields, such as vision research, neurobiology,

ophthalmology, and psychology. Pupil constriction and size are controlled by parasympathetic

pathways, and pupil dilation through sympathetic pathways [1, 2]. Pupillary reaction thus acts

as a window into the autonomous nervous system. Diagnostic methods were developed

around various aspects of the pupil’s behavior and a vast body of research is dedicated to the

pupillary reaction to light. One of the most fundamental aspects in that context is the depen-

dency of the pupillary light reflex (PLR) on the spectral composition of light.

Up until now, the literature is somewhat divided on what the appropriate spectral weighing

function should be for capturing the effects of light on pupil size and constriction. Pupil mod-

els derived from research using white light stimuli, i.e., polychromatic light spectra, generally

employ stimulus luminance or retinal illuminance as predictors. Watson and Yellott [3] in

2012 reviewed eight pupil models published between 1926 and 1999. They created a ninth

model by incorporating elements of the previous ones. What is important in our case is that all

these models, including the newly created one, work with standard photometric dimensions,

and spectral calculations are thus based on the V(λ) weighing function, regardless of stimulus

characteristics. However, the V(λ) function may not be the best-suited for predicting pupil size

in all cases.

The V(λ) function peaks at around 555 nm wavelength. Yet studies using narrowband light

stimuli generally report a maximum sensitivity for PLR at around 480–510 nm. Early publica-

tions to this effect are notably by Wagman and Gullberg [4] in 1942, by Alpern and Campbell

[5] in 1962, and the often-cited paper by Bouma [6] in 1962. These authors attributed the

PLR’s spectral dependency mainly to the characteristics of rod photoreceptors, but possibly

also to those of short-wavelength cone receptors. Adrian [7] in 2003 tried to explain the appar-

ent blue shift in sensitivity, reporting that, with appropriate adjustments, stimulus luminance

was sufficient for explaining the PLR. According to the paper, a V10(λ) spectral weighing func-

tion which is based on the larger 10-degree field should be used instead of the usual 2-degree

field (on which V(λ) is based) which, according to the author, is valid for the often-used Ganz-

feld conditions. Furthermore, Adrian argues, mesopic conditions should be adequately

addressed by using Veq(λ) weighting functions as intermediaries between the photopic V10(λ)

and the scotopic V’(λ) functions. With these adjustments, pupil size depended linearly on

(adjusted) luminance. While Adrian [7] performed his analysis on data from a single subject

and, very likely, did not know about the spectral-temporal changes of the PLR as found in later

studies, his argument about the appropriate luminance function remains valid, even when it

was not widely adopted.

With the discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs) at the

beginning of the 21st century [8], and their potential to drive pupillary constriction [9],

researchers began looking for their influence in PLR experiments. In 2007, Gamlin et al. [10]

made the ipRGC influence on pupilloconstriction evident in the macaque with pharmacologi-

cal blockade of rod and cone photoreceptors. They also showed ipRGC dependency for the

post-illumination pupil reflex (PIPR) of humans. Zaidi et al. [11], also in 2007, confirmed the

human pupilloconstriction’s dependency on ipRGC sensitivity in a blind person who lacked

an outer retina. In 2009, Mure et al. [12] found ipRGC-dependent pupilloconstriction in the

PIPR of sighted humans and, more importantly, during more prolonged light stimulation than

used in previous studies (five minutes, compared to a few seconds in earlier studies). In 2010,

McDougal and Gamlin [13] investigated the contributions of individual receptors to the PLR,

for stimulus durations between 1 and 100 seconds. They did this through parameter fitting in

a custom-derived function based on theoretical assumptions. They found that rods play an
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essential role for most stimulus durations, while cones contribute only minimally after just 10

seconds of stimulus onset. At about 18 seconds after stimulus onset, the ipRGC sensitivity

curve already provided the most prominent contribution. It has not been confirmed whether

the stated time intervals for the receptor types are valid in humans. In 2012, Gooley et al. [14]

used stimulus durations from 2 to 90 minutes, showing for the PLR, among others, the domi-

nance of shorter wavelengths at around 490 nm, compared to the brighter settings around 555

nm, especially for longer stimulus durations.

Spitschan [15] showed the inadequacy of using V(λ)-derived luminance instead of a mela-

nopic weighing function by reanalyzing the data from Bouma [6]. He estimated the possible

error for the stimulus calculation to predict pupil size at about one order of magnitude for typ-

ical white-light sources, with the actual error and relevance depending on the application’s cir-

cumstances. A recent paper by Zandi et al. [16] looked at the prediction accuracy of the

models of Watson and Yellott [3]. They found that the prediction error was greatest for chro-

matic spectra, especially for longer exposure times. In the four cases of short chromatic light

stimuli of equal luminance (1 second, 100 cd/m2), Zandi et al. [16] found that the significant

differences between wavelengths were relatively small. For more extended stimulation periods

of 60 and 300 seconds, a luminance-based approach led to considerable error. Together with

findings from polychromatic spectra, the authors therefore advocated for the inclusion of time

and spectrum in pupil models. Rao et al. [17] suggested a pupil model based on a combined

measure of photopic luminance and an action spectrum based on melatonin suppression (C
(λ), cirtopic sensitivity) that takes spectral differences of the stimulus into account. While

Spitschan [15] calls it a good start, both he and Zandi et al. [16] find shortcomings, ranging

from the narrow luminance range under which the model parameters were estimated [15], the

use of the non-standardized cirtopic sensitivity function, the relatively small expected

improvement in prediction accuracy, to the lack of (stimulus) time as part of the model [16].

In summary, by addressing the effects of time since light onset, the ipRGC’s influence on

PLR has become evident for narrowband stimuli [18]. It is also accepted that the many metrics

of the PLR, like latency to constriction, peak constriction, rhodopsin- and melanopsin-medi-

ated PIPR amplitude, or melanopsin-mediated PIPR amplitude, differ in their retinal circuitry

and thus their spectral sensitivity [15, 19]. These findings sparked the development of diagnos-

tic methods [20] for assessing the health of the nonvisual pathway [21] and circadian system

[22], and spotting specific pathologies early on, such as glaucoma [23] and diabetic retinopathy

[24]. However, what is still lacking is knowledge about why the PLR in terms of pupil size and

constriction during light stimulation seems to differ in spectral sensitivity between narrow-

band light and polychromatic (white) light. The applicability of prior findings based on nar-

rowband stimuli may be limited for polychromatic or even narrowband settings. Furthermore,

there is still little research into differences of spectral dependency beyond comparing particular

wavelengths, mostly those of the blue and red peaks. Most of the studies that use a broad range

of wavelengths are based on a comparatively small sample size. The largest of the studies

reviewed above had twenty-four participants [14], while the median is only four participants

[4–7, 10–14]. While this is enough for investigating the fundamentals of the PLR’s wavelength

sensitivity, exploring distributional relationships will require more participants.

We initially set out to take a comparatively large sample of participants for looking at the

conditional spectral dependency of pupilloconstriction. Since the ipRGC influence on PLR is

mainly present for long-lasting narrowband light stimuli, we believed that, basically, pupillo-

constriction would approximately follow the ipRGC sensitivity curve for a series of continu-

ously applied narrowband light stimuli that change in wavelength over several minutes.

Preliminary measurements supported this view and further indicated a dependence on sex

that we included as an exploratory variable in the main experiment since there is also some
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support for sex differences in the literature [25]. We were further interested in the influence of

chronotype and time of day (cf. [22, 26]); findings from Zele et al. [27] suggested that there is a

circadian variation in the wavelength-dependency, as demonstrated by pupil reactions to red

and blue stimuli. In our main experiment with a balanced design, wavelengths around the V

(λ) function’s peak led to the highest constriction. Based on these findings, we designed an

exploratory, second experiment, to test whether our findings held up with a changed stimulus

series. The findings were indeed replicated, but only in the case when light remained on con-

tinuously. When light was discontinuous, i.e., when short intervals of darkness were intro-

duced between the light steps, shorter wavelengths became more influential, in line with

published literature. The newly introduced periods of darkness in the second experiment addi-

tionally allowed spectral analysis of the post-illumination pupil reflex (PIPR). In a third experi-

ment, we therefore investigated (1) the spectral dependency of the PLR for longer-lasting light

steps with short, intermediate periods of darkness, as well as (2) the PIPR for short light steps

with more prolonged intermediate periods of darkness.

We believe our findings will help bridge the gap between the canonical divide of lumi-

nance-based versus short-wavelength-based pupil models by showing that the PLR’s response

to narrowband light stimuli can go both ways, depending on pre-adaptation to light. We also

show the influence of chronotype on pupilloconstriction, depending on the time of day. Statis-

tical analyses employ generalized additive models (GAMs), which to our knowledge have not

been used in pupillometry before. They appear particularly well suited for disentangling the

complex coaction of influences.

Materials and methods

Participants

We recruited a total of 83 young, healthy participants across three experiments through bulle-

tin boards and announcements at the Munich University of Applied Sciences (45 females and

38 males; age: median 26 yr., range 18–36; chronotype score: 50 ± 10.6 on the Morningness-

Eveningness Questionnaire, where a score between 40 to 60 signifies an intermediary chrono-

type, below 40 an evening type, and above 60 a morning type [28]). All procedures were

approved by the Ethics Committee of the Munich University of Applied Sciences. Exclusion

criteria were age (above 39), issues of psychiatric or neuronal health, addiction diseases, regu-

lar intake of stimulants or sedatives, acute jetlag or shiftwork (during the past three months),

ocular diseases, or epilepsy. Participants were instructed to refrain from caffeine intake prior

to the experimental sessions. We further checked participants for normal color vision (Lanth-

ony D15 test [29] or Ishihara plates [30]). Additional participants were tested but their results

not included in the analysis [31]; these participants either only took part in the preliminary

measurements (see below), did not fit the inclusion criteria, or were tested after the experi-

ment’s cut-off date.

Apparatus

The light stimuli were presented in a Ganzfeld dome setup (Light Dome Model XE 509, Mono-
crom, Stockholm). The light source was a 100-Watt Xenon lamp. Full-spectrum light (6000

Kelvin correlated color temperature) was filtered through a stepper-controlled monochroma-

tor and led into the dome’s interior by a diffusor which was positioned above and behind par-

ticipants’ eyes and thus not visible during the experiment. Light onset and offset were

controlled by a shutter mechanism, located between the monochromator and the diffusor.

Shutter response time, i.e., the time between open and closed states, was about 100 ms.

Changes in peak wavelength occurred at a speed of about 35 nm/s. An Arduino MEGA-2560
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embedded computer with custom-written software controlled the monochromator and

shutter.

The setup allows generating narrowband light, with spectral peaks at between 400 nm and

700 nm, and a width (full width at half maximum) of 12 nm ± 1 nm (Fig 1). We used 61 or 31

peaks, depending on the experiment. The radiant output from the light source is dependent on

wavelength (a limitation of the apparatus) and irradiance increases by about one order of mag-

nitude from 404 nm to 450 nm; above that and up to 690 nm, irradiance is comparatively con-

stant at a level of -1,62 ± 0.04 log10(W/m2). To accommodate for that dependency, in

particular the lower irradiance levels for the wavelengths at and below 450 nm, we included

the log10 of the irradiance as a covariate in all statistical analyses when it was not already

included implicitly, i.e., as following from illuminance. Measurements of spectral irradiance

were taken at the eye level under the light dome. Measurements further included a human

field-of-view restriction suggested by CIE Standard S 026/E:2018 [32]. Therefore, the irradi-

ance measurements represent the corneal level, as do the various illuminance calculations

based on those measurements (Fig 1). Unobstructed measurements, i.e., regular irradiance

measurements, were about 24% higher. Plots of all spectral peaks are available in the S13 Fig.

We measured the spectral irradiance of each wavelength step multiple times before each exper-

iment to ensure stability in irradiance and wavelength peak. Differences in irradiance were rel-

atively consistent across the spectrum and were smaller than 5%, which equals about 1% on

the log irradiance scale from the values shown in Fig 1A (see S14 Fig for a regular scale). Dif-

ferences in wavelength peak were between 0 to 1 nm, which is within the measurement accu-

racy of the spectrometer. The light source was not monitored during the experiments other

than to ensure that it performed on a constant operating temperature.

Park et al. [21] summarized stimuli sizes from three studies [10, 13, 33], stating that mela-

nopsin responses were “observed in a range between ~11 to>14 log quanta/cm2/s for a

Fig 1. Spectral irradiance measurements and calculated illuminance values at the eye level. All displayed values are based on spectral irradiance

measurements with a field-of-view restriction according to the CIE S 026 standard [32]. In our case, these measurements are 24% lower than those of the

unobstructed sensor diffusor. Differences in irradiance measurements from the mean were smaller than 5%, or about 1% on the log irradiance scale. Differences

in wavelength peak were between 0 to 1 nm. (A) Dots show the log of the corneal irradiance (in log W/m2) of exemplary steps at their respective peak

wavelength. Each dot represents a narrowband peak, similar to the spectral example distribution with a peak at 553 nm (the peak is indicated by the gray dashed

line). (B) Corneal illuminance values for the narrowband light steps at each peak wavelength. Besides the standard photopic CIE-1931 V(λ) weighing for the 2˚

observer (black line), illuminance values were calculated based on the weightings of V10(λ) (10˚ observer, photopic vision, dark grey), of V’(λ) (scotopic vision,

light grey), and of Veq(λ) (mesopic vision, medium grey). To show the scotopic illuminance values along with the other curves, they are drawn at half their

original value (light-gray curve). (C) Corneal alpha-opic equivalent-daylight illuminance for all receptor types according to the CIE S 026 standard [32].

https://doi.org/10.1371/journal.pone.0253030.g001
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470-nm light”. Our stimulus for 471 nm lies at 12.75 quanta/cm2/s at the corneal level. How-

ever, this is not directly comparable to the summary from Park et al. [21] since those studies

used focused light projections. Park et al. [21] converted these measures to luminance values

(-0.7 to 2.3 log cd/m2). In our setup, the lower limit of that study translates to -2.3 log W/m2,

compared to our corneal irradiance of -1.6 log W/m2 at 471 nm.

Measurement equipment

An eye tracker (Dikablis Professional Glasses, Ergoneers GmbH, Munich) recorded the pupils

by a dual infrared camera setup for simultaneous measurement of the two eyes, at a sampling

rate of 60 Hz. Cameras in that setup are located at the end of flexible arms and are adjustable

for an optimal view of the pupil and distance from eye level. Each camera has a resolution of

384 by 288 pixel. Camera pictures were analyzed in real time while recording through the

D-Lab 3.5 software (Ergoneers GmbH) on a connected personal computer. The software

extracted several pupil parameters for each eye in pixel units, including pupil area, height, and

width. These time-stamped variables were then exported to a comma-separated-value (CSV)

file for later analysis. Spectral irradiance measurements with a 1-nm resolution were per-

formed using a JETI Specbos 1201 spectroradiometer (JETI Technische Instrumente GmbH,

Jena; see Fig 1), with the JETI LiVal V6.14.2 software running on a connected personal com-

puter. The spectroradiometer’s relative measurement accuracy is 2%.

Experimental design

Preliminary measurements. In the relevant literature, the employed periods of dark

adaptation (DAP) before light onset vary widely, if reported at all. They range from no-DAP

[10] to 40 minutes [12]; the use of an in-between value of 20 minutes for full dark adaptation is

recommended by Kelbsch et al. [19]. This value is commonly used when there is a main stimu-

lus following the DAP. Since we planned on using comparatively long experimental light dura-

tions of around 15 minutes containing a chain of wavelength peaks, all equally important, we

did not want dark adaptation to overly influence the spectral dependency during the first light

steps of the experiment, compared to the last steps, where light adaption would have happened

for several minutes, regardless of the dark adaptation period before the first presented stimu-

lus. We tried periods of 90 seconds, 180 seconds, and 900 seconds on two participants with the

Up protocol in three experimental runs, which is described under Experiment I below. The

longer the DAP, the greater was pupilloconstriction during the first third of the steps (see S1

Fig). We compared the results to a second run of the Up protocol directly after the first one. In

this second run, wavelengths from the first half of the protocol had no prior dark adaptation

phase as they are presented right after the first run. The 90-second DAP pupilloconstriction

curve was closest to this second run. Therefore, we chose this period for the main experiments.

We also performed preliminary measurements with the Up protocol on ten subjects before

the main experiments, to explore the behavior of pupilloconstriction in our setup. In those

subjects, we found differences dependent on sex, particularly at the longer wavelengths (not

shown). This observation was our rationale to explore this relationship in the actual

experiment.

Experiment I. Experiment I was divided into two protocols, in each of which the stimuli

consisted of a stepwise sweep across the available spectrum (Fig 2). One such sweep (Up) went

from the lowest to the highest wavelength, the other (Down) from the highest to the lowest.

Light onset happened after a dark adaptation period of 90 seconds duration at the beginning

of each protocol (see above), and light remained on during the entire protocol. Light steps

lasted 15 seconds each, followed by the next light step at a spectral distance of about 5 nm. We
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hypothesized that with continuous light that shifted slightly in peak wavelength with each step

we would see the ipRGC influence in the pupil constriction amplitude by wavelength. Due to

the sluggish nature of ipRGC responses [12–14], ipRGC-driven constriction might trail

behind, which was an additional reason to balance the spectral protocol series by an up-down

alternation. McDougal and Gamlin [13] report that ipRGC-influence at 10 to 18 seconds after

light onset takes over as the strongest relative influence on pupil constriction, with rods being

a close second; cones were found to have, after 10 seconds, about 1.5 to 2 orders of magnitude

lower sensitivity. Since each step in Experiment I lasts 15 seconds, we expect a one-step delay

to ipRGC pupil constriction, which would equal a 5-nm wavelength shift when looking at just

one protocol. Since the changes between each wavelength step were small, the pupils quickly

adjusted, usually within one or two seconds after each shift, followed by typical pupil oscilla-

tions and pupillary escape. Each protocol consisted of 61 light steps, totaling 915 seconds of

light (15.25 minutes), or 1005 seconds including dark adaptation (16.75 minutes). Seventy-five

participants were enrolled in Experiment I. Due to technical difficulties, the Down protocol

was not available when Experiment I started, and was therefore measured consecutively to the

Up protocol. Due to this sequence, the number of partaking subjects differs between the

Fig 2. Experimental protocols. (A) Series of peak wavelengths for each experiment and protocol. A list for the respective order of wavelength peaks is

available as part of the S3 File. (B, C, D) Schematics of the first 40 seconds of each experimental protocol. Light onset after dark adaptation occurs at

zero seconds (dotted black line). Traces show the average pupil diameter, with a ribbon representing the SEM. For visual reasons, only one of the two

protocols sharing the same procedure is shown. These are Up (B), Central 1a (C), and Short 1 and Long 1 (D).

https://doi.org/10.1371/journal.pone.0253030.g002
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protocols, with 57 participants in the Up and 23 in the Down protocol. Of those taking part in

the Down protocol, we measured five randomly selected participants in both protocols to

check whether there were any systematic differences between the protocol groups, which was

not the case. Mixed models were used in the statistical analysis to take these factors into

account.

Experiment II. The surprise outcome in Experiment I was the comparatively high wave-

length of 540 nm at which pupil constriction amplitude was at its maximum (see below under

Results for all outcomes and the corresponding figures). In Experiment II, we thus tested

whether this was due to our experimental design of small step changes along the spectrum in

Experiment I. We wanted the series of wavelengths to be continuous, i.e., that wavelength

changes would happen near instantaneous, which would be the same as in Experiment I. How-

ever, the monochromator required considerably more time for the changes of wavelength

between steps than in Experiment I. We therefore designed three new protocols (Fig 2A and

2C). All three protocols started, after a dark adaptation phase of 90 seconds, at 548 nm, which

is halfway on the available range of wavelengths. Both comprise 61 light steps in total. The

series are not random, which would have led to an imprecise estimate of wavelength peaks, as

we found in early tests. However, the series are designed to be as diverse as possible in terms of

wavelength changes, and regarding when in the series specific wavelengths are presented.

Except for the first step, the protocols are symmetrical to the midpoint of the series axis. The

protocols Central 1a and Central 2 continued with differing spectral-wavelength shifts between

steps. In these two protocols, the shutter was closed during the wavelength adjustment. In the

longest case, the wavelength change lasted just under 9 seconds, and we set the shutter closure

time to that value for all steps. The result, for both protocols, was 15 seconds of light followed

by 9 seconds of darkness at each step, totaling 24 seconds per wavelength; the total series had

1464 seconds after light onset and 1554 seconds including dark adaptation, i.e. just under 26

minutes). Since the presence of dark periods between light steps in the two protocols above

introduced a new factor to the experimental design, we designed the further protocol Central
1b. This third protocol was identical to Central 1a, except that the shutter stayed open at all

times, i.e., there were no dark phases in between light steps, and the 15 seconds per light step

started right after the wavelength adjustment (Fig 2C). As an undesired side effect, participants

perceived the adjustment of wavelengths in that series. We reasoned, however, that these brief

periods (about 28 ms per 1 nm wavelength) would not influence pupil constriction amplitude

10 to 15 seconds later in a relevant manner. With all three protocols taken together we could

test whether the wavelength dependency in the first experiment was due to the sequence of sti-

muli and whether the interruption of light in the first two protocols in Experiment II influ-

enced the wavelength dependency in this experiment. Since changes in wavelength between

light steps were larger in Experiment II than in Experiment I, the pupillary reactions were also

stronger. In protocols with discontinuous light, the phasic part of the pupillary light reaction

took about five seconds or less before changing to a tonic movement with typical oscillations

and pupillary escape.

Ten participants took part in Experiment II. The sample size was chosen based on the first

experiment. There, we saw that a random sample of ten out of the available sample for every

protocol resulted in the same primary outcome for the spectral dependency. Each participant

took part in every protocol.

Experiment III. Two main results in Experiment II led us to the design of a further experi-

ment. Experiment II had shown that the spectral dependency of the nPC depended on whether

or not there were periods of darkness between light steps, i.e., whether the light stimulus was

discontinuous or continuous. Of particular interest was an apparent shift in wavelength sensi-

tivity over time when light steps were discontinuous, but not otherwise. The experiment had
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further allowed looking at the wavelength dependency of the PIPR during the intervals of

darkness. We designed Experiment III to build on these results. It comprised four protocols

(see Fig 2D), each of which consisted of 31 light steps following the 90-second dark adaptation

phase. Light steps followed the series structure of Central 1a and Central 2 from Experiment II;
however, since each light step was longer in Experiment III, we halved the number of steps to

not overly tire participants. The spectrum was therefore divided into steps of about 10 nm

wavelength difference. The series Long 1 and Long 2 were designed to analyze wavelength-

dependency changes over a more extended period of time. Accordingly, each step’s period was

extended from 15 to 30 seconds duration, followed by 9 seconds of darkness between the steps

(1209 seconds after light onset; 1299 seconds including dark adaptation, or about 21.5 min-

utes). The protocols Short 1 and Short 2 were designed to analyze the PIPR over a more

extended period. Accordingly, each step’s light stimulus lasted 1 second, with 30 seconds of

darkness between steps (in total 961 seconds after light onset; 1051 seconds including dark

adaptation, or about 17.5 minutes). In the Long protocols of Experiment III, pupil behavior

was like in Experiment II, with an extension to the tonic part due to the prolonged stimulus.

Ten participants took part in Experiment III. Each participant took part in every protocol.

Procedure

Participants arrived at the appointed time in the laboratory and were welcomed and seated.

Measurements were restricted to daytime hours and were scheduled from 08:00 am to 08:00

pm (taking place, on average, at 01:30 pm ± 2:45 h:m). The laboratory was a windowless room

with constant temperature, mechanical ventilation, and lit with warm-white artificial light

(about 50 to 100 Lux, depending on position). Participants read and signed the prepared

informed-consent form. Color vision was tested first. Illumination on the tests was cool white,

with a high color-rendering index. Participants then filled out a three-part questionnaire, (1)

the German translation of the Morningness-Eveningness Questionnaire for testing chronotype

(D-MEQ; scores the time of preference; according to the MEQ manual [28], chronotype scores

from 60 and above are considered morning types or Larks, below 40 evening types or Owls, and

in between Neutral types); (2) general demographic questions, and (3) general questions

regarding participants’ current health. The experimenter then fitted the pupillometry appara-

tus to the participants’ head and the participant lied down on a flat treatment couch with a

small pillow under the head. The experimenter ensured that the infrared cameras were posi-

tioned correctly so that pupil diameter could later be calculated from camera pictures, either

by adjusting the distance to the eye (in Experiment I) or by presenting a reference scale at eye

level (in Experiment II and III). The Ganzfeld dome was then pivoted over the participants

head until the eyes were at a predetermined position and only the dome’s inside was visible.

Room lighting was then switched off, and a black, opaque curtain between the participant and

the experimenter was drawn shut. Thereby the eye-tracker camera output could be monitored

on a personal computer without stray light influencing the experimental setup. Participants

were instructed to relax and look straight ahead, with minimal blinking. The experimenter

repeated the instructions in following procedures if compliance faded. The appropriate proto-

col was then started, each beginning with its 90-second dark adaptation phase, followed by the

respective series (see above). Participants’ eyes were not medically dilated, and both eyes

received the light stimulus (closed-loop paradigm [19]). If participants took part in more than

one protocol (primarily in Experiment II and III, see above), protocol order was randomized.

Participants further got up from the treatment couch for about five minutes in-between proto-

cols during which room lighting was switched on, as in the initial setting. At the end of the

experimental session, participants were thanked and debriefed. The total time participants
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spent on site was between thirty minutes in Experiment I and about two hours in Experiment
II and III.

Data analysis

Bio-signal data analysis covered converting raw pupil data to a time series of constriction

amplitudes for each participant and protocol. It further covered spectral calculations to derive

photopic, mesopic, and scotopic illuminance values for each narrowband wavelength peak.

Normalized pupillary constriction. We used the R software (Version 4.0.2) [34] with sev-

eral packages for data analysis (anytime, cowplot, ggplot2, ggmisc, knitr, readxl, signal, tidy-
verse). Raw pupil data were stored in pixel-based units by the measurement software, and

exported to CSV files. These values were converted to mm and mm2 by a factor derived from

the ImageJ software [35], using screenshots from the eye tracker videos with included reference

scales (see above). Blinks and other artefacts were then removed by calculating a circularity
index (ratio of pupil height to width, and width to height). Pupil values with a circularity index
smaller than 0.7 were removed [12, 36]. We also removed pupil diameter values outside rea-

sonable thresholds, usually when above 8.5 mm or below 1.5 mm pupil diameter. However, in

some cases, a different cut-off was decided upon after visual inspection. A Savitzky-Golay filter

[37] with a third-degree polynomial [26, 38] was used for smoothing of the pupil data; filter

length was set to 31 data points or about 0.5 seconds. The same filter was also used to calculate

the second derivative of the smoothed curve—valleys in the second derivative coincide with

the early stages of pupil constriction. The timestamps of these valleys were used to shift the

measurement time according to light onset. The shift was monitored visually and, when neces-

sary, manually adjusted. After this correction, time values are negative during dark adaptation,

light onset happens at zero seconds, and the experimental lighting conditions occur at positive

time values according to the protocol.

In the next step, the normalized pupillary constriction (nPC) was calculated at each time

step i, as

nPCi ¼
diameterbaseline � diameteri

diameterbaseline
� 100%: ð1Þ

We use the term nPC instead of pupillary constriction amplitude suggested by Kelbsch et al.

[19]. Both are calculated the same way. However, nPC (since it does not refer to an amplitude)

might be the more natural term for the prolonged stimulation in our experiments. The nor-

malized pupillary constriction is defined as the decrease of pupil diameter, normalized to a

baseline level (generally the baseline before stimulation [19]), thereby controlling for the con-

siderable variation of inter-individual pupil size, as well as for its (smaller) intra-individual var-

iation [16, 19]. The baseline diameter corresponds to 0% constriction, and the (impossible)

pupil diameter of 0 mm would correspond to 100% constriction. As an example, a light-

adapted diameter of 2 mm from a baseline pupil diameter of 8 mm equals 75% constriction

amplitude. As we used a comparatively short dark adaptation period, followed by a long series

of light steps, we believe that the pupil diameter at the end of the dark adaption phase some-

what loses its prominence, as it is mostly unrelated to any particular wavelength peak across

the protocols. Therefore, we used the largest one-second-mean pupil diameter (see below) as

the pupil baseline, taken from the period between the last seconds of dark adaptation until the

end of each protocol. This baseline still takes interindividual differences into account, while

intraindividual differences are already taken care of through the continuous measurement

over all wavelengths per person and protocol. By definition, nPC can only take positive values

here. To check whether our normalization method affected the results in an undesirable way,
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we performed an additional primary analysis without normalization in Experiment I, and fur-

ther tried an alternative normalization in Experiment II and III to the average diameter during

the last second of darkness before each light step. Since we had measurements for both eyes,

one eye was discarded at the next step; the eye with the highest count of remaining data points

was kept unless visual inspection showed abnormalities. The CSV export from the collected

steps above contained the pupil diameter (mm), nPCi (%), Series number, time since dark

adaptation/light onset (s), time since the start of the light step (s), wavelength (nm), baseline

diameter (mm), participant code, eye, date, time, and protocol name. Data in the CSV export

file were further aggregated in two ways, so besides unaggregated pupil data (i.e., with 60 Hz

sampling frequency) the file contained one-second means, and means over specific periods.

The specific periods were the last five seconds of each light step, for every protocol except

Short 1 or Short 2, in which the sixth second after light offset was used instead [21]. In a final

step before the statistical analysis, the pupil data were combined with participant data (sex,

age, chronotype), and spectral data (see Fig 1 and below). The scripts to derive the input data

for the statistical analysis are available as R-Markdown files as part of the, in the S1 File. All

data used in the statistical analyses are available as CSV files from the Open Science Framework
[39]. Before the experiments we tested and calibrated the eye tracker on a reference head and

pupil. Camera resolution, combined with the mean camera-to-eye distance of 27.5 mm, led to

a resolution of 10 pixel per mm at pupil level. Pupil height or width changes can thus be

tracked to about 0.1 mm accuracy or 1.5% nPC, assuming a baseline pupil of just under 7 mm.

Spectral calculations. From the spectral irradiance measurements, total irradiance was

calculated automatically by the measurement software (see above). Similarly, illuminance val-

ues were automatically calculated according to the CIE-1931 standard 2˚ photopic observer

which uses the V(λ) function [40], as well as according to the CIE-1964 standard 10˚ photopic

observer, which uses the V10(λ) function [41]. The five types of alpha-opic equivalent (D65)

daylight illuminance were calculated according to the CIE S 026 standard (CIE-S-026-EDI--
Toolbox-vE1.051) [32]. We also used the Melanopic-light-sources_Toolkit_V13.12, which was

developed and provided to us by Dieter Lang [42]. The toolkit provided illuminance values for

the CIE-1951 scotopic observer with V’(λ) [43] spectral weighing in addition to the alpha-opic

values. Illuminance for the mesopic observer was calculated according to the German stan-

dards DIN 5031–2 [44] and DIN 5031–3 [45] through Veq(λ) weighing functions. The stan-

dards were recommended by Adrian [7]. The CIE has since released the standard CIE

191:2010 for mesopic photometry, which is based on the same basic principles but uses a dif-

ferent calculation procedure and notation (Vmes;m(λ)) [46]. In the German standards, illumi-

nance calculations for the mesopic observer use spectral weighing functions Veq(λ) that are

intermediary between the photopic V10(λ) and the scotopic V’(λ) function, in addition to

intermediary luminous efficacies of radiation. These intermediaries are chosen based on the

adapting equivalent luminance Leq for a 10˚ observer on a log10-based scale between the phot-

opic (100 cd/m2) and scotopic (10-5 cd/m2) endpoints defined by the standards. Our calcula-

tions were performed using Microsoft Excel software. We used the corneal stimulus intensity

(log irradiance, without prereceptoral filtering) in our analysis. Estimates for prereceptoral fil-

tering on irradiance and photon density are available as part of the S2 File. We used the

method from Lund et al. [47] to calculate the age-dependent filtering as suggested in the CIE S
026 standard [32]. A visual comparison of spectral irradiance with vs. without prereceptoral fil-

tering for the median age of 26 years is displayed in the S13 Fig. Peak wavelength-shifts due to

prereceptoral filtering were small and did not occur above 428 nm. Spectral irradiance with fil-

tering had a higher peak wavelength of 1 nm for 428, 424, and 420 nm; it was 3 nm higher for

416 nm and 409 nm, and 5 nm higher for 404 nm. These changes in peak wavelength are iden-

tical through our age range between 18 and 36 years. The spectral measurements for the range

PLOS ONE Spectral dependency of the human pupillary light reflex

PLOS ONE | https://doi.org/10.1371/journal.pone.0253030 January 12, 2022 11 / 44

https://doi.org/10.1371/journal.pone.0253030


of peak wavelengths, including total irradiance and all types of illuminance values are provided

as part of the Supporting Information, in the S2 File.

Statistical methods

We used the R software (Version 4.0.2) [34] with the mgcv (Version 1.8–31) [48] package to

perform a generalized additive mixed-effect analysis on the connection between normalized

pupillary constriction and the empirically and theoretically derived predictors. Generalized
Additive Models (GAMs) [48, 49] allow for a data-driven decomposition of the relationship

between a dependent variable and user-defined predictor variables in both a parametric and

nonparametric fashion. A variant of GAMs are Generalized Additive Mixed-Models (GAMMs

or HGAMs), used in the context of hierarchical data as is the case in any repeated-measures

setup such as ours [50]. GAMs are widely used in Biology, Ecology, and Linguistics [48]. GAM

(M)s are not yet used often in Human Life Sciences [51], but we find them an excellent match

for the analysis at hand, and mixed-effect models gain support in biophysiological research

such as visual perception [52] and nonvisual effects of light [53]. Guidelines on the theory

behind GAMs and their practical use can be found in Wood [48], Simpson [54], Pedersen

et al. [55], and the guide by Sóskuthy [50].

The nonparametric parts of GAMs take the form of smooth functions (smooths, in short),

describing the connection between the outcome variable and a predictor. A smooth function f
(xi) is the weighted sum of a number k of basis functions bj at the i-th value of a predictor vari-

able x:

f ðxiÞ ¼
Xk

j¼1
bjðxiÞbj ð2Þ

The βj in Eq 2 denote the weights (the smooth coefficients) of the basis functions bj(xi).
Since GAMs are not yet widely familiar in this field of research, their concept is visualized in

Fig 3A. The type of basis function is chosen as part of the model construction, with cubic
regression splines being probably the most well-known type (Fig 3A1). Unless otherwise stated,

we used the mgcv-default type of basis functions, which are thin plate regression splines (TPS).

Wood [48] gives a comprehensive overview of basis functions and their suitability depending

on the context. Unlike coefficients in a normal parametric regression, the basis-function

weights βj in generalized additive models are not by themselves interpretable towards the mod-

elled relationship (Fig 3A2). Only by knowledge of the set of basis functions and their epony-

mous weighted addition (“additive” models) can the resulting smooth function be interpreted

(Fig 3A3). One of the underlying assumptions to the smooths is a constancy of complexity

across the value range of x. That means that smooths do not do well without additional adjust-

ments, if constructed from relationships that vary heavily in their dynamics across the range,

or that exhibit discontinuous changes (step-changes). These adjustments include the use of

adaptive splines for varying dynamics, or the use of factors for step-changes [48]. Smooth func-

tions can be multi-dimensional, thereby describing interdependent relationships or interac-

tion effects between predictors and the outcome variable. The number k of basis functions is

chosen based on the complexity of the modelled relationship present in the data. Overfitting is

avoided through the penalization of complexity as part of the likelihood optimization. There-

fore, added complexity (or wiggliness [48]) in the smooth needs to improve the model fit

enough—compared to, e.g., a straight line—to outweigh the penalization. More broadly,

GAMs ascertain to model the simplest possible relationship between variables, or no relation-

ship at all, without leaving out relevant structural components depending on any given

predictor.
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If not stated otherwise, we used Akaike’s Information Criterion (AIC) for model selection,

as suggested by several sources on GAM(M)s [48, 50, 54–56]. The AIC incorporates model fit

(likelihood) and model size (number of parameters) [48]. It can further be compared between

similar models, with the lower value indicating the better-suited model. Following the example

of Pedersen et al. [55], models that differ by two units or less from the lower AIC have substan-

tial support, with the more parsimonious model to be preferred. We report ΔAIC values when

there is support for the inclusion of a predictor. T-tests obtain p-values for parametric terms.

The p-values for nonparametric terms are approximate p-values, so called owing to the com-

plexity of the degrees-of-freedom (df) concept used for statistical testing, and other underlying

assumptions [48, 50]. For nonparametric terms, the hypothesis tested-against states that the

relationship between predictor and dependent variable is a horizontal, flat line. P-values less

than or equal to 0.05 were considered significant. Confidence intervals in prediction plots

account for the model’s overall uncertainty, not for the respective plotted predictor alone.

We explored the nPC’s relationship with wavelength, irradiance, series, time, time of day,

sex, chronotype, and age by the methods described above. We further looked for the nPC’s best

Fig 3. Concepts of additive (mixed-effect) models. (A) Construction of a smooth through basis expansion. Every smooth is constructed from a number of basis

functions, usually spread evenly across the value range of a predictor. In the shown case, five cubic regression splines were used as basis functions to demonstrate

the concept. The thick black line represents the final smooth function, describing the relationship between the predictor and the outcome variable. Colored traces

show the basis functions. (A1) Unscaled basis functions—their type and maximum number are part of the input for model generation. (A2) Scaled basis

functions—for each basis function, a respective weight is estimated by which the function is scaled. (A3) Summation of basis functions, starting with the first and

then, successively, adding the others; the generated smooth can then be used for prediction. The smooth is shown as dashed curve to show that, with the addition

of the last basis function (orange line), the resulting curve is equal to the smooth function. (B) Concept of global effects with random smooths. (B1) The thick

black line represents the global effect, describing the average relationship between the predictor and outcome variable. Colored traces show the individual’s effect

of the same predictor, demonstrating interindividual differences. The model takes these differences into account through the so-called random smooths (i.e.

“random” in that their contribution depends on the subject). (B2) Random smooths are smooths describing the deviations from the global effect. The colored

traces show the deviations present in panel B1. Because the global smooth and the random smooths are estimated together, the deviations disappear on average,

i.e., not all deviations will tend in the same direction, but are spread around the global effect.

https://doi.org/10.1371/journal.pone.0253030.g003
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fit to photopic, scotopic, and mesopic illuminance, and alpha-opic equivalent-daylight illumi-
nance values. The variable wavelength refers to the dominant or peak wavelength of the nar-

rowband stimuli as described above. After light offset, wavelength refers to the prior light

stimulus. Series refers to the numbers of light steps after the dark adaptation phase. Time refers

to the time since the start of the current light stimulus, i.e., light onset or change in wavelength.

Several additional R packages were used for the statistical analysis and plot generation (tidy-
verse, ggplot2, readxl, dplyr, cowplot, lubridate, itsadug, printr, patchwork, here, reshape2, plotly,

gganimate, gridGraphics, transformr, glue, magick, and DT). All scripts for analysis and plot

generation are available as RMarkdown files in the Supporting Information, S3 File.

Base model structure. While the relevant code is included as part of the S3 File, we believe

it helps explaining the basic model structure and settings used to analyze the experimental out-

come. The model structure is one of five basic GAMM variants (according to Pedersen et al.

[55]), which differ in how fixed and random effects are included. The chosen variant, by way

of AIC comparison and model diagnostics, is shown in the following equation:

EðnPCiÞ ¼ aþ f1ðwavelengthiÞ þ f2ðseriesiÞ þ b1 � log10ðirradianceiÞ þ bp þ fpðwavelengthiÞ;

where nPCi �
Nðmi; s

2Þ
ffiffiffi
w2
n
n

q ; and bp � Nð0; s2

bÞ ð3Þ

Eq 3 shows the statistical base model, where the expected value of nPC E(nPCi) is modelled

by smooths as a function of wavelength (f1) and series(f2), and a parametric effect of log10(irradi-
ance); α is the average nPC, when all other terms are zero, also called the intercept; β1 is the

parametric coefficient, or slope, for log10(irradiance); bp are random intercepts by participant;

and fp(wavelengthi) are random smooths by participant.

Wavelength is the main predictor, series was included for empirical reasons, i.e., in the cases

when visualization of the nPC data in Experiment I showed the influence of the protocol

(series). As stated above under Apparatus, irradiance is theoretically motivated to compensate

for lower irradiance levels under 450 nm wavelength. However, smooth behavior from 400 to

450 nm still has to be interpreted tentatively, since the estimate for irradiance might under- or

overcompensate the effect, thereby distorting the influence of the lowest wavelengths on nPC.

We account for this by leaving irradiance out of the model in a secondary analysis and discuss

differences between the variants.

As random effects in Experiment I we had random intercepts bp and random smooths fp(wa-
velengthi) for each participant p. In Experiment II and III, all participants took part in all proto-

cols; we, therefore, had random effects for participants-by-protocol in those cases [50].

Random intercepts describe the deviation from the average nPC (α) depending on the partici-

pant (or participant-and-protocol), with independent and gaussian distributed values. Ran-

dom smooths can be thought of as the nonparametric version of random slopes in linear
mixed-effect models. Random smooths allow for the individual’s deviation from the global effect

f1(wavelengthi), but zero-out on the global effect when viewed on average across participants

(Fig 3B).

For the distribution of our response variable, PCAi, which takes positive values between 0

and 1, the gamma or beta distribution seemed sensible assumptions initially. However, model

diagnostics with those were poor compared to even the standard gaussian error distribution.

Instead, we thus went with the scaled-t (scat in mgcv) distribution family, which is less suscepti-

ble to outliers and indeed greatly improved residual distribution. Eq 3 states that PCAi varies

around its mean μi with a t-distribution based on the standard deviation σ and n degrees of

freedom. We also tested a model with the gaussian location-scale (gaulss in mgcv) family. This

distribution allows the variance to change depending on a predictor, just like the mean.
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However, we did not find relevant differences in variance, and the model with the scat family

performed similarly well with respect to the AIC. The gaulss family did further not allow for

the computationally faster bam command, so we used the scat family for the analysis.

We used the gam.check function of mgcv, which includes several residual plots for model

diagnosis. Visual inspection of these plots did not reveal any apparent deviation from homo-

scedasticity or normality. Models were further controlled for autocorrelation in the residuals.

In all models that used only one timestep per wavelength peak (5-second average nPC), the

inclusion of random effects diminished all relevant autocorrelation. In models that used 1-sec-

ond averages for nPC, random smooths by wavelength left serious residual autocorrelation

present. Random smooths by both wavelength and time proved too computationally intensive

in those cases and we instead included the remaining autocorrelation with an autoregressive

error model [50, 54], in addition to random smooths by wavelength. Finally, the number of

knots for each smooth (i.e., how many basis functions comprise the smooth) was also checked

(k.check) and was increased, when theoretically sensible, until autocorrelation along the

smooth vanished [55]. For computational speed reasons, we used the bam function with

fREML in R instead of the standard function of gam with REML. Bam is optimized for big data

sets and model structures.

If not otherwise stated, GAMs in the Results section were used to model normalized pupil-

lary constriction (nPC) according to Eq 3, the latter also called the base model. Additional

parametric and nonparametric predictors were explored—their addition to or removal from

Eq 3 are stated in the respective sections. The default nPC is the average value of each light

step’s last five seconds, as described above.

Linear mixed-effect model structure. We used the lme4 package [57] to perform a linear
mixed-effects analysis of the relationship between nPC and the various illuminance variables

described above:

EðnPCiÞ ¼ aþ ðb1 þ bpÞ � log10ðilluminanceiÞ þ bp;

where nPCi � ðmi; s
2Þ; bp � Nð0; s2

bÞ; and bp � Nð0; s2

b
Þ ð4Þ

Intercept α and slope β1 are the fixed effects of the model described in Eq 4. The intercept α
indicates the value of nPC, when all other terms in the equation are zero. The slopes, or beta

coefficients, β1 and βp, represent the change in the expected value of nPCi when increasing illu-

minance by one log unit. As random effects we included random intercepts by participant, bp,
and random slopes by participant, βp, both of which have independent values with a gaussian
distribution. Random intercepts bp show how much individuals deviate from the average nPC

α with a variance of s2
b. Random slopes, similarly, show how much the relationship between

the predictor and outcome variable deviate from the fixed effect β1 with the variance s2
b
. nPCi

has a gaussian distribution, with variance σ2 around its mean μi. The proportion of variance-

accounted-for (R2) was calculated according to Xu [58].

Results

An overview of the experimental data and circumstantial conditions is shown in Fig 4. Fig 4A

shows plots for nPC vs. wavelength for each protocol, where the underlying data are not con-

trolled for any dependencies. Non-normalized pupil diameters vs. wavelength are shown in

S12 Fig. Fig 4B shows chronotype vs. time of day. Noteworthy is the lack of Owl chronotypes

before midday, as well as pronounced Larks in the morning. Fig 4C shows at what time in the

year the experiments took place, as suggested by Veitch and Knoop [59]. Experiments took

place in 2019 (preliminary measurements, Experiment I) and in 2020 (all experiments).
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Experiment I

Base model results. The results for the base model of all three experiments are shown

together in Fig 5, for better comparison. The results for Experiment I are shown in Fig 5A and

are reported in this section; the results for Experiment II and III, as well as secondary results

for Experiment I are shown here in Fig 5B–5D, respectively, but are reported below in the

respective sections. The statistical base model contains wavelength and series as nonparametric

predictors, and log10(irradiance) for the average nPC during the last five seconds of each light

step as a parametric predictor. There is strong support for a dependence on wavelength in its

implemented form versus other random effect structures (minimal ΔAIC = 33), or no wave-

length dependence (ΔAIC = 4963), as there is for including series as predictor (ΔAIC = 390).

Irradiance did improve the model further (ΔAIC = 17). All p-values in the final model were

below 0.001. The dependence on wavelength shows an inverted-U shaped curve with a peak at

540 nm, and an average nPC of about 38% when controlling for all other factors (Fig 5A1).

Compared to the maximum, nPC is predicted by the model as up to 11% lower for short wave-

lengths and up to 17% lower for long wavelengths. The dependence on wavelength shows a

peak at 550 nm when not controlling for irradiance (S11A Fig). With respect to series effects,

nPC increases slightly with series up to step 18 (by about 3%), which occurs at about 360 sec-

onds after the protocol start, or, respectively, 270 seconds after lights-on (Fig 5A2). After this

point, nPC declines by about 13% until the end of the protocol. nPC further increases with

Fig 4. Experimental data and circumstances. (A) Normalized pupillary constriction (nPC) plotted against wavelength, for each of the nine protocols. The color scale

shows at which point in the series a specific wavelength was presented; light yellow represents early in the series. For all but the Short protocols, points represent the

average nPC during the respective last five seconds of a light step. In the two Short protocols, points represent the average nPC during the sixth second after lights-off

(or sevenths second after lights-on). Traces show the mean nPC, ribbons its standard deviation. The number in the upper right corner of each plot shows the

corresponding sample size. (B) Scatterplot of when subjects of a certain chronotype started their respective protocols. The color scheme is according to (C), i.e. green,

red, and blue correspond to Exp. I–III, respectively. Note the lack of Lark and Owl chronotypes in Experiment I before midday. (C) Boxplot of the time of the year

when the experiments took place. Preliminary measurements and parts of Experiment I took place in 2019, the other measurements in 2020.

https://doi.org/10.1371/journal.pone.0253030.g004
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Fig 5. Model predictions. Model predictions for normalized pupillary constriction (nPC) as depending on several main predictors, when all other

predictors are held at an average, constant level. Traces show the model prediction for the mean, ribbons its 95% confidence interval. Dotted lines show a

peak that is discussed in the main text. In (A3, B3, and C3), the x-axis is logarithmically scaled to reflect the logarithmic transformation of irradiance in

the model. (A) and (D) show dependencies in Experiment I, discussed here, (B) and (C) dependencies in Experiment II and III, respectively, discussed

later. (B) The red line at the bottom of (B1) indicates where the two curves differ significantly at the 0.05 level of significance.

https://doi.org/10.1371/journal.pone.0253030.g005
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irradiance (βlog10(irradiance) = +6.5% ±1.4% SE), as seen in Fig 5A3. The standard deviation of

the random intercept by participant, s2
b, was 8% in Experiment I. While a balanced sample

between the Up and Down protocols would have been preferable, GAM(M)s allow for imbal-

anced data. Larger sample groups are not weighted more heavily, and global effects are

adjusted for across groups. We also performed the base-model analysis with a random sample

of ten participants from the Up and Down protocols, obtaining the same outcome for wave-

length dependency (see the S3 File). We thus decided on a sample size of ten subjects for

Experiment II and III.
Interaction of series and wavelength. There is some support for an interaction of wave-

length with series, i.e., that changes of nPC with wavelength depend on when, in the series, spe-

cific wavelengths are presented (ΔAIC = 5). Results for that are shown in a (S2 Fig). The model

prediction with the interaction effect shows little or no deviation from the basic model results

at the instances with data. Compared to the model without interaction, nPC is predicted to be

lower for very short and long wavelengths occurring right after light onset. Wavelengths

around 600 nm further lead to a more pronounced nPC during the early steps of the series,

while for wavelengths around 500 nm nPC is slightly lower during the later steps. In terms of

ipRGC sensitivity, it seems as though, compared to the model without the interaction, nPC is

heightened at, and a few steps after, reaching the sensitive wavelengths around 490 nm, but the

effect is small. With the interaction effect as part of the model, irradiance is no longer signifi-

cant (p = 0.31).

Sex and age. There is further support for an influence of sex on the nPC (ΔAIC = 85). On

average, women had a smaller nPC than men (βWomen = –4.4% ±0.4% SE, p< 0.001). The

mean difference in pupil constriction (not normalized) between the groups was 0.21 mm

±0.024 mm SE. Our preliminary measurements indicated that the wavelength dependency of

nPC is conditional on sex (not shown). There was, however, no interaction of sex with either

wavelength (p = 0.98) or series (p = 0.27) based on the larger sample from Experiment I. With

age as a predictor (Fig 5D1), nPC increased by about 3% from age 18 up to about age 25

(ΔAIC = 245, p< 0.001). At higher age, nPC reached a plateau. We did not see changes in

wavelength with age (p = 0.67).

Chronotype and time of day. There is strong support to include chronotype and time of
day as predictors, together with a three-way interaction of these with wavelength (ΔAIC = 47

and ΔAIC = 130, respectively). Main effects of chronotype and time of day are shown above in

Fig 5D2 and 5D3. In general, Owls have a slightly higher nPC compared to Larks (Fig 5D2),

and nPC was highest during the early afternoon around 3 pm (Fig 5D3). According to the

interaction model, subjects with neutral chronotype (chronotype score of 50) showed no sub-

stantial change in wavelength dependency across the day (Fig 6A2, blue curves). In contrast,

subjects with pronounced chronotype did (Fig 6A2, green and red curves; for a complete over-

view from 8:30 am to 7:30 pm see S4 Fig). Larks (green traces) were shifted in sensitivity

towards short wavelengths before midday, were about equal to Neutral types at around noon

and early afternoon, and were more sensitive to longer wavelengths in the late afternoon. Owls
(red traces), on the other hand, were shifted opposite; before midday they were more sensitive

to longer wavelengths, were close to Neutral types at midday and early afternoon, and were

more sensitive towards shorter wavelengths during the evening hours. Not every point of this

three-dimensional interaction structure has enough data points to support all predictor vari-

able combinations. Missing combinations occur in particular for extreme chronotypes and

measurement hours, as was shown in Fig 4B above. However, enough structural points are

present to support the dependency thus described (see S5 Fig for more details). To test whether

the chronotype effect that we saw was confounded by age or by a covariance between
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Fig 6. Interaction of wavelength, chronotype, and time of day. (A1) False-color graph of model predictions for the nPC’s dependence on wavelength
(x-axis) and chronotype (y-axis) for three times of day, when all other predictors (basic model) are held constant at their average. Horizontal lines show

where the respective three traces shown in figure part (A2) are taken from. (A2) Model predictions for the nPC vs. wavelength for three chronotypes

(trace color), and three times of day. Green traces show Larks (CT score = 70), red traces Owls (CT score = 30), and blue traces Neutral types (CT

score = 50). Ribbons show the 95% confidence interval for the predicted means. (B1/B2) Like (A), but for pooled data across all experiments. See the

main text for further details.

https://doi.org/10.1371/journal.pone.0253030.g006
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chronotype and time of day, we calculated the Pearson correlation between the variables. Nei-

ther of the combinations of age, chronotype, or time of day had a strong correlation (all

r� 0.13) or was even significant (all p� 0.26). To increase the number of combinations, we

pooled the data from all experiments. The results from the pooled data model are shown in Fig

6B, but reported further below.

Other results. When all significant terms are added to the model—i.e., the interaction of
wavelength and series, the main effects of sex and age, and further the interaction of chronotype
with time of day and wavelength–all model terms remain significant (all p< 0.001) except for

irradiance (p = 0.31). More importantly, the predictor-response relationship across the terms

is very similar to the descriptions above. One exception is the effect of age. When controlling

for chronotype and time of day, nPC is predicted to gradually rise across the whole range from

age 18 to 39 (S3B Fig), as opposed to only the range from age 18 to 25 (S3A Fig). This full

model was also the best in terms of AIC yet (min ΔAIC = 58). AIC would have been further

improved by dropping the main effects of chronotype (ΔAIC = 7) or time of day (ΔAIC = 40).

However, it is not advisable to drop the main effects in the presence of an interaction [48].

Curiously, most of the random wavelength-by-participant smooths were not significant in this

model (61 out of 75). This indicates that the fixed effects above account sufficiently for the

interindividual differences in wavelength dependency from roughly 80% of participants.

nPC was calculated for the centered and scaled pupil size, as described above in Materials
and methods (Eq 1). When the pupil diameter is not scaled but is centered on the baseline,

results show the pupillary constriction in mm instead of in per cent. When pupil diameter is

neither scaled nor centered, results show the raw pupil diameter in mm. We explored those

two variants of the response variable, but results do not indicate that such scaling changes the

model’s composition or interpretation (S6 Fig).

Illuminance. To analyze how well each type of illuminance can predict nPC, we con-

structed several simplified standard linear mixed-effect models according to Eq 4, with a fixed

effect for illuminance, and random intercepts and slopes per participant. Illuminance values

were log10 transformed. Nine measures of illuminance were used as described above in Materi-
als and methods: photopic illuminance for foveal and ganzfeld stimulation (2˚ and 10˚ observer

according to CIE standards), mesopic and scotopic illuminance, and the alpha-opically
weighted equivalent daylight illuminances for the five types of photoreceptor. Since the scotopic

illuminance and rhodopic equivalent daylight illuminance use the same underlying action

spectrum, results on model fitting are identical between these two types of illuminance. There-

fore, only results for the scotopic model will be shown in the figures. Fig 7 shows the results for

all three experiments together for better comparison. The results for Experiment I (Fig 7A)

show that the photopic (2˚ and 10˚) and especially mesopic functions are much better at pre-

dicting nPC (R2
illu� 0.41) than the commonly used melanopic and rhodopic (viz. scotopic)

receptor functions (R2
illu� 0.24). Of the three cone functions, erythropic and especially

chloropic weighing led to good results (R2
illu� 0.42), whereas cyanopic weighing was the only

illuminance type with no support at all by the model (p = 0.37, R2
illu < 0.01).

Results for Experiment II and III are shown in Fig 7B and 7C, respectively, for better visual

comparison across the experiments. Their results are reported below in the respective sections.

Experiment II

Base model results. The results of Experiment II for the base model were shown above in

Fig 5B but are described here. The base model is constructed identically to that in Experiment
I, with an added factorial predictor for whether there is, or is not, a period of darkness between

light steps (referred to as Dark in the remainder). There is support for including this factor
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Fig 7. Linear mixed-effect model results for nPC’s dependency on illuminance. Model predictions for nPC vs. various measures of illuminance.

Points show individual data. Thick regression lines show the fixed-effect relationship and thin regression lines random effect variation in slope and

intercept by participant. The insets show R2
full for the full model (fixed and random effects), and, more importantly, a partial R2

illu, i.e. the proportion of

variance explained through nPC’s relationship with the fixed effect of illuminance. Part (A) shows results for Experiment I, (B) for protocols with

darkness between light steps in Experiment II, and (C) for protocols with thirty seconds of light, followed by nine seconds of darkness in Experiment III.

https://doi.org/10.1371/journal.pone.0253030.g007
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(ΔAIC = 5). The dependence on wavelength shows an inverse-U shaped curve in both cases

(Fig 5B1). The difference between the two curves is about 13% nPC in the short-wavelength

spectrum but almost disappears towards the long wavelengths, above about 600 nm (it is sig-

nificant below 570 nm at the 5% level). nPC increases slightly with series up to step 19 (about

3%) and is steady afterwards (Fig 5B2). nPC further increases with irradiance (βlog10(irradiance) =

+10.7% ±3.4 SE, Fig 5B3). When excluding irradiance as a predictor, the shorter wavelengths

become less influential; the difference between the curves remains similar (S11B Fig). The

standard deviation of the random intercept by participant, s2
b, was 5.3% in Experiment II.

Time-course of the wavelength dependency. As stated above in Materials and methods,
we aggregated the 60Hz-resolution data to mean values over specific periods, i.e., the last five

seconds of light, but also created mean values over each one-second period. We used these

one-second values to explore how nPC vs. wavelength changed over the time course after light

onset for each wavelength (referred to as time). The results are shown in Fig 8A1 and 8A2

(shown in full in the S7 Fig and S4 File). Note that this implies an oversimplification for the

first one or two seconds, where great changes in pupil diameter occur very quickly (cf. Fig 2B,

2C and 2D); the purpose here is to get an overview for the later stages of every light step. nPC

decreased over the time course (vertical direction in Fig 8A1, horizontal sequence of graphs in

Fig 8A2). Short wavelengths are especially influential during the first seconds of light onset.

Peak nPC also shifts slightly towards lower wavelengths between five and fifteen seconds after

onset in the case with darkness between light steps (dashed curve, shift from 525 nm to 500

nm, see also S7 Fig), but not otherwise (maximum is stationary at 550 nm). nPC increases with

irradiance (βlog10(irradiance) = +9.0% ±1.9 SE). When leaving irradiance out of the model, differ-

ences between the two settings of Dark stay mostly the same, whereas nPC sensitivity overall

shifts slightly towards higher wavelengths (about 10 to 20 nm; S8 Fig). Finally, settings with

darkness between light steps allow for nPC analysis during the re-dilation phase, known as

post-illumination pupil reflex (PIPR, Fig 8A2 Dark, and Fig 8A2 “21st second or 6th second after
lights-off”). Interestingly, re-dilation is slowest for the shortest wavelengths, which is also the

case when not controlling for irradiance (S8 Fig). Wavelengths above 600 nm were least influ-

ential on the PIPR (Fig 8A2 “21st second or 6th second after lights-off”). The results for the pro-

tocols Long 1 and Long 2 of Experiment III are shown in Fig 8B for better comparison with

Experiment II, but are reported further below.

Other dependencies. We tested nPC for an interaction of wavelength and series, which

turned out not significant (p> 0.18). An influence of the prior wavelength on nPC was not sig-

nificant either (p = 0.37).

Furthermore, we used the average pupil diameter of the last second before the start of a

light step as an alternative baseline value in Eq 1. We explored this variant as the response vari-

able in the wavelength-by-time model for protocols using periods of darkness between light

steps, where this nPC calculation is a valid alternative. As expected, series is no longer signifi-

cant in this case (p = 0.31), since it is accounted for by the respective alternative baseline diam-

eter. Irradiance is not significant either (p = 0.37). Otherwise, the model does not seem to

behave differently in terms of wavelength or time (see S9 Fig), other than that nPC values are,

on the average, about 10% lower.

For the protocols having periods of darkness between light steps, the median standard devi-

ation for the pupil diameter at the last second of darkness prior to each light step was 0.37 mm

(range 0.21 to 0.95 mm). This was calculated on a by-participant basis, without model fitting.

Illuminance. To analyze how well each type of illuminance can predict nPC in those pro-

tocols with periods of darkness between light steps, we constructed simplified standard linear

mixed-effect models analogous to those used in Experiment I. The results were shown above in
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Fig 8. Interaction of wavelength with time in Experiment II and III. Time denotes the time (in seconds) since light

onset, or light change to the respective wavelength. (A1) and (A2) show results from Experiment II, (B1), (B2), and (B3)

those from Experiment III for the protocols Long 1 and Long 2. (A1) False-color graph of model predictions for the

nPC’s dependence on wavelength (x-axis) and time (y-axis) for settings with (right panel), or without (left panel),

periods of darkness between changes of wavelength. All other predictors are held constant at their average value.

Horizontal lines indicate where the respective traces shown in figure part (A2) are taken from; continuous curves refer

to the absence of dark periods, dashed curves to their presence; filled circles and triangles mark the wavelength of the
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Fig 7B (for comparison to Experiment I). As in Experiment I, they show that mesopic weighing

predicts nPC best (R2
illu = 0.55). Photopic functions do somewhat less well in comparison

(R2
illu = 0.49 for V10(λ), and R2

illu = 0.42 for V(λ)). Melanopic and rhodopic receptor functions

work better than in Experiment I (R2
illu� 0.31). Of the three cone functions, chloropic weigh-

ing led to the best results (R2
illu = 0.54), with the erythropic function second (R2

illu = 0.43). In

contrast, cyanopic weighing was the only illuminance type that had no support by the model at

all (p = 0.41, R2
illu < 0.01).

Experiment III

Base model results. For the analysis of Experiment III, we analyzed nPC results for the

protocols Short 1 and Short 2 in models separate from those for Long 1 and Long 2, since the

two protocol pairs differ conceptually. For those with one second of light followed by thirty

seconds of darkness (Short 1 and Short 2), nPC was calculated as the average nPC value of the

sixth second after lights-off (or seventh second of the respective light step). The model shows

neither support for an effect of wavelength, nor for one of irradiance (all p> 0.31).

For the two protocols with thirty seconds of light followed by nine seconds of darkness

(Long 1 and Long 2), nPC was calculated, as above, as the average nPC value of the last five sec-

onds of light; the results were shown above in Fig 5C1. Wavelength has support from the

model (ΔAIC = 22). The predictor shows an inverted-U shaped curve, with a peak at 500 nm

and only slightly lower amplitude at short wavelengths (Fig 5C1). The effect of series is not sig-

nificant (p = 0.54) (Fig 5C2); nPC does not seem to depend on the stimulus’ position in the

series when the stimulus duration is extended to thirty seconds. In contrast, nPC increases

strongly with irradiance (βlog10(irradiance) = +19.7%, ±4.3 SE). Irradiance has support

(ΔAIC = 19) as part of the model (Fig 5C3). Compared to other estimates of irradiance, the

effect is rather large. See below for a discussion of a possible overcompensation. When remov-

ing irradiance as a predictor from the model (S11C Fig), the lower wavelengths become far less

influential, with results similar to those in Experiment I (S11A Fig). The standard deviation of

the random intercept by participant, s2
b, was 5.4% in Experiment III.

Time-course of the wavelength dependency. Analogous to the analysis in Experiment II,
we used one-second averaged values in Experiment III to explore how nPC vs. wavelength
changed over the time course of the light application. The results are shown below in Fig 9 for

the protocols Short 1 and Short 2, and were shown above in Fig 8B for the protocols Long 1
and Long 2, respectively. For the settings with one second of light, followed by thirty seconds

of darkness (Short 1 and Short 2), model diagnostics for nPC with the global pupil baseline per

protocol were initially problematic, showing heteroscedasticity and skew in the residuals. The

skew was eliminated by a logarithmic transformation of nPC and heteroscedasticity was

reduced by a logarithmic transformation of time. Time is the time (in seconds) since light

respective maximum nPC value of these traces. In the right panel of A1, nPC values after the 15th second (i.e., in the

Dark period) show a time-by-wavelength rendition of the post-illumination pupil reflex (PIPR). (A2) Model

predictions for nPC vs. wavelength at three points in time. The right panel shows the wavelength dependency of the

6-second PIPR. Ribbons show the 95% confidence interval for the predicted means. Dotted lines with a triangle symbol

represent the discontinuous setting with periods of darkness present between light steps; full lines with a filled circle

show the continuous setting. The red horizontal line above the x-axis in the two left panels shows where the difference

between the two settings is significant at the 0.05 level. (B1) Like (A1 right panel), but for Experiment III. Horizontal

lines show where the respective traces shown in figure part (B3) are taken from, and points mark the wavelengths of the

respective maximum nPC value of these traces. (B2) Like (B1), but with the nPC baseline taken from the last second of

the respective previous light step. (B3) Like (A2), but dotted lines and triangles represent the scaling according to (B2),

full lines and points according to (B1). The right panel shows the wavelength dependency of the 6-second PIPR.

https://doi.org/10.1371/journal.pone.0253030.g008
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onset or light change to the respective wavelength. We also analyzed the data using the alterna-

tive nPC pupil baseline defined as the average diameter of the last second of the respective pre-

vious light step instead of the global baseline diameter taken across all light steps in one

protocol. With the alternative baseline, model diagnostics were far more satisfactory compared

to the global baseline, and only required logarithmic transformation of time, which is why this

model is preferred. Both models used adaptive splines for accommodating the rapid changes

during the first half of the light step compared to almost no changes during the second half.

The results are shown in Fig 9A and 9B, with exemplary sections in Fig 9C. Both models pre-

dict that shorter wavelengths lead to a speed decrease in pupil re-dilation compared to longer

wavelengths. The sixth-second of the PIPR (Fig 9C, middle panel) shows a peak constriction at

490 nm for the preferred model, and 520 nm for the standard baseline. At the 15th second (Fig

9C, right panel), the peak has disappeared. The effect of irradiance is not significant in the pre-

ferred model (p = 0.88).

Fig 9. Interaction of wavelength with time in Experiment III, for protocols Short 1 and Short 2. Time is the time (in seconds)

since light onset or light change to the respective wavelength. (A) False-color graph of model predictions for the nPC’s

dependence on wavelength (x-axis) and time (y-axis). All other predictors (basic model) are held constant at their average.

Horizontal lines show where the respective traces shown in part (C) are taken from, and points mark the wavelengths of the

respective maximum nPC value of these traces. (B) Like (A), but with a different measure of nPC where the nPC baseline is taken

as the mean pupil diameter across the last second of the respective previous light step. Model diagnostics are superior to those for

the Model in part (A). (C) Model predictions for the nPC vs. wavelength at three points in time after light-step onset: in the 2nd

second (red traces), the 7th second (green traces), and the 15th second (blue traces); the latter two cases are also the 6-second

PIPR and 14-second PIPR, respectively. Ribbons show the 95% confidence interval for the predicted means. Dotted lines with a

triangle represent the scaling according to (B), full lines with a filled circle according to (A).

https://doi.org/10.1371/journal.pone.0253030.g009
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For the settings with thirty seconds of light followed by nine seconds of darkness (Long 1
and Long 2), model diagnostics for both baseline methods were satisfactory. The results

for these models were shown above in Fig 8B1 and 8B2, respectively, with exemplary sec-

tions in Fig 8B3. Both models predict that shorter wavelengths become more important

with time, compared to longer wavelengths. With the standard baseline (Fig 8B1), peak nPC

is at 520 nm after 15 seconds, and at 500 nm at the end of the light application. With the

alternative baseline (Fig 8B2), peak nPC is at 500 nm after 15 seconds, and at 490 nm at the

end of the light application. Re-dilation after lights-off is similar to that in Experiment II
(Fig 8A). nPC increases with irradiance (Baseline: largest diameter value; βlog10(irradiance) =

+13.0% ±3.1% SE). When leaving irradiance out of the model, nPC sensitivity overall shifts

slightly towards higher wavelengths (about 10 to 30 nm; S10C and S10D Fig), similar again

to Experiment II.
Other dependencies. We tested for an influence of the prior wavelength on nPC, which

was not significant (p = 0.68). For the short protocols, the median standard deviation for the

pupil diameter at the last second of darkness prior to each light step was 0.48 mm (range 0.25

to 0.76 mm). For the Long protocols, it was 0.49 mm (range 0.32 to 1.26 mm). These values

were calculated individually for each participant, without model fitting.

Illuminance. To analyze how well each type of illuminance can predict nPC in the Long
protocols (thirty seconds of light followed by nine seconds of darkness), we constructed

simplified standard linear mixed-effect models analogous to those in Experiment I and

Experiment II. The results were shown above in Fig 7C but are reported here. As in the other

experiments, mesopic weighing predicts nPC best (R2
illu = 0.48). Photopic functions do less

well in comparison (R2
illu = 0.45 for V10(λ), and R2

illu = 0.40 for V(λ)). Curiously, melanopic

and rhodopic receptor functions are less good predictors than in Experiment I or Experi-
ment II (R2

illu� 0.21). Of the three cone functions, chloropic weighing led to the best results

(R2
illu = 0.44), with the erythropic function second (R2

illu = 0.42). In contrast, cyanopic

weighing was the only illuminance type with no support by the model (p = 0.24, R2
illu <

0.01).

Pooled data

To gain further insight into the interaction of wavelength, chronotype, and time of day, we

repeated the analysis from Experiment I with pooled data from all experiments. Data from

protocols Short 1 and Short 2 were excluded since these differ conceptually from the others.

To partly account for differences between the experiments, we allowed wavelength to vary

based on experiment type, which is a slight but acceptable oversimplification for Experiment
II (see above). We further allowed series to change, based on the experiment. The interaction

effect had strong support (ΔAIC = 163); results were shown above in Fig 6B. Compared to the

analysis based solely on the results of Experiment I (Fig 6A), the basic patterns are similar for

the evening and the afternoon. Before midday, however, Larks do not shift in wavelength sen-

sitivity towards the shorter wavelengths as was the case in Experiment I. Further, the shift

towards longer wavelengths for Owls is not as strong. Lastly, there is strong support of sepa-

rate interaction effects (wavelength, chronotype, and time of day) based on whether or not

there are periods of darkness between light steps (ΔAIC = 176), but the resulting model pre-

dictions do not lead to any insights beyond what is shown in Fig 6. Possible reasons for the

differences between the models will be discussed in the next section. As a side note, the effect

of irradiance was estimated to be an increase of nPC of 8.9% per order of magnitude (βlog10

(irradiance) = +8.9% ±1.3 SE) irradiance increase.
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Discussion

Base model results and time-course of the wavelength dependency

Our initial hypothesis was mostly based on findings from McDougal and Gamlin [13] and

Gooley et al. [14]. For a continuous series of narrowband light steps, lasting 15 seconds each,

we expected cones to contribute minimally after 10 seconds [13]. Furthermore, because of the

whole series’ considerable length (just over 15 minutes), we expected sluggish ipRGC influ-

ences to manifest themselves [14]. Therefore, we believed wavelengths between 490 nm to 510

nm to have a considerable effect on normalized pupillary constriction (nPC) ten to fifteen sec-

onds into each light step. However, the results of Experiment I do not support this hypothesis

(Fig 5A1). The peak nPC around 540 nm is close to the peak of the long and middle-wave cone

functions (L+M), which suggests strong cone influences. There is further support for an inter-

action of wavelength and series in Experiment I which indicates a slightly heightened nPC at,

and shortly after, reaching the wavelength of peak ipRGC sensitivity, but the effect is small to

begin with and disappears over the course of the protocol (S2 Fig). Compared to other research

[4–6, 10–14], only Alpern and Campbell (5) report similar results (532 nm peak for the 2.5

mm contraction threshold), while most other papers suggest a peak between 480 and 510 nm

[4–6, 10–14], depending on experimental conditions.

There are certain differences and limitations when comparing our results with published

literature. Firstly, as stated above, we used continuous light in the first protocols, i.e., partici-

pants were pre-adapted to light for all but the very first light step. In the literature, most stimuli

are presented singly, with some period of dark adaptation in between [19]. This difference in

adaptation also influenced the pupil baseline, as discussed above under Materials and methods.
Secondly, due to our setup pupil reaction was evaluated at some fixed stimulus intensity,

while, in contrast, in most publications stimulus intensity is varied to reach a fixed psycho-

physiological threshold (e.g., 50% constriction) [4]. Thirdly, we operated in the mesopic stimu-

lus range (see above), a limitation of our light source. Although the stimuli around the ipRGC

sensitivity maximum can be considered above the ipRGC-sensitivity threshold as shown above

under Materials and methods, stimuli of about one degree of magnitude higher intensity

would have been desirable to elicit stronger ipRGC reactions [21]. Fourthly, differences in irra-
diance between wavelengths required that this variable is included as a predictor in the model,

which is relevant in particular for wavelengths at and below 450 nm. Lastly, the long stimula-

tion periods with minor wavelength changes in Experiment I made time-dependent confound-

ing influences more likely, e.g., from desensitization or changes in alertness. Therefore, the

series covariable was included, as the global effect can account for any nonrandom changes

across participants over the course of the protocol. Part of the intent of the second and third

experiment was thus whether differences in our results from published literature are due to

our setup, or due to our protocol, rather than data analysis. Since our initial hypothesis about

ipRGC influence on the normalized pupillary constriction (nPC) for a series of narrowband

light stimuli did not hold, we aimed to explore several dependencies with the available data

and conducted two additional experiments aimed at specific questions arising from our exper-

imental outcomes.

Light-step changes in the first experiment were small, with a wavelength shift of only 5 nm.

We set up Experiment II to ensure that the wavelength dependency of the first experiment was

not some artefact from the near-continuous sweep across the visible spectrum. Results revealed

that this was not the case (compare the red trace in Fig 5B1 to the trace in Fig 5A1). More

importantly, results showed that short wavelengths had a far stronger influence when the light

stimulus was discontinuous between light steps, compared to continuous light (Fig 5B1, blue

trace compared to the red trace). While the results for discontinuous light, i.e., with short
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periods of darkness between light steps, suggest a rod rather than an ipRGC influence, they

agree far better with published findings [4–6, 10–14] than those from the first experiment.

Regarding the time shift in wavelength dependency throughout each light step, the curve

remains centered at around 550 nm with continuous light, but is shifted towards shorter wave-

lengths with discontinuous light (Fig 8A2, full vs. dashed curves). In Experiment III, thirty sec-

onds of light were followed by nine seconds of darkness. In this case, the last five seconds of

light showed even more influence of short wavelengths than in the previous case (Fig 5C1,

compared to the cyan trace in Fig 5B1), and the broad peak resembles the behavior shown by

Mure et al. [12] for the 0–30 second condition. The shift in wavelength dependency is also

more pronounced in Experiment III than in Experiment II (Fig 8B1 and 8B3, compared to Fig

8A).

In summary for our results, the cone influence fades in favor of rod influence for discontin-

uous series of long-lasting narrowband light steps, agreeing with findings from McDougal and

Gamlin [13]. However, cone influence does not fade for pre-adapted participants as part of a

continuous series of light steps, which to our knowledge has not been reported before. Mure

et al. [12] showed changes in wavelength dependency occurring with pre-exposure, but this

applied for high-intensity stimuli with several minutes of darkness in between. Joyce et al. [60]

showed the effect of short-term light adaptation on the PIPR, but not on the light-adapted

pupil itself. The continued bleaching of the sensitive rod photoreceptors might desensitize the

rod channel, leaving only the changes in cone input as contributors to nPC. While this mecha-

nism cannot be deduced from our data, it seems a plausible explanation and would result in

the shown spectral dependency. It was suggested by McDougal and Gamlin [13], however, that

the rod channel remains relevant over minutes of continuous light. Instead, we saw that the

spectral dependency of the pupillary reaction to narrowband light is similar to the spectral

dependency of polychromatic light [16] when narrowband stimuli are applied under pre-adap-

tion. In vision, interaction effects of rod and cone inputs that depend on the adaptation state

of receptors are well known (for a review, see Zele and Cao [61]). In any case, and despite the

mesopic experimental conditions, we would have expected some form of ipRGC contribution,

which was not apparent, however. Spitschan et al. [62] showed an S-cone opponency to

ipRGC input in the pupillary light response, where increasing S-cone stimulation reduced

nPC, all other receptor types being stimulated at a constant rate. If cones remain more relevant

under pre-adaptation to light compared to prior darkness, as our results suggest, S-cone oppo-

nency might help to explain the reduced short-wavelength sensitivity in the presence of rele-

vant ipRGC input to pupil control. IpRGC influence might still be visible in our data, however,

as discussed below in Chronotype and time of day.

By their presence of a dark period after light stimulation, Experiment II and III allowed for

the analysis of the post-illumination pupil response (PIPR). Surprisingly, the shortest wave-

lengths led to the PIPR’s slowest pupil re-dilation with 15 seconds of prior light in Experiment
II (Fig 8A, S8 Fig), and even still with thirty seconds of prior light in Experiment III (Fig 8B,

S10 Fig). The light in the protocols mentioned above was designed to be as continuous as tech-

nically possible, leaving only nine seconds of darkness between light steps in the second and

third experiment. As can be readily seen in Fig 8, this was not enough time for the pupil to

reach a dark-adapted state. Undoubtedly the absence of full dark adaptation influenced the

first seconds of the respective following light step. However, we did not find any systematic

influence of the prior wavelength on the last five seconds of the respective following light step.

Additionally, after Experiment I, the sequences of wavelengths were designed to include large

and small light-step differences from across the available spectrum. Therefore, any effect that

the respective previous light step has is not specific to a particular wavelength but is general to

the protocol. This can be seen, e.g., in S9C Fig or Fig 8B3. In these figures, the only difference
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is a shift in the y-axis between using an overall baseline or using a baseline from the last second

of the previous light step.

Gamlin et al. [10] reported that a Vitamin-A1 pigment nomogram with peak sensitivity at

482 nm fitted their data closely for the PIPR of two human subjects after only ten seconds of

light. However, when looking at the individual data points for log relative sensitivity of the

human pupil from that study below 482 nm, i.e., at 452 and 473 nm, their sensitivity does not

seem to drop far below that of their closest neighboring data point (493 nm). Park et al. [21]

showed that the ipRGC influence is best seen during the sixth second of re-dilation after a

one-second light stimulus (compared to a ten-second stimulus in that study). The protocols

Short 1 and Short 2 in Experiment III were constructed accordingly (results shown in Fig 9 and

S10 Fig). We see a peak nPC at around 490 nm, which would fit the ipRGC sensitivity maxi-

mum for a young adult [32]. These results agree with a publication by Adhikari et al. [63].

That study showed an apparent peak sensitivity between 464 and 508 nm (they fitted a Vita-

min-A1 pigment nomogram with peak sensitivity at 482 nm), with an order of magnitude

lower relative sensitivity at the 409-nm wavelength stimulus. After the sixth second in our

results, however, sensitivity further shifts towards shorter wavelengths. Thus, our results on

the PIPR do not contradict published literature but rather suggest a stronger influence of

shorter wavelengths than previously thought, below the ipRGC peak at around 490 nm. A pos-

sible mechanism might be an S-cone influence on the pupil [64, 65], which has been shown to

influence other ipRGC-dependent effects, such as circadian alignment in mice [66] or, very

recently, acute Melatonin-suppression in humans [67]. Circumstances for these additional

influences include low light levels and comparatively short stimulus times (less than half an

hour), which would fit our setup. The S-cone influence on melanopic effects is not undisputed,

however, as Spitschan et al. [68] found no evidence for the influence in acute neuroendocrine

and alerting responses. A more far-fetched, but possible, mechanism is the influence of other

opsin types in the retina, such as neuropsin (Opn5), which have been found in the retina of

vertebrates (for a review see Guido et al. [69].

Regarding the series effect, there seems to be a cumulative effect in Experiment I and II for

the first 18 steps (Fig 5A2 and 5B2), where nPC at first increases with each consecutive light

step. The downward slope in Experiment I then after about five minutes (Fig 5A2) might be

the result of desensitization, where the small differences in wavelength between light steps are

not pronounced enough to counter pupillary escape over time. It can be assumed that changes

in arousal, which affect the pupil [70], happen across the timespan of the protocols. In Gooley

et al. [14], large fluctuations during the ninety-minute light stimulation can be readily seen. In

our study, as far as there is some common change in arousal across the participants over time,

this effect is integrated into the series effect by the GAMM. As far as there are individual fluc-

tuations in arousal over time, the effect on the pupil will be part of the random smooth per par-

ticipant. In both cases, the effect of arousal cannot be separated from other effects that

contribute to the smooth of series or the random smooths. In Experiment II, wavelength differ-

ences between light steps were larger, and nPC after step 18 did not noticeably increase further,

nor decrease as in Experiment I (Fig 5B2). Data analysis for Experiment I had suggested an

interaction of series with wavelength. However, further analysis had shown that this effect is of

little relevance to the interpretation of the data (S2 Fig) and does not suggest ipRGC influence

as initially assumed in Materials and methods. We also found no indication of influences from

the prior wavelength to the current wavelength in Experiment II.
The estimated effect of irradiance varied between experiments and depended on whether

five-second (base model) or one-second averages (time-shift model) of nPC were analyzed.

While this is plausible insofar as the experiments differ conceptually, it is still worth discussing

the estimates, summarized in Table 1. Except for the Short protocols in Experiment III,
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irradiance was a significant predictor in all cases. In the Short protocols, the irradiance differ-

ences between the light steps were seemingly not big enough to influence re-dilation signifi-

cantly. For the other cases, the estimated value is smallest for Experiment I, which is plausible

since the changes in irradiance between consecutive light steps are the smallest across the

experiments. In Experiment II, the effect of irradiance is similar between the base model and

the time-shift model. In Experiment III, the estimated effect of irradiance for the base model is

rather large compared to the other experiments and the time-shift model. The estimate for the

time-shift model in Experiment III is closer to estimates in Experiment II. We believe the esti-

mate for the base model of Experiment III to be unlikely high and see no theoretical basis for

the large difference to the other estimates. This would mean that the wavelength effect of the

base model in Experiment III overcompensates for irradiance. Therefore, the time-shift model

is to be preferred to the base model, but the interpretation of wavelength as discussed above

does not change in a relevant manner (compare Fig 8B3: 30th second to Fig 5C1). For the

model from pooled data of all experiments, estimates for irradiance were close to Experiment
II. Setting the base model in Experiment III aside in favor of the time-shift model (see above),

the differences between and within experiments stay broadly the same regardless of the esti-

mated value of irradiance, thereby retaining the interpretations above regarding nPC’s depen-

dency on wavelength.

Finally, regarding the base models, the nPC-by-participant random effect in all three exper-

iments show the large interindividual differences in pupil reaction, even after normalization.

These interindividual differences are often remarked in other publications, as summarized by

Kelbsch et al. [19]. Depending on the experiment, the average nPC is predicted by the model

to vary by about 20% between two extreme participant cases (0.025 to 0.975 percentile

difference).

Chronotype and time of day

The models from Experiment I and pooled data across all experiments strongly suggest the

presence of an interaction effect that influences nPC’s wavelength dependency by an individu-

al’s chronotype and the measurement’s time of day. Specifically, early chronotypes, or Larks,
before noon seem to have a heightened sensitivity to shorter wavelengths (Fig 6A1 and 6B1).

In contrast, late chronotypes, or Owls, before noon seem to have a slightly lowered sensitivity

to shorter wavelengths. These chronotype-specific differences in sensitivity before noon are

called into question by the model constructed from pooled data across the experiments (Fig

6B1 and 6B2). Both models agree, however, that in the early evening (6:30), the wavelength of

maximum sensitivity shifts to longer wavelengths for the Larks. For them, across the day the

maximum sensitivity shifts from the longer to the shorter wavelengths, opposite to the

Table 1. Model estimates for irradiance across all experiments.

Base model Time-shift model

Experiment I 6.5±1.4% -

Experiment II 10.7±3.4% 9.0±3.4%

Experiment III 19.7±4.3% 13.0±3.1%

Pooled Data 8.9±1.3% -

Values denote model estimates of βlog10(irradiance)±SE, which indicates the effect of log10 transformed irradiance on

the normalized pupillary constriction (nPC). The base model uses the average nPC of the last five seconds of light

during each light step, the time-shift model uses one-second means of nPC along the time course of each light step.

https://doi.org/10.1371/journal.pone.0253030.t001
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behavior in Larks. In general, the shifts are predicted to be stronger for the more pronounced

or extreme chronotypes, compared to moderate types. For Neutral types, the shift is predicted

to be minimal. We also see the chronotype bias in Experiment I in the daytime scatterplot (Fig

4B, the green dots show Experiment I), mostly for Owls during the first half of the day, which is

very likely due to Owls’ later preferences. We pooled the data across all experiments in the

hope to gain more insight from the available data. The pooling adds fifty protocol-runs to the

eighty runs of Experiment I and leads to a more well-rounded distribution of chronotypes

across the day (Fig 4B, spread of the dots of all three colors). The pooling also introduces two

new dependencies that might influence the interaction and need to be considered. Firstly,

Experiments II and III were conducted decidedly later in the year, compared to Experiment I
(Fig 4C). The thereby introduced general time-shift by the shortened photoperiod should not

be too influential according to a recent paper by McHill et al. [71]. In that study, the time shift

in dim-light melatonin onset was less than half an hour across three months from February to

May. However, the shortened photoperiod might lead to changes in the possible mechanism

underlying the interaction effect ([72], see below). Secondly, whether the light stimulus in the

experiments is continuous or discontinuous makes a difference in wavelength dependency

(Fig 5B1), and likely also with respect to the involved receptor types (see above for the discus-

sion of the base model). Different receptor inputs likely lead to differences in the interaction,

which is supported by a model differentiating the interaction of wavelength, chronotype, and

time of day based on whether or not there are periods of darkness between light steps. We

slightly prefer the simpler model constructed from Experiment I, because while pronounced

chronotypes before noon are lacking (Fig 4B, green points), it avoids the likely confounding

influences from the pooled data mentioned above. It ultimately makes little difference which

of the models is preferred, as both indicate the presence of a similar interaction of chronotype
with time of day on the wavelength dependency. The precise nature of this dependency is

beyond this study’s scope. We checked for possible confounding variables between chronotype,
time of day, and age, all of which did not correlate with one another in any relevant manner.

There is also the possibility that we introduced confounding elements into the study design.

One could be alertness, which is time-of-day dependent [73], and, as has already been stated,

affects the pupil. However, this dependency on its own would just mean that the time-of-day
effect, as shown in Fig 5D3, were influenced by alertness. Alertness might further influence the

interaction of time of day with chronotype. Yet for alertness to also change the dependency on

wavelength would mean changing the underlying retinal neurocircuitry. We are not aware

that this is possible. The second confounding option is the effect of prior light exposure in

terms of the participants’ history of daily light exposure. As the participants arrived in the labo-

ratory approximately thirty minutes before the respective protocol started, they will have con-
sumed [74] varying amounts of light on that day. This amount is time-of-day dependent [74]

and it is reasonable to assume that it is also depends on chronotype. It is further known that

the amount of prior light affects non-visual effects of light, such as melatonin suppression [75],

and might also influence the retinal neurocircuitry through the dopaminergic link described

further below. In summary, the chronotype effect will have to be approached in a controlled

experiment, with measurements for all chronotypes evenly distributed across all times of day

while controlling for alertness and prior history of exposure to light, among others.

Circadian effects on the pupil response were reported before and we will discuss two rele-

vant publications in the context of our results. While the focus in those studies is different

from ours, we can still compare how their results on circadian ipRGC input line up with our

circadian effect. This is under the assumption, that our circadian effect is moderated by ipRGC

input, as discussed below. It is further important that, in those studies, the effects of chrono-

type are adjusted for by looking at participants’ internal time or circadian phase, instead of at
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external time. While this avoids confounding from differences in internal time between partic-

ipants, it also makes it hard to determine how much of a difference the chronotype signifies.

The MEQ, which we used to assess chronotype, does not describe the participant’s phase of

entrainment of, but rather their time of preference [76]. And while there are correlations

between the phase of entrainment and the MEQ score, an exact phase shift cannot be deduced

from the score. Therefore, assumed time-shifts between chronotypes in the following section

are to be taken tentatively.

Zele et al. [27] showed a circadian response of ipRGC input to the PIPR on eleven partici-

pants in a 20–24h laboratory experiment, independent of external light cues. They also investi-

gated circadian changes in the pupil reflex during their ten second light stimulus, but found

only growing effects from fatigue owing to the long experiment. IpRGC input was evaluated in

that study through the reduction of normalized pupil diameter after lights off (PIPR), com-

pared between a blue and a red narrowband light stimulus (peak wavelength at 488 nm and

610 nm, respectively). The normalized pupil diameter started to decrease about five hours

before the evening melatonin onset (DLMO) for the red stimulus, and three hours prior to the

DLMO for the blue stimulus, thereby implying a shift in wavelength dependency. The normal-

ized pupil diameter reached its minimum shortly after the DLMO for both wavelengths; the

overall period with a reduced pupil diameter lasted longer for the red than the blue stimulus.

As mentioned above, any effect on the circadian ipRGC input due to chronotype is not dis-

cernible from these results, since the study centered participants’ rhythms on their respective

points of melatonin onset, thereby eliminating chronotype differences. However, we would

expect the effect of chronotype on melatonin onset to be a pure time-shift of a few hours [77].

Translating these findings to our context, we would expect a fixed relationship between nPC

curves of comparable wavelengths across the chronotypes, with a general time-shift by about

1.5 to 2 hours between Owls and Neutral types, and another shift between Neutral types and

Larks. As shown in Fig 10, our analysis rather suggests a crossed response of nPC depending

on wavelength and chronotype (cut-off at 8pm, after which we did not collect data). We thus

do not believe that the circadian effect described by Zele et al. [27] is the same as that in our

data. Since that study focused on the afternoon and evening, the comparison to our data does

not change depending on whether the data from Experiment I or the pooled data are used.

Fig 10. Select changes of nPC across the day in Experiment I. Model predictions for the nPC vs. time of day for three chronotypes (left to right), and two

wavelengths (blue trace 490 nm and red trace 610 nm), that were chosen for comparison with the studies by Zele et al. [27] and Munch et al. [26]. Ribbons show the

95% confidence interval for the predicted means.

https://doi.org/10.1371/journal.pone.0253030.g010
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Another study, by Munch et al. [26], also reported circadian effects on the PIPR. For ten

subjects throughout two 12-hour sessions, the 6-second PIPR was assessed after 1-second and

after 30-second light stimuli. The authors adjusted the circadian phase in a similar manner to

Zele et al. [27]. The normalized 6-second post-stimulus pupil size showed a circadian behavior

in the short-wavelength, but not the long-wavelength, stimulus. Translating circadian phase

and normalized pupil size to our context, nPC for blue stimuli would be highest before noon

und decrease afterwards, with Owls having a later shift compared to Larks. Again, these predic-

tions do not fit our data.

In both of the abovementioned studies, we expect the effect of chronotype to be an effect of

time-shift of a few hours [77]. However, our model suggests something different, namely an

interaction similar to the so-called synchrony effects of chronotype reported in the context of

cognitive performance in education [78, 79], or of physical performance in athletes [80]. Gold-

stein et al. [79] define chronotype synchrony as the state in which the time of optimal perfor-

mance is equal to the time of preference of the chronotype, e.g. morning for Larks and evening

for Owls. Our model from Experiment I predicts such a heightened sensitivity for short wave-

lengths at the time of preference for the chronotypes. This connection might even go one step

further. It is known that the time-of-day is highly relevant for the magnitude and sign of a cir-

cadian phase shift for a given stimulus [81] (for a review of known influences, see Prayag et al.

[82]). Furthermore, Roenneberg and Merrow [83] argue that chronotype is not only the result

of non-24-hour internal periods but also of the individual’s photosensitivity. Following this

reasoning, heightened sensitivity to shorter wavelengths at circadian intervals could be part of

a reciprocal system to strengthen or even cause a chronotype, rather than being simply a corre-

lation. Reciprocal meaning that some mechanism—like an internal period of other than 24h

duration—might predetermine a circadian type. Heightened sensitivity to wavelengths for a

circadian shift at times of preference (e.g., towards the evening in Owls) means one would

need more light outside of the preferred time to shift towards a different chronotype. Con-

versely it would need less light for strengthening the rhythm at the time of preference, thereby

solidifying the chronotype. While causation cannot be determined from our study, intraocular

mechanisms have been described to allow for such an effect. In general, rod and cone sensitiv-

ity follow a circadian rhythm [84, 85], with melatonin and dopamine as key actuators. Further-

more, ipRGCs are intricately and reciprocally connected to dopaminergic amacrine cells (for a

review in the context of myopia, where dopamine plays an essential role, see Stone et al. [86]).

Through this connection, ipRGCs can attenuate the outer retinal light adaptation in mice [87].

This system is involved in seasonal and circadian regulation of photosensitivity [72]. Other

seasonal changes, like that of human color perception [88], might also be connected to this

mechanism. Since ipRGC sensitivity is the basis of the mechanism, the shift towards, or away

from, the short wavelength spectrum is plausible. Whether the mechanism operates in a

chronotype-dependent manner, as shown above, is open for evaluation.

Sex and age

We saw strong support for the model which included sex as a predictor. There were no differ-

ences in dependence on wavelength related to sex. However, women were estimated by the

model to have a lower average nPC. Chellappa et al. [25], in contrast, found sex differences in

light sensitivity. In their study, men showed a stronger response to blue-enriched light in the

sleep EEG (NREM sleep slow-wave activity) and for vigilant attention, and had higher bright-

ness perception during blue-enriched light. Men also found blue-enriched light preferable to

non-blue-enriched light, contrary to women. The stronger average nPC for men in our study

would align with a higher brightness perception for men per se, but unlike in Chellapppa
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et al.’s study was not limited to short wavelengths. Since men—in general—are more likely to

be late chronotypes compared to woman [89], and Chellappa et al. [25] did not mention

whether they stratified their sample for chronotype, their reported effect might also have been

caused, in part, by a chronotype effect. That study was performed in the late evening, where

our interaction effect of chronotype with time of day and wavelength suggests a heightened

sensitivity for short wavelengths (see above).

Age was estimated to influence nPC, but there was no indication of an interaction with

wavelength. The latter agrees with a publication by Rukmini et al. [90], where pupillary

responses to short-wavelength compared to long-wavelength light were independent of age (in

a comparison of two age groups: 21–30, and�50). Depending on whether or not chronotype

and time of day were included in our model, nPC was predicted to rise steadily with age (Fig

5D1, S3A Fig), or reach a plateau at about age 25 (S3B Fig). According to Rukmini et al. [90],

pupillary responses were reduced in older participants. Age was also part of the unified model

from Watson and Yellott [3] based on data from Winn et al. [91]. Winn et al. [91] focused on

pupil diameter itself, rather than the (relative) change in diameter, i.e., nPC. The authors calcu-

lated the age-dependent pupil-diameter change per log unit stimulus luminance from five illu-

minance levels (9 to 4400 cd/m2). The resulting regression showed that pupil constriction

decreases with age in the photopic range. Conversely, Daneault et al. [36] found no significant

age-related differences in pupil constriction, even though pupil size itself decreased with age.

Adhikari et al. [92] showed that the relative peak constriction did not change with age, that

measure being closely related to our dependent variable nPC. While not significantly corre-

lated with age, the trends in their study for both blue and red stimuli show a slight positive

slope. In summary, literature reports show a heterogeneous picture of the effect of age on nPC.

Our age range was small by design and focused on participants below the age of forty. Accord-

ingly, the effects of age in our study were small and appear compatible with any of the studies

mentioned above, thereby contributing little for this specific aspect.

Effect sizes

To summarize the unstandardized effect sizes of the various dependencies (Fig 5), wavelength

clearly shows the biggest effect. nPC changes by about 20% across the available spectrum in

cases of continuous light (Fig 5A1 and 5B1) and by more than 30% in cases of discontinuous

light (Fig 5B1 and 5C1). The long series of small wavelength changes in Experiment I also had

a considerable effect, of about 13% (Fig 5A2), compared to about 5% for the larger changes in

Experiment II or no effect for the thirty-second stimulus in Experiment III. We already dis-

cussed the effect of irradiance above. Depending on the model estimate, a 0.5 log10 difference

in irradiance changes nPC by about 5% (Fig 5A3, 5B3 and 5C3), which is roughly the same

influence that sex or age had in our setup (see Fig 5D1 for age). The estimated main effects of

chronotype and time of day amount to about 10% across their respective range. The combined

effect of these two covariates and wavelength leads to considerable changes of about 20% nPC

(Fig 6A2). As this effect has not been reported before, it may be a consequence of the used pro-

tocols for continuous light since the effect is far diminished when evaluated across protocols

(Fig 6B2). This is under the assumption that the effect can be replicated without confounding

influences as discussed above.

Illuminance

At present, there are nine distinct measures of illuminance in common use to describe visual

and alpha-opic (i.e., single receptor-dependent) effects of light. Scotopic illuminance and rho-

dopic equivalent daylight illuminance count as two, but both use the same rhodopic action
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spectrum. Many publications use V(λ)-derived luminance [3] (in cd/m2), but since the spatial

stimulus characteristics are unchanged across our experiments (Ganzfeld conditions), lumi-

nance and illuminance are interchangeable in terms of comparisons between the types of illu-

minance. Adrian [7] argued that mesopic weighing was sufficient to explain apparent

wavelength-dependency shifts towards the shorter wavelengths (under mesopic conditions).

Accordingly, Adrian explained the mechanism behind this shift as purely S-cone and rod-

based. We now know that Adrian [7] was incorrect in his assumptions about the sole mecha-

nism and that there is additional input from ipRGCs in the pupillary system, e.g. from the

work of Gamlin et al. [10] or Zaidi et al. [11]. However, the appeal of the mesopic weighting

compared to others is easy to see across all three of our experiments (Fig 7), where the mesopic

illuminance best predicted nPC, thereby considering all cone and rod input. The single-opsin

weighting functions for rhodopsin or melanopsin perform far less well in all cases.

In summary, our findings are relevant in the context of arguments made by Spitschan [15]

and Zandi et al. [16] about the limited applicability of luminance-based pupil models [3] in the

context of ipRGC inputs. At least for our experimental setup of narrowband and mesopic light

stimuli of changing wavelength, mesopic weighting was best at predicting pupil constriction.

Conventional photopic (il)luminance-based approaches performed still well and, compared to

single-opsin based functions, were preferable to predict pupil constriction. Finally, Spitschan

et al. [62] reported an S-cone opponency, where the pupil would curiously increase in diameter

with increasing stimulation of S-cones. Since our setup did not account for the constant stimu-

lation of all other receptor types as that study did, any opponency effect is expected to be

decreased in our study. The cyanopically weighted equivalent of daylight illuminance (S-cone

weighing) was not significantly correlated with nPC in any experiment here. The cause is not

known, but the results are compatible to a zero-sum of opposing inputs.

Conclusion

The spectral dependency of pupillary reactions to narrowband light is well understood for iso-

lated stimuli, but less so for scenarios with preadaptation to light. We looked at the normalized

pupillary constriction (nPC) in protocols of narrowband light of periodically changing wave-

length and found very little influence of short wavelengths. A second experiment showed that

this effect originated in the continuous application of light and that the effect was present over

the whole time-course of each wavelength. Our results for continuous narrowband light and

literature findings from polychromatic light share a similar wavelength dependency, compared

to singularly presented narrowband light. Furthermore, the 6-second post-illumination pupil

response (PIPR) to isolated light stimuli, for two out of three durations showed that the slowest

re-dilation happens for the shortest wavelengths, well below peak ipRGC sensitivity, implying

the presence of different, or at least additional, receptoral influences to the PIPR. Pupillary

reactions to isolated light stimuli and the PIPR to short light stimuli behaved very much as

would be expected from published literature. This strengthens our belief that our results are

valid despite some technical limitations as described above. We further showed that mesopic

illuminance was the best measure of illuminance to explain the pupil reaction. We found

dependencies of sex and age on the pupillary response through the exploration of several

covariates, but mainly an interaction of chronotype and time of day with wavelength. The inter-

action effect implies a modulation of wavelength-sensitivity with a heightened sensitivity to

shorter wavelengths at the time of chronotype preference. This circadian effect further seems

to manifest itself differently, depending on whether light is continuous or discontinuous. The

effect could be linked to a mechanism that strengthens an individual’s chronotype at the cur-

rent time of preference, or it could result from chronotype and time-of-day dependent
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differences in the light history. If the effects are reproducible in a controlled experiment, they

might even act as a form of marker for the individual´s chronotype.

Supporting information

S1 Fig. nPC depending on wavelength for different dark adaptation periods (DAPs). Traces

show the mean, LOESS-smoothed nPC vs. wavelength for two subjects, each repeating all

shown protocols three times. DAP varied between 1.5, 3, and 15 minutes (lilac, blue, dark

green). For comparison, results of a second, consecutive run (also performed three times, light

green) of the first protocol is shown, as is the Down protocol (yellow). Points show the nPC

values from which the traces were constructed. More information is found in Materials and
methods.
(TIF)

S2 Fig. nPC depending on wavelength with and without interaction in Experiment I. Model

prediction for models with (dashed lines), and without an interaction effect (solid lines) of

wavelength and series, across the series. The number above each plot indicates the series num-

ber. Colored dots represent raw nPC values at the respective series number and wavelength,

their color indicates the respective protocol. The positions of points on the x-axis indicate

where changes between the two models (lines) should be evaluated. For the model with the

interaction effect, it seems as though nPC is increased after reaching the ipRGC peak sensitiv-

ity (at about 490 nm for a young adult), but not strongly and not for long.

(TIF)

S3 Fig. Influence of age in Experiment I. (A) Model predictions how nPC depends on age,
when all other predictors (basic model) are held constant at an average level. (B) Like (A), but

for the model with all other dependencies in Experiment I included. Here, age seems to affect

nPC with a more continuous rise over the age range.

(TIF)

S4 Fig. GIF Animation of nPC depending on wavelength, time of day, and chronotype in

Experiment I. Model predictions show time-of-day values at half-hour points from 8:30 am to

7:30 pm. Left: False-color model predictions for hourly nPC values depending on wavelength
(x-axis) and chronotype (y-axis), when all other predictors (basic model) are held constant at

an average level. Horizontal lines show where the traces from the right image are taken from.

Right: Model predictions for hourly nPC values depending on wavelength for three chrono-

types: Larks (green traces, CT score 70), Owls (red traces, CT score 30), and Neutral types

(blue traces, CT score 50). Ribbons show the 95% confidence interval for the predicted mean

values.

(GIF)

S5 Fig. nPC depending on wavelength, time of day, and chronotype in Experiment I. False-

color contour-line graphs of nPC model predictions for several wavelengths between 430 and

670 nm (color scale shown in the inset at the upper right corner of each plot). All plots are

scaled equally. Each plot visualizes nPC depending on time of day (clock time in 24h values, x-

axis) and chronotype (higher values are morning types, lower values evening types). Plots were

created with the vis.gam() function in R, with the too.far argument set to 0.1. The too.far argu-

ment excludes grid points from the plot, when points are not represented by variable combina-

tions close enough to actual data. Thereby, too.far is a measure of accepted extrapolation,

scaled from 0 to 1.

(TIF)
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S6 Fig. Basic model predictions for unscaled changes in pupil diameter, and raw pupil

diameter, in Experiment I. Model predictions for response variables other than nPC, versus

three main predictors (wavelength, series, and irradiance), when all other predictors are held

constant at their average level. Traces show the model prediction for the mean, ribbons its 95%

confidence interval. Red dotted lines show particular predictor values for the plotted relation-

ship. (A / D) Response vs. stimulus peak wavelength. (B / E) Response vs. series number of

light steps. (C) Response vs. stimulus irradiance. The x-axis scaling reflects the logarithmic

transformation of irradiance.

(TIF)

S7 Fig. GIF Animation of normalized pupillary constriction (nPC) depending on wave-
length and time in Experiment II. Left: False-color model predictions for nPC depending on

wavelength (x-axis) and time (y-axis), for settings with, or without, periods of darkness

between wavelength steps. All other predictors are held constant at an average level. Horizontal

lines show where the traces from the right image are taken from. Right: Model predictions for

the nPC vs. wavelength over time. Ribbons show the 95% confidence interval for the predicted

means. Blue lines represent the setting when periods of darkness are present between light

steps, red lines when not. The red horizontal line above the x-axis shows where the difference

between the two settings is significant (5% level).

(GIF)

S8 Fig. Interaction of wavelength with time in Experiment II. (A) False-color graph of model

predictions for the nPC’s dependence on wavelength (x-axis) and time (y-axis) for settings

with, or without, periods of darkness between wavelength steps. All other predictors (basic

model) are held constant at their average. Red dots show the peak nPC value for each second,

the value right next to it the respective peak wavelength. Green dots and values show the

respective trough for nPC. The trough is at 700 nm where green dots are not shown. (B) Like

(A), but for the model without irradiance as predictor.

(TIF)

S9 Fig. Interaction of wavelength with time in Experiment II, for protocols with darkness

between light steps. (A) False-color graph of model predictions for the nPC’s dependence on

wavelength (x-axis) and time (y-axis). All other predictors (basic model) are held constant at

their average. Horizontal lines show where the respective traces shown in part (C) are taken

from. (B) Same as in (A) except that the baseline for nPC calculation (Eq 1) is taken from the

last second of the respective previous light step. (B) The graph serves to check whether and

how the single baseline value per protocol (shown in A) changes the model prediction. (C)

Model predictions for the nPC vs. wavelength at three points in time after light step onset: in

the 5th second (red), 15th second (blue), and 21st second (green); the latter case is also the sixth

seconds after lights-off. Ribbons show the 95% confidence interval for the predicted means.

Full lines represent nPC values when baseline pupil values are taken from each protocol’s larg-

est pupil diameter, dotted lines when baseline pupil values are taken from the last second of

the respective prior wavelength-step.

(TIF)

S10 Fig. Interaction of wavelength with time in Experiment III, for models with, or without,

irradiance as predictor. (A) False-color graph of model predictions for the nPC’s dependence

on wavelength (x-axis) and time (y-axis) for the protocols with one second of light, followed by

thirty seconds of darkness, and with irradiance as the predictor. All other predictors (basic

model) are held constant at their average. Red dots show the peak nPC value for each second,

the value right next to it the respective peak wavelength. Green dots and values show the
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respective trough for nPC. The trough is at 700 nm where green dots are not shown (e.g.

between 2 and 30 seconds). The baseline for nPC calculation (Eq 1) is taken from the last sec-

ond of the respective previous light step, since this baseline led to a preferable model in terms

of model diagnostics. (B) Like (A), but for the model without irradiance as the predictor. (C)

Like (A), but for protocols with thirty seconds of light, followed by nine seconds of darkness

with irradiance as a predictor. The baseline for nPC is as described in Materials and methods.
(D) Like (C), but for the model without irradiance as the predictor.

(TIF)

S11 Fig. Model predictions for models without irradiance as a predictor. Normalized pupil-

lary constriction (nPC) as depending on wavelength, when all other predictors are held at an

average, constant level. Traces show the model prediction for the mean, ribbons its 95% confi-

dence interval. Dotted lines show the respective peak. (A) through (C) show dependencies in

Experiment I, II, and III, respectively. They can be compared to the model results which

include irradiance in Fig 5A1, 5B1 and 5C1.

(TIF)

S12 Fig. Experimental data. (A) Pupil diameter plotted against wavelength, for each of the

nine protocols. The color scale shows at which point in the series a specific wavelength was

presented; light yellow represents early in the series. For all but the Short protocols, points rep-

resent the average nPC during the respective last five seconds of a light step. In the two Short
protocols, points represent the average nPC during the sixth second after lights-off (or

sevenths second after lights-on). Traces show the mean nPC, ribbons its standard deviation.

The number in the upper right corner of each plot shows the corresponding sample size.

(TIF)

S13 Fig. Plot of the 61 spectral distributions shown in Fig 1A. Corneal irradiance (W/m2)

vs. wavelength, labelled by wavelengths peaks (404–695 nm) above each subgraph. The x-axis

on the bottommost plots and the y-axis on the left apply to all plots in their respective row and

column. Blue and red traces show the spectral measurements with and without an estimate of

prereceptoral filtering, respectively. Wavelength peaks above each plot state the peak for the

raw stimulus measurement. All displayed values are based on spectral irradiance measure-

ments with a field-of-view restriction according to the CIE S 026 standard [32]. In our case,

these measurements are 24% lower than those of the unobstructed sensor diffusor.

(TIF)

S14 Fig. Mean irradiance and standard deviation. Corneal irradiance (W/m2) against wave-

length for all wavelength peaks, with their respective standard deviation across multiple mea-

surements. All displayed values are based on spectral irradiance measurements with a field-of-

view restriction according to the CIE S 026 standard [32]. In our case, these measurements are

24% lower than those of the unobstructed sensor diffusor.

(TIF)

S1 File. R-Markdown script results for calculating nPC from measurement data. Zip file

containing nine html files with results from R-Markdown scripts. The scripts are one each for

the nine protocols used across the experiments. Since the raw measurement data are not part

of the provided supplements, we included one exemplary result file for each protocol instead

of the script itself. These html files show the code, as well as the output for the example partici-

pant.

(ZIP)
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S2 File. Irradiance measurements and illuminance values for the range of light stimuli.

Microsoft Excel file containing two worksheets. The worksheet ‘Measurements’ contains the

irradiance measurements in a resolution of 1 nm. The worksheet ‘Illuminance’ contains all

types of illuminance values described in the main text and irradiance. All displayed values are

based on spectral irradiance measurements with a field-of-view restriction according to the

CIE S 026 standard [32]. In our case, these measurements are 24% lower than those of the

unobstructed sensor diffusor.

(XLSX)

S3 File. R-Markdown script used for statistical analysis and graphics generation. Zip file

containing several files necessary to replicate the statistical analysis and generation of graphics.

Besides some external tables, an R-function file, and three pictures to mark the respective

experiment in graphs, the zip file consists of nine R-Markdown scripts. One of these is used to

set up the data prior to analysis. The necessary data can be downloaded from the Open Science
Framework [39]. Five of the R-Markdown files are for analysis of Experiment I, II, III Short, III
Long, and the pooled data. The eighth file is for graphics generation. The second-to-last file

takes a sample of ten random participants from the first experiment for every protocol and

builds the base model from this subset. This sample analysis is to show that the main depen-

dencies of wavelength and series can come from a smaller sample. An html file with the same

file name shows an example. The last file is for calculating estimates for prereceptoral filtering

and using those estimates to calculate irradiance and photon density values from the spectral

irradiance measurements.

(ZIP)

S4 File. Html file with 3-D visualizations of normalized pupillary constriction (nPC)

depending on wavelength and time in Experiment II. The zip file contains three files. One

html file with a scalable and rotatable diagram of nPC (denoted as “Amplitude”) vs. wave-

length and time. An html viewer, or browser with support for html widgets, is needed. The

other two files are snapshots from the html file for each condition of Dark. Color mapping is

according to the z-axis (nPC) for better visibility.

(HTML)

Acknowledgments

We thank Jorge Alberto Gutiérrez Alvarez, Theresa Scherzer, Daniel Philipp Setzensack, and

Regina Heiß for their help with data collection as part of their respective thesis work. We

thank Moritz Faust for his support on data collection and questionnaire digitalisation. We also

thank three anonymous reviewers for their helpful and constructive input to the manuscript.

Author Contributions

Conceptualization: Johannes Zauner.

Data curation: Johannes Zauner.

Formal analysis: Johannes Zauner.

Funding acquisition: Johannes Zauner.

Investigation: Johannes Zauner.

Methodology: Johannes Zauner.

Project administration: Johannes Zauner.

PLOS ONE Spectral dependency of the human pupillary light reflex

PLOS ONE | https://doi.org/10.1371/journal.pone.0253030 January 12, 2022 39 / 44

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0253030.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0253030.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0253030.s018
https://doi.org/10.1371/journal.pone.0253030


Resources: Herbert Plischke.

Supervision: Herbert Plischke, Hans Strasburger.

Validation: Johannes Zauner, Hans Strasburger.

Visualization: Johannes Zauner.

Writing – original draft: Johannes Zauner.

Writing – review & editing: Johannes Zauner, Herbert Plischke, Hans Strasburger.

References
1. McDougal DH, Gamlin PD. Autonomic Control of the Eye. Comprehensive Physiology2014. p. 439–73.

2. Szabadi E. Functional Organization of the Sympathetic Pathways Controlling the Pupil: Light-Inhibited

and Light-Stimulated Pathways. Front Neurol. 2018; 9:1069. Epub 2019/01/09. https://doi.org/10.3389/

fneur.2018.01069 PMID: 30619035.

3. Watson AB, Yellott JI. A unified formula for light-adapted pupil size. J Vis. 2012; 12(10):12. Epub 2012/

09/27. PMID: 23012448.

4. Wagman IH, Gullberg JE. The relationship between monochromatic light and pupil diameter. The low

intensity visibility curve as measured by pupillary measurements. Am J Physiol. 1942; 137(4):769–78.

https://doi.org/10.1152/ajplegacy.1942.137.4.769

5. Alpern M, Campbell FW. The spectral sensitivity of the consensual light reflex. J Physiol. 1962; 164

(3):478–507. https://doi.org/10.1113/jphysiol.1962.sp007033 PMID: 14012269.

6. Bouma H. Size of the static pupil as a function of wave-length and luminosity of the light incident on the

human eye. Nat. 1962; 193(4816):690–1. https://doi.org/10.1038/193690a0 PMID: 13871842

7. Adrian W. Spectral sensitivity of the pupillary system. Clin Exp Optom. 2003; 86(4):235–8. https://doi.

org/10.1111/j.1444-0938.2003.tb03111.x PMID: 12859242

8. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock.

Sci. 2002; 295(5557):1070–3. https://doi.org/10.1126/science.1067262 PMID: 11834835

9. Lucas RJ, Douglas RH, Foster RG. Characterization of an ocular photopigment capable of driving pupil-

lary constriction in mice. Nat Neurosci. 2001; 4(6):621–6. https://doi.org/10.1038/88443 PMID:

11369943

10. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil

responses driven by melanopsin-containing retinal ganglion cells. Vision Res. 2007; 47(7):946–54.

Epub 2007/02/27. https://doi.org/10.1016/j.visres.2006.12.015 PMID: 17320141.

11. Zaidi FH, Hull JT, Peirson SN, Wulff K, Aeschbach D, Gooley JJ, et al. Short-wavelength light sensitivity

of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol. 2007; 17

(24):2122–8. Epub 2007/12/18. https://doi.org/10.1016/j.cub.2007.11.034 PMID: 18082405.

12. Mure LS, Cornut PL, Rieux C, Drouyer E, Denis P, Gronfier C, et al. Melanopsin bistability: a fly’s eye

technology in the human retina. PLoS One. 2009; 4(6):e5991. Epub 2009/06/25. https://doi.org/10.

1371/journal.pone.0005991 PMID: 19551136.

13. McDougal DH, Gamlin PD. The influence of intrinsically-photosensitive retinal ganglion cells on the

spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Res. 2010; 50

(1):72–87. Epub 2009/10/24. https://doi.org/10.1016/j.visres.2009.10.012 PMID: 19850061.

14. Gooley JJ, Ho Mien I, St Hilaire MA, Yeo SC, Chua EC, van Reen E, et al. Melanopsin and rod-cone

photoreceptors play different roles in mediating pupillary light responses during exposure to continuous

light in humans. J Neurosci. 2012; 32(41):14242–53. Epub 2012/10/12. https://doi.org/10.1523/

JNEUROSCI.1321-12.2012 PMID: 23055493.

15. Spitschan M. Photoreceptor inputs to pupil control. J Vis. 2019; 19(9):5. Epub 2019/08/16. https://doi.

org/10.1167/19.9.5 PMID: 31415056.

16. Zandi B, Klabes J, Khanh TQ. Prediction accuracy of L- and M-cone based human pupil light models.

Sci Rep. 2020; 10(1):10988. Epub 2020/07/06. https://doi.org/10.1038/s41598-020-67593-3 PMID:

32620793.

17. Rao F, Chan AHS, Zhu XF. Effects of photopic and cirtopic illumination on steady state pupil sizes.

Vision Res. 2017; 137:24–8. Epub 2017/07/10. https://doi.org/10.1016/j.visres.2017.02.010 PMID:

28688906.

PLOS ONE Spectral dependency of the human pupillary light reflex

PLOS ONE | https://doi.org/10.1371/journal.pone.0253030 January 12, 2022 40 / 44

https://doi.org/10.3389/fneur.2018.01069
https://doi.org/10.3389/fneur.2018.01069
http://www.ncbi.nlm.nih.gov/pubmed/30619035
http://www.ncbi.nlm.nih.gov/pubmed/23012448
https://doi.org/10.1152/ajplegacy.1942.137.4.769
https://doi.org/10.1113/jphysiol.1962.sp007033
http://www.ncbi.nlm.nih.gov/pubmed/14012269
https://doi.org/10.1038/193690a0
http://www.ncbi.nlm.nih.gov/pubmed/13871842
https://doi.org/10.1111/j.1444-0938.2003.tb03111.x
https://doi.org/10.1111/j.1444-0938.2003.tb03111.x
http://www.ncbi.nlm.nih.gov/pubmed/12859242
https://doi.org/10.1126/science.1067262
http://www.ncbi.nlm.nih.gov/pubmed/11834835
https://doi.org/10.1038/88443
http://www.ncbi.nlm.nih.gov/pubmed/11369943
https://doi.org/10.1016/j.visres.2006.12.015
http://www.ncbi.nlm.nih.gov/pubmed/17320141
https://doi.org/10.1016/j.cub.2007.11.034
http://www.ncbi.nlm.nih.gov/pubmed/18082405
https://doi.org/10.1371/journal.pone.0005991
https://doi.org/10.1371/journal.pone.0005991
http://www.ncbi.nlm.nih.gov/pubmed/19551136
https://doi.org/10.1016/j.visres.2009.10.012
http://www.ncbi.nlm.nih.gov/pubmed/19850061
https://doi.org/10.1523/JNEUROSCI.1321-12.2012
https://doi.org/10.1523/JNEUROSCI.1321-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23055493
https://doi.org/10.1167/19.9.5
https://doi.org/10.1167/19.9.5
http://www.ncbi.nlm.nih.gov/pubmed/31415056
https://doi.org/10.1038/s41598-020-67593-3
http://www.ncbi.nlm.nih.gov/pubmed/32620793
https://doi.org/10.1016/j.visres.2017.02.010
http://www.ncbi.nlm.nih.gov/pubmed/28688906
https://doi.org/10.1371/journal.pone.0253030


18. Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM, Czeisler CA, et al. Measuring and using

light in the melanopsin age. Trends Neurosci. 2014; 37(1):1–9. Epub 2013/11/30. https://doi.org/10.

1016/j.tins.2013.10.004 PMID: 24287308.

19. Kelbsch C, Strasser T, Chen Y, Feigl B, Gamlin PD, Kardon R, et al. Standards in Pupillography. Front

Neurol. 2019; 10:129. Epub 2019/03/12. https://doi.org/10.3389/fneur.2019.00129 PMID: 30853933.

20. Rukmini AV, Milea D, Gooley JJ. Chromatic pupillometry methods for assessing photoreceptor health in

retinal and optic nerve diseases. Front Neurol. 2019; 10:76. Epub 2019/02/28. https://doi.org/10.3389/

fneur.2019.00076 PMID: 30809186.

21. Park JC, Moura AL, Raza AS, Rhee DW, Kardon RH, Hood DC. Toward a clinical protocol for assessing

rod, cone, and melanopsin contributions to the human pupil response. Invest Ophthalmol Vis Sci. 2011;

52(9):6624–35. Epub 2011/07/12. https://doi.org/10.1167/iovs.11-7586 PMID: 21743008.

22. Bonmati-Carrion MA, Hild K, Isherwood C, Sweeney SJ, Revell VL, Skene DJ, et al. Relationship

between human pupillary light reflex and circadian system status. PLoS One. 2016; 11(9):e0162476.

Epub 2016/09/17. https://doi.org/10.1371/journal.pone.0162476 PMID: 27636197.

23. Adhikari P, Zele AJ, Thomas R, Feigl B. Quadrant field pupillometry detects melanopsin dysfunction in

glaucoma suspects and early glaucoma. Sci Rep. 2016; 6:33373. Epub 2016/09/14. https://doi.org/10.

1038/srep33373 PMID: 27622679.

24. Feigl B, Zele AJ, Fader SM, Howes AN, Hughes CE, Jones KA, et al. The post-illumination pupil

response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta

Ophthalmol. 2012; 90(3):e230–4. Epub 2011/09/03. https://doi.org/10.1111/j.1755-3768.2011.02226.x

PMID: 21883986.

25. Chellappa SL, Steiner R, Oelhafen P, Cajochen C. Sex differences in light sensitivity impact on bright-

ness perception, vigilant attention and sleep in humans. Sci Rep. 2017; 7(1):14215. Epub 2017/10/29.

https://doi.org/10.1038/s41598-017-13973-1 PMID: 29079823.

26. Munch M, Leon L, Crippa SV, Kawasaki A. Circadian and wake-dependent effects on the pupil light

reflex in response to narrow-bandwidth light pulses. Invest Ophthalmol Vis Sci. 2012; 53(8):4546–55.

Epub 2012/06/07. https://doi.org/10.1167/iovs.12-9494 PMID: 22669721.

27. Zele AJ, Feigl B, Smith SS, Markwell EL. The circadian response of intrinsically photosensitive retinal

ganglion cells. PLoS One. 2011; 6(3):e17860. Epub 2011/03/23. https://doi.org/10.1371/journal.pone.

0017860 PMID: 21423755.
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