Telomere biology

OPEN ACCESS

For numbered affiliations see
end of article.

Correspondence to

Dr Jacob B Hjelmborg,
Department of Epidemiology,
Biostatistics and
Biodemography, University of
Southern Denmark,

J. B. Winslawsvej 9 B, Odense
C DK-5000, Denmark;
jhjelmborg@health.sdu.dk

Received 22 August 2014
Revised 9 October 2014
Accepted 14 October 2014
Published Online First

13 March 2015

Open Access
Scan to access more
free content

CrossMark

To cite: Hjelmborg JB,
Dalgard C, Moller S, et al. J
Med Genet 2015;52:
297-302.

ORIGINAL ARTICLE
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ABSTRACT

Background Leucocyte telomere length (LTL) is a
complex trait associated with ageing and longevity. LTL
dynamics are defined by LTL and its age-dependent
attrition. Strong, but indirect evidence suggests that LTL
at birth and its attrition during childhood largely explains
interindividual LTL variation among adults. A number of
studies have estimated the heritability of LTL, but none
has assessed the heritability of age-dependent LTL
attrition.

Methods We examined the heritability of LTL dynamics
based on a longitudinal evaluation (an average follow-
up of 12 years) in 355 monozygotic and 297 dizygotic
same-sex twins (aged 19—64 years at baseline).
Results Heritability of LTL at baseline was estimated at
64% (95% Cl 39% to 83%) with 22% (95% Cl 6% to
49%) of shared environmental effects. Heritability of
age-dependent LTL attrition rate was estimated at 28%
(95% Cl 16% to 44%). Individually unique
environmental factors, estimated at 72% (95% Cl 56%
to 84%) affected LTL attrition rate with no indication of
shared environmental effects.

Conclusions This is the first study that estimated
heritability of LTL and also its age-dependent attrition.
As LTL attrition is much slower in adults than in children
and given that having a long or a short LTL is largely
determined before adulthood, our findings suggest that
heritability and early life environment are the main
determinants of LTL throughout the human life course.
Thus, insights into factors that influence LTL at birth and
its dynamics during childhood are crucial for
understanding the role of telomere genetics in human
ageing and longevity.

INTRODUCTION

Leucocyte telomere length (LTL) is a complex
human trait; it is heritable,'™ longer in women
than in men®® and longer in offspring of older
fathers.”™'% A body of research also shows that LTL
might be modified by environmental factors, includ-
ing smoking,” ** * body mass index (BMI),'3"1*
energy intake'® and sedentary lifestyle.'” '® In line
with LTL heritability, recent genome-wide associ-
ation studies have begun to decipher genes that
explain some of the interindividual variation in LTL
in the general population.'®™** ITL dynamics are
defined by two parameters: LTL at birth and its
age-dependent attrition afterward.”> ** The age-
dependent LTL attrition ostensibly reflects haemato-
poietic stem cell replication,>**” because telomer-
ase activity in these cells is insufficient to prevent
telomere attrition due to replication.?*~>°

While information is available about the effect of
heritability on LTL, little is known about whether
heritability also impacts the rate of LTL attrition.
This information is highly relevant, given that ITL
has been linked with longevity’'™* and
ageing-related cardiovascular disease, principally in
the form of atherosclerosis.®® In the present longi-
tudinal study, using the same-sex twin model, we
examined how heritability and the environment
affect the absolute LTL and also the rate of age-
dependent LTL attrition in participants of the
GEMINAKAR study.>¢ 37

METHODS

Design and study population

Twin pairs, aged 19-64 years at baseline examin-
ation, were recruited in two investigative sites set
up in Odense and in Copenhagen, to participate in
a longitudinal study of metabolic disorders and car-
diovascular risk factors. Recruitment was through
the National Danish Twin Registry.’® Baseline
examination was performed between 1997 and
2000, while follow-up examination was conducted
between 2010 and 2012.

The cohort, named GEMINAKAR, consisted of
twin pairs without history of diabetes or cardiovas-
cular disease at baseline examination. They were
subjected to baseline physical examination, venous
puncture for fasting blood samples and the collec-
tion of a comprehensive anthropometric and demo-
graphic data. At the follow-up examination, the
twins were visited at home or at work by a mobile
examination unit, which included a research nurse
and a laboratory technician. The evaluation carried
out in the mobile examination unit was comparable
with that of the baseline examination.’” Zygosity
was determined at baseline by the Institute of
Forensic Genetics in Copenhagen, Denmark, using
the same set of DNA-based microsatellite markers
as for paternity cases with the PE Applied
Biosystems AmpFISTR Profiler Plus Kit (PE
Applied Biosystems, Foster City, California, USA).
As per previous work,>! we have focused, in this
study, on a same-sex twin model. All participants
provided written informed consent.

Leucocyte telomere length measurements

LTL measurements were performed as previously
described.®® Briefly, DNA was extracted from
thawed buffy coats using the salting-out method as
described by Miller®® and integrity assessed by
resolving samples on 1% (wt/vol) agarose gel.
Samples were digested with restriction enzymes
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Table 1 Characteristics of the twins
Dizygotic twins Monozygotic twins

Parameter Men Women Men Women All
Baseline

No 128 169 163 192 652

LTL* (kb) 6.84 (0.60) 7.03 (0.71) 6.93 (0.65) 7.09 (0.65) 6.99 (0.66)

Age range (years) 20-58 20-54 20-57 19-64 19-64
Follow-up

No 120 162 158 190 630

LTL (kb) 6.60 (0.56) 681.0 (0.66) 6.70 (0.64) 6.86 (0.65) 6.75 (0.64)

Age (years) 32-60 32-66 31-69 31-76 31-76

*LTL (leucocytes telomere length) is presented as mean (SD).

Hinf I (10 U) and Rsa I (10 U; Roche). The analysis of the ter-
minal restriction fragments was performed in duplicate (on dif-
ferent gels and occasions). Samples of the cotwins in each twin
pair were randomised. However, baseline and follow-up DNA
samples from each twin were resolved in adjacent lanes on 0.5%
agarose gels. After 16 h, the DNA was depurinated for 15 min
in 0.25 N HCI, denatured for 30 min in 0.5 M NaOH/1.5 mol/
L NaCl and neutralised for 30 min in 0.5 mol/L Tris, pH 8/
1.5 M NaCl. The DNA was transferred for 1 h to a positively
charged nylon membrane (Roche) using a vacuum blotter
(Boeckel Scientific, Feasterville, Pennsylvania, USA). Membranes
were hybridised at 65°C with the digoxigenin (DIG)-labelled
telomeric probe overnight. The DIG-labelled probe was
detected by the DIG luminescent (Roche) and exposed on X-ray
film. The interassay coefficient of variation of the TL measure-
ments was 1.3%. Insufficient DNA or degraded DNA precluded
measurements of ITL in a small subset of follow-up blood
samples (table 1).

Modelling of telomere attrition in twin pairs
The outcome of LTL with associated factors, namely, age, sex,
BMI and smoking status, was analysed in the following settings:
(A) cross-sectional (baseline LTL and follow-up LTL, with
adjustment for covariates) and (B) longitudinal (difference in
LTL between follow-up and baseline examinations, and LTL at
follow-up adjusted for LTL at baseline and covariates).
Within-pair dependence in LTL in the above settings was
assessed by the (intraclass) correlation coefficient. This correl-
ation was obtained from random effects regression of LTL on
the covariates and a random pair-specific intercept, allowing for
decomposing the variation in LTL into between-pair and within-
pair variation. For the study of LTL attrition between baseline
and follow-up examinations, an individual-specific intercept was
further added as described previously.*°

Quantitative genetic models were analysed to estimate the
magnitude of genetic and environmental influences*! ** that
explained variance in the absolute LTL or LTL attrition.
Heritability was defined as the proportion of variance in LTL or
LTL attrition due to genetic factors. The general approach ana-
lysed covariance of LTL or LTL attrition between cotwins of
monozygotic (MZ) and dizygotic (DZ) pairs to decompose the
LTL or LTL attrition into a sum of components: A (additive
genetic effects), D (dominant genetic effects, which model
deviations of the heterozygote genotype from the mean of the
homozygote genotype), C (common, ie, shared, environmental
effects) and E (individually unique environmental effects). The
genetic parameters of the model were specified based on the

biological relationship between the cotwins. Within-pair covari-
ance of LTL was expressed as x var (A)+y var (D)+var (C),
where x=y=1 for MZ pairs and x=1/2 and y=1/4 for DZ
pairs.*! #?

A, D and C cannot be estimated simultaneously.*' Therefore,
a series of models were tested which allowed for sequential
testing of the significance of specific parameters. Measurement
error was estimated in E, as this is the component of variance
that does not contribute to within-twin pair resemblance.
Dominance effects are typically biologically implausible in the
absence of additive effects. The primary models were thus the
ACE and ADE models, as well as their sub-models AE, CE and
E. We assessed the fit of the models relative to the saturated
model by the x> statistics and used the Akaike information cri-
terion for comparison of models.** We report the within-pair
correlation for MZ and DZ pairs, the heritability, dominant
genetic, shared environment and unique environmental effects
for each of the above models. All estimates are adjusted for
effects of age at baseline and sex. Covariates that were not sig-
nificant at 10% level were left out of the analysis. We modelled
the level (intercept) and change (slope) separately. The bivariate
growth curve model for the joint intercept and slope, for
instance, incorporates genetic pleiotropy—the genetic correl-
ation of intercept with the slope. However, in case of having
only two measurements for each individual, the slope marginal
of the growth curve model is equivalent to modelling the differ-
ence, including the error term as we described above.

RESULTS
General characteristics of the twins at baseline and follow-up
examinations are displayed in table 1.

At baseline, LTL showed attrition across individuals of differ-

ent ages at —0.022 kb/year (p<0.001). On average, women had
a longer LTL than men (0.16 kb, p<0.01) (table 2). Based on

Table 2 Factors influencing leucocyte telomere length
Effect (95% CI)

Parameter p Value

—0.16 (—0.28 to 0.037) <0.01
—0.020 (-0.022 to —0.019)  <0.001
—0.022 (-0.028 to —0.015)  <0.001

0.041 (—0.079 to 0.16) 0.50

7.44 (131 t0 7.57) -

Women vs men

Rate of LTL attrition (kb/year)*

Age at baseline examination (kb/year)
MZ vs same sex DZ

Constant (kb)

*Adjusted for age at baseline.
DZ, dizygotic twins; LTL, leucocytes telomere length; MZ, monozygotic twins.
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Table 3 Biometrics of leucocyte telomere length dynamics

LTL Corr. MZ Corr. DZ Heritability Dominant genetic Shared environ. Individual environ. Log Lik. AIC p Value
Baseline examination

Saturated 0.85 0.53

ACE* 0.86 0.54 0.64 (0.39100.83) 0 0.22 (0.06 t0 0.49)  0.14 (0.11 to 0.18) -414 837

ADE 0.86 0.43 0.86 (0.81 10 0.89) 0.0 (-, -) 0 0.14 (0.11 to 0.18) -414 840

AE 0.86 0.43 0.86 (0.81 to 0.89) 0 0 0.14 (0.11 t0 0.18) —-414 838 0.08

CE 0.7 0.7 0 0 0.7 0.29 —435 881 0
Follow-up examination

Saturated 0.87 0.63 -363 737

ACE* 0.87 0.63 0.46 (0.28 to 0.66) 0.40 (0.22 t0 0.60)  0.13 (0.10 to 0.17) -363 737

ADE 0.87 0.43 0.86 (—, -) 0.0 (-, - 0 0.13 (0.10 to 0.17) —368 748

AE 0.87 0.43 0.87 (0.83 to 0.90) 0 0 0.13 (0.10 to 0.17) —368 746 0

CE 0.76 0.76 0 0 0.76 (0.70 to 0.81) 0.24 (0.19 to 0.29) -379 768 0
Follow-up vs baseline examinations

Saturated 0.31 0.19 208 —407

ACE 0.31 0.19 0.24 (0.02 to 0.79) 0.07 (0.00 t0 0.92)  0.68 (0.53 to 0.82) 208 —407

ADE 0.32 0.16 0.32 (0.20 t0 0.47) 0.0 (-, -) 0 0.68 (0.53 to 0.80) 208 —407

AE* 0.32 0.16 0.32 (0.20 to 0.47) 0 0 0.68 (0.53 to 0.80) 208 —409 0.71

CE 0.26 0.26 0 0 0.26 (0.16 to 0.39) 0.74 (0.61 to 0.84) 208 —408 0.29
LTL attrition rate

Saturated  0.28 0.14 184 —361

ACE 0.28 0.14 0.28 (0.03t00.80) 0 0.0 (-, -) 0.72 184 —361

ADE 0.28 0.14 0.27 (0.16 to 0.44) 0.0 (-, -) 0 0.72 (0.56 to 0.84) 184 -361

AE* 0.28 0.14 0.28 (0.16 to 0.44) 0 0 0.72 (0.56 to 0.84) 184 —363 0.99

CE 0.21 0.21 0 0 0.21 (0.1 to 0.35) 0.79 (0.64 to 0.89) 184 —362 0.25

Biometric models for level of leucocyte telomere length (LTL) at (1) baseline examination, (2) follow-up examination and LTL attrition rate, (3) follow-up adjusted for baseline and (4)

difference over follow-up time.
*Best fitting and most parsimonious model.

ACE, additive genetic and shared plus unique environmental components; ADE, additive plus dominant genetic and individually unique environmental components; AE, sub-model of
ACE with zero shared environmental component; AIC, Akaike Information Index; CE, sub-model of ACE with zero genetic component; p for no genetic component (A=0) and no shared
environmental component (C=0) as sub-models of ACE; Corr., correlations; Dominant genetic, dominant genetic effect; DZ, dizygotic twins; individual environ., individually unique
environmental effect; LTL, leucocytes telomere length; MZ, monozygotic twins; numbers in parentheses=95% Cls; saturated model—equal mean and variance for MZ and DZ twins;

shared environ., shared environmental effect.

the longitudinal data, the yearly rate of LTL attrition was esti-
mated at —0.020 kb/year (p<0.001). LTL did not differ
between MZ and DZ twins (p=0.50). Similarly, based on the
longitudinal data, LTL attrition did not differ between MZ and
DZ twins (table 2).

We analysed the covariance of LTL or LTL attrition between
cotwins of MZ and DZ pairs by decomposing I'TL or LTL attri-
tion into a sum of components: A, D, C and E. As shown in
table 3, when adjusting for sex and age at baseline examination,
the models AE, ACE and ADE yielded estimates of LTL herit-
ability between 46% and 87% with no indication of dominant
genetic effects. The model with solely environmental effects
(CE model) displayed very poor fit to data. By contrast, the
ACE model gave the most parsimonious fit to data at baseline
and at follow-up, with estimated heritability of L'TL at baseline
of 64% (95% CI 39% to 83%) and significant 22% (95% CI
6% to 49%) of shared environmental effects. These results were
robust to stratification into age groups and birth cohorts, and
were similar and not significantly different than those obtained
for LTL at follow-up examination in which the ACE model also
gave the most parsimonious fit. Figure 1 displays the data points
in four twin—twin plots corresponding to table 3. This shows
how correlated the pairs tend to be depending on zygosity for
baseline, follow-up, follow vs baseline, which is the predicted
LTL at follow-up based on baseline I'TL, as predicted by the
best fitting AE model and the LTL attrition, which is the differ-
ence between follow-up and baseline L'TLs. Comparisons of cor-
relations between MZ and DZ twins of LTL stratified by

quartiles showed no evidence for different degrees of heritabil-
ity of shorter versus longer LTLs.

For the LTL attrition rate, the AE, ACE and ADE models
yielded very similar estimates of heritability between 24% and
32% with estimated non-significant 7% of shared environmental
effects and no indication of dominant genetic effects. The
model with solely environmental effects (CE model) fitted very
poorly to data, while the AE model gave the most parsimonious
fit with estimated heritability of 28% (95% CI 16% to 44%)
and unique environmental effects of 72% (95% CI 56% to
849). These results were also observed for the outcome of ITL
adjusted for baseline in which the AE model gave the most par-
simonious fit to the data yielding very similar estimates.

DISCUSSION

In this study, we show that the LTL is substantially heritable, as
has been shown before, where the reported heritability of I'TL
ranged between 36% and 829%.'7 8 Notably, we also show that
the rate of L'TL attrition during adult life is heritable, although
to a lesser extent than LTL, with an indication of low or no
shared environmental effect.

LTL dynamics during the first 20 years of life exert an outsize
effect on LTL for the remaining life course because of the wide
range of LTL across newborns*® ** and the fast rate of LTL attri-
tion during growth and development.”>*® By contrast, the
overall effect of LTL attrition during adult life on LTL is rela-
tively small. Thus, by the age of 20 years, most adults display
fixed ranking and tracking of LTL, such that those individuals
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with a relatively short (or long) LTL as young adults are likely
to display a relatively short (or long) LTL as they get older.*’ In
this light, it might be relevant to consider the nature and impact
of environmental factors that largely influence LTL at birth and
during growth and development versus those that affect its age-
dependent attrition during adulthood.

The predominant environmental factors that influence LTL
are those shared by cotwins in each twin pair. By contrast,
essentially, only individually unique environmental factors influ-
ence the L'TL attrition rate during the follow-up period and, pre-
sumably, throughout adult life course. What might be the
biological meaning for these findings?

Shared environmental factors that impact adult LTL primarily
reflect the first two decades of life, unless the cotwins are raised
apart. The principal environmental factors that are shared by the
cotwins might start in utero and extend to the extrauterine life—
primarily the period of growth and development. Given that the
extrauterine period of growth and development is marked by a
rapid rate of LTL attrition, the influence of the shared environ-
ment of the cotwins during this time might exert a further lasting
effect on LTL for the remaining life course. Thus, in absolute
terms, the effect on LTL by shared environmental factors is much
larger than that exerted by individually unique environmental
factors, which largely influence the rate of LTL attrition during
adulthood. In this context, in the GEMINAKAR study, females
of opposite-sex twins were found to have LTL that was equivalent
to their male cotwins.*® Although the aetiology of the ablated

sex difference in LTL in opposite-sex twins is unknown, it might
stem from the influence of the male fetus on the female fetus
telomere dynamics in utero, or the shared environment of the
cotwins during early extrauterine life.*® To avoid the confound-
ing effect of opposite-sex twins on LTL, the present study was
limited to same-sex twins.

The approach taken in the analysis of the genetic influence on
LTL level and LTL attrition was to consider each separately. The
full bivariate growth curve model for level and change is,
however, fragile when conditioning on natural assumptions for
twin pairs, but in case of having only two measurements for
each individual, the slope (change) marginal of this model is
equivalent to modelling the difference, as we do. We note that
when regressing the follow-up outcome on the baseline (table 3)
which is preferred for this design, we also gain a degree of
freedom in comparison to studying the difference.

A host of individually unique environmental factors, such as
energy intake,'® lifestyle,'” '® socioeconomic status*’ and
mental stress*® might differently impact the rate of LTL attrition
in cotwins during adult life. However, as shown in the present
study, the overall effect of these factors is relatively small com-
pared with the joint effect on LTL of heritability and shared
environmental factors, which is estimated at ~87%.

In conclusion, the same-sex twin model points to heredity
and shared environmental factors which are likely to exert their
effect in utero and during early extrauterine life primarily
through epigenetic modalities.*” Additionally, individually
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unique environmental factors exert a major effect on the rate of
LTL attrition during adulthood. However, when set against the
wide interindividual variation in LTL at birth and the rapid pace
of LTL attrition during childhood, individually unique environ-
mental factors appear to have only a small effect on LTL in
adults. Understanding the role of genetics and the environment
in fashioning LTL at birth and its attrition during childhood
might hold the key for gaining insight into the role of telomere
biology in human ageing and longevity.
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