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Epidemiologic and pathologic features of prostate cancer have given rise to an interest 
in focal treatment for carefully selected patients. Prostate cancer remains highly 
prevalent, particularly in the U.S. and Europe. As screening programs have become more 
aggressive and widespread, a substantial proportion of men diagnosed with localized 
prostate cancer have disease characteristics associated with a low risk of progression. 
Treatments such as radical prostatectomy and radiation therapy can lead to durable 
recurrence-free survival in most patients, but carry variable risks of bowel, urinary, and 
sexual side effects. Few men and few urologists are comfortable leaving a potentially 
curable prostate cancer untreated. Focal therapy offers an attractive alternative for the 
patient faced with a choice between aggressive local intervention (radiation or surgery) 
and watchful waiting. Contemporary diagnostic biopsy strategies and imaging tools, and 
the development of predictive statistical models (nomograms), have led to improvements 
in tumor characterization and risk stratification, making focal therapy a viable treatment 
option for specific men. This article reviews the rationale and indications for focal 
therapy and highlights vascular-targeted photodynamic therapy (PDT) as one of many 
promising focal therapy techniques.  
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WORLDWIDE HEALTH PROBLEM 

Prostate cancer continues to be a frequent cause of morbidity and death throughout the world. Despite the 

formidable prevalence of prostate cancer, no consensus exists regarding the merits of screening, selection 

of patients for primary treatment, and optimal treatment modality. The impact of disease and treatment-

related morbidity has wide-ranging public health implications, particularly in countries where screening is 

common and male life expectancies are increasing.   

In 2004, an estimated 68,000 men in the European Union died of prostate cancer, making it the third 

most common cause of cancer-related death[1]. In the U.S., 27,000 men were projected to die of prostate 

cancer in 2007, continuing a trend of declining mortality over the past decade[2]. While the disease 

burden in East Asian countries, such as Japan, remains lower than in Europe and the U.S., age-

standardized mortality rates have been dramatically and continuously rising over the past 40 years[3]. 
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PROSTATE CANCER DETECTION 

Prostate specific antigen (PSA) testing was approved in 1986 by the U.S. Food and Drug Administration 

to monitor men with prostate cancer. By the time PSA testing was formally approved for cancer detection 

in 1994, PSA screening had already become widespread, effectively ushering in the contemporary era of 

prostate cancer detection. Consequently, the age-adjusted incidence of prostate cancer has changed 

dramatically over the past several decades, rising from less than 92 cases/100,000 men in 1975 to a peak 

of 240 cases/100,000 men in 1992, before declining to a relatively constant level of 180 cases/100,000 

men since 2001[4]. Since 1994, annual age-adjusted mortality rates in the U.S. have also steadily 

decreased, probably but not certainly as a result of early detection and effective therapy of potentially 

lethal early-stage cancers. 

Despite the shift toward improved prostate cancer detection and early diagnosis seen in the last 2 

decades, the absence of an equally large impact on prostate cancer mortality has led some to question the 

benefits of PSA screening strategies. For example, in the U.S., the estimated ratio of incidence to 

mortality in 2006 was 8.6[5]. In contrast, PSA screening has not been widely embraced in Europe. The 

lower incidence-to-mortality ratio in Europe (e.g., approximately 3.0 in the U.K.) suggests a 

comparatively lower rate of early diagnosis[6]. 

The discrepancy in incidence to mortality is likely due, in part, to increased detection of slow-

growing or relatively indolent prostate tumors among highly screened patients. Indeed, there is evidence 

to support a relatively high prevalence of indolent tumors that pose little immediate risk to health and life. 

Autopsy studies have shown high rates of incidental, localized, moderately differentiated, prostate cancer 

in men who died from other causes. Prostate cancer has been identified in 25–30% of these men[7], with 

some studies reporting rates as high as 29% for men in their thirties, 32% for men in their forties, 55% for 

men in their fifties, and 64% for men in their sixties[8]. Thus, prostate cancer screening is likely to 

identify many cancers that would not have shortened the lifespan of many men, as suggested by the 

seemingly opposed trends of increased clinical detection[4], but decreased autopsy detection of prostate 

cancer in the PSA era (a nearly threefold change from the 1950s to 1990s[7]). 

Despite the geographic variations in prostate cancer screening, and the purported benefit of screening 

on early detection and disease-specific survival, the weight of these observations suggests that most men 

diagnosed with low-volume, moderately differentiated, prostate cancer will not succumb to this disease 

during their lifetime. The public health, individual, and financial implications are profound. It is 

admittedly difficult to predict with certainty an individual patient’s long-term risk based on currently 

available pretreatment variables and trends of increasing life expectancy. However, by any metric, a 

substantial population of men is overdiagnosed and overtreated.   

THE TREATMENT OF PROSTATE CANCER AND ITS IMPLICATIONS 

At the time of diagnosis of a low-risk prostate cancer, a man may choose active therapy or watchful 

waiting, more recently referred to as active surveillance. For many men, foregoing treatment initially is an 

acceptable alternative. In avoiding the morbidity of treatment, they accept the rare but real possibility that 

the cancer will progress and become less curable at a later time. An active surveillance program attempts 

to minimize this risk by requiring scheduled office visits with repeat biopsy sessions at predetermined 

intervals or when clinically indicated. Active treatment may be recommended when there is evidence to 

suggest disease progression. Many criteria have been advanced as a threshold for intervention, but none 

have been validated as effective. Patient anxiety associated with these programs leads many to abandon 

this strategy despite a favorable clinical course, and, conversely, a small but meaningful number of men 

later found to have high-risk disease may be ill served by delaying treatment[9]. 

In the U.S., the health care community generally recommends active treatment with curative intent for 

healthy men with localized prostate cancer[10]. This approach aims to limit the number of men dying of 

prostate cancer at the expense of overtreating a proportion of men and accepting the attendant risk of 
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treatment-related morbidity. Aggressive and radical treatment of a disease with a high incidence-to-

mortality ratio would be widely accepted as reasonable and appropriate if the treatment had few side 

effects and was well tolerated. However, all primary treatments of prostate cancer have the potential to 

produce undesirable side effects in a substantial portion of men. 

CHARACTERISTICS OF LOCALIZED PROSTATE CANCER 

Unifocal vs. Multifocal 

Prostate cancer has been shown to be multifocal. Even when the cancer is multifocal, most nonindex tumors 

appear to be biologically indolent based on their small size and low grade. Rukstalis et al. analyzed 112 

whole-mount prostatectomy specimens and found 20% to have a unifocal cancer[11]. Among multifocal 

cancers, the index lesion had a median cancer volume of 1.6 cm
3
, the median volume of each additional 

cancer was 0.3 cm
3
, 80% of ancillary foci were <1.0 cm

3
, and the mean total volume of all nonindex cancers 

was 1.2 cm
3
. Ohori et al. analyzed 1,832 radical prostatectomy specimens by a whole-mount technique and 

showed the mean volume of the five largest cancers to be 2.13, 0.39, 0.17, 0.09, and 0.04 cm
3
, 

respectively[12]. Among patients with multifocal disease, 80% of the total tumor volume was present in the 

index tumor. Extraprostatic extension arose from the largest cancer in 92% of patients. Of patients at low 

risk, defined as clinical stage T1c/T2a or less, biopsy Gleason score ≤6 and PSA <10 ng/ml, 28% had a 

unifocal tumor and only 1% had extraprostatic extension at the site of a secondary tumor.  

Predicting Biologic Indolence 

Numerous studies have retrospectively sought to identify patients with indolent cancer based on 

pretreatment parameters. Cheng et al. found the highest percentage of cancer at any biopsy site and the 

total number of positive biopsy sites to predict the likelihood of small-volume cancer (<0.5 cc) on final 

pathologic evaluation[13]. For instance, in men with ≤5% of cancer at a single biopsy site, 30% had 

small-volume cancer. Among the 55 patients with small-volume cancer, 37 (67%) had multifocal cancer, 

highlighting that low tumor volume does not necessarily imply unifocality. 

Epstein et al. used PSA density and pathologic findings on biopsy to predict insignificant cancers 

(defined as tumor volume <0.2 cm
3
, Gleason <7, and confined to the prostate) with 73% accuracy[14]. 

Similarly, Goto et al. analyzed 170 prostatectomy specimens and found that among 12 patients with a 

PSA density <0.1 ng/ml/ml and maximum biopsy cancer length <2 mm, 9 (75%) met criteria for a 

clinically unimportant cancer (defined as tumor volume <0.5 cm
3
, Gleason <7, and confined to the 

prostate)[15].   

Kattan et al. incorporated PSA, clinical stage, prostate volume, Gleason score, total length of cancer 

on biopsy, and total length of noncancer on biopsy to construct a nomogram predicting indolent cancer 

(defined as <0.5 cm
3
, moderately differentiated with no Gleason component of 4 or 5, and confined to the 

prostate) with excellent discriminatory ability and calibration[16]. This nomogram has been 

independently validated in a cohort of patients from the screened arm of the European Randomized Study 

of Screening for Prostate Cancer (ERSPC)[17]. 

PRETREATMENT CANCER CHARACTERIZATION 

Magnetic Resonance Imaging (MRI) 

In order to identify candidates for focal therapy properly and confidently, it is imperative to have a reliable 

means for localizing and accurately delineating the tumor. Imaging would ideally provide an acceptable 
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standard by which prostate cancers could be identified and characterized. In addition to patient selection, 

accurate imaging modalities would prove useful in directing therapy, assessing results, and monitoring for 

disease recurrence or progression. The ability to assess locoregional lymph nodes adequately to evaluate for 

metastatic spread is also needed. Among currently utilized prostate imaging modalities (ultrasound, 

computed tomography, and MRI), endorectal MRI with spectroscopy (MRSI) appears to offer the best 

operating characteristics and enhances the predictive accuracy of standard nomograms. 

The combination of endorectal MRI/MRSI and a clinicopathologic nomogram, when compared to the 

nomogram alone, adds substantially to the area under the receiver operating characteristic (ROC) curve 

(AUC) for predicting organ-confined cancer[18], extraprostatic extension[19], seminal vesicle 

invasion[20], and lymph node metastases[18].   

MRI can also assist in the estimation of tumor volume. In a study by Coakley et al.[21], the accuracy 

of MRI and MRSI in the measurement of prostate cancer tumor volume was assessed in 37 patients prior 

to radical prostatectomy. For peripheral zone tumor nodules >0.5 cm
3
, tumor volume measurements by 

MRI, MRSI, and combined MRI/MRSI were all positively correlated with histopathologic findings, but 

only measurements by MRSI and combined MRI/MRSI reached statistical significance. These results 

show that the combination of MRSI and MRI increases the overall accuracy of tumor volume 

measurement for lesions of this size, although measurement variability may limit consistent quantitative 

estimation in smaller tumors. 

While MRI augments standard clinical and pathologic parameters in predicting advanced disease 

features and tumor volume, it is unable to visualize reliably the small and well-differentiated cancers that 

may be the prime candidates for either active surveillance or focal therapy. When it occasionally does 

highlight the area of a small, unifocal tumor, image-guided focal ablation may confidently target that 

region. However, the clinical utility of MRI rests as much, if not more, on what it does not show. Imaging 

that suggests the absence of a cancer that is large, poorly differentiated, or has pathologically advanced 

features increases support for the diagnosis of a small cancer with little risk. Additionally, the intended 

role of MRI would be to guide focal ablative therapy more precisely since it provides a very detailed view 

of the normal prostate overall and can help target the proper region (Fig. 1). Finally, MRI may be useful 

in monitoring the response to therapy by visualizing the size and location of the ablated prostate. 

 

FIGURE 1. Axial T2-weighted MRI of the prostate with endorectal coil. 

Arrows indicate regions positive for prostate adenocarcinoma on biopsy. 

(Courtesy of Doug Pendsé, MD, Hashim Uddim Ahmed, MD, and Mark 

Emberton, MD.) 
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Biopsy Characterization Strategies 

Prostate biopsies have evolved from finger-directed to ultrasound-guided, usually with injection of an 

anesthetic and commonly sampling a larger portion of the prostate. Current approaches call for 10–12 

biopsy cores to be taken, resulting in increased detection of tumors[22,23]. Extended biopsy schemes (>6 

cores) can achieve a more thorough and accurate characterization of prostate tumors. In patients 

undergoing extended biopsies, the rate of Gleason upgrading on pathologic analysis of the prostatectomy 

specimen decreases[24,25]. Certainly transrectal biopsy strategies do not reliably identify all tumors 

present in the gland, leaving the clinician unaware of multifocal tumors in many patients. Multiple 

strategies have been employed in an attempt to characterize maximally tumor volume, location, and 

Gleason grade. Transperineal extended mapping biopsies have the potential to provide more detailed 

spatial and histologic information, but are more invasive. They require anesthesia and are associated with 

a greater risk of side effects, such as urinary retention[26,27]. As an alternate strategy, repeat extended 

transrectal biopsy may also be effective in identifying more extensive or higher-grade cancer in a subset 

of patients. With either approach, the absence of cancer or findings similar to the initial biopsy can 

reaffirm the likelihood of low-volume, well-differentiated cancer. The optimal technique of early repeat 

biopsy for patients considering active surveillance or focal therapy remains to be established, although the 

role for more thorough biopsy assessment prior to initiating these approaches seems clear. 

RATIONALE FOR FOCAL THERAPY 

Historically, definitive treatment of solid cancers included whole-gland extirpation with radical surgery. 

For many organ systems, outcome data have supported more selective, organ-sparing, or even ablative 

therapies, such as breast-conservation surgery and less extensive surgery for melanoma[28,29].  

Similar trends have been witnessed in urologic oncology. Historically, the standard treatment for all 

solid renal masses was radical nephrectomy. Within the past decade, cancer control following partial 

nephrectomy has been shown to be equivalent for tumors <4 cm, with the benefit of preserving renal 

function[30,31]. Once established as an accepted treatment for smaller tumors, investigators have 

subsequently shown similar outcomes following partial and radical nephrectomy in patients with masses 

≤7 cm[32]. Likewise, partial cystectomy has proven effective for the treatment of bladder cancer in 

appropriately selected patients. 

Prostate cancer may be amenable to organ-sparing, focal treatment. The prostate is a small, easily 

accessible organ, and many urologists are familiar with performing image-guided procedures in the gland 

through the rectum, perineum, or urethra. Intuitively, treatment would be required solely at the area of 

tumor, limiting collateral damage to normal tissue. While the potential of such therapies makes them 

attractive, the ramifications of treatment failure bear considerable forethought in the development of focal 

treatment trials. The issues of patient selection, appropriate targeting of lesions, and the impact of focal 

treatments on outcome with salvage surgical or radiation treatment all deserve consideration. Criteria for 

follow-up and patient evaluation, as well as indications for repeat treatment, also remain to be 

standardized.  

The role for focal therapy in the treatment of prostate cancer may be most applicable to patients with 

tumors that pose little risk of progression, as long as the treatment has minimal effect on quality of life 

and does not adversely impact survival. Focal ablation of the index cancer, or of the sector of the prostate 

that harbors that cancer, could be very attractive for patients with low-risk cancers who are uncomfortable 

with the risks associated with active surveillance and the side effects of radical therapy. The unanswered 

questions are whether appropriate candidates can be identified, whether the index cancer can be reliably 

characterized while excluding higher-grade secondary tumors, and whether focal ablation can reliably 

target and destroy the index cancer with few complications and side effects. Even with effective 

treatment, such patients will have to be followed closely after focal therapy, since they may be at high risk 
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for developing another cancer in the prostate. Ultimately, the benefits of focal therapy will need to be 

proven with a randomized clinical trial comparing focal ablation to active surveillance or radical therapy.   

With these considerations in mind, a patient best suited for focal therapy would have a well-localized, 

targetable tumor of relatively small volume with a low-to-intermediate risk of metastatic spread and 

compliant with follow-up including repeat prostate biopsy procedures. Treatment must reliably eradicate 

tumors, have a low rate of side effects, and not complicate management with other therapies that may 

become necessary. One option for focal treatment that appears to meet several of these criteria is 

photodynamic therapy, which involves athermic treatment with relative sparing of tissue outside of the 

treatment field. 

PHOTODYNAMIC THERAPY 

Background 

Photodynamic therapy (PDT) is an ablative therapy that depends on three elements: a photosensitizer, 

light, and oxygen. The photosensitizer is typically given systemically by intravenous infusion and is 

present in the tissue of interest by perfusion of that organ. The photosensitizer is activated at the intended 

site of action, typically by fiberoptic illumination at a wavelength matched to the properties of the drug. 

In tissues, lesion size is dependent on a variety of factors, including tissue vascularity, drug concentration, 

and light intensity and duration.  

Through an unknown mechanism, photosensitizers preferentially accumulate in regions of 

proliferating cells, allowing PDT to display some selectivity for targeting a tumor while minimizing 

damage to surrounding normal tissue. The light-sensitive photosensitizing agent, which may be 

administered either topically or intravenously, is activated by a specific wavelength of light energy and 

creates oxygen-dependent cytotoxic and vasculotoxic reactions[33]. Subsequent loss of endothelial 

integrity leads to vascular thrombosis and ultimately tumor ablation[34,35,36]. Photosensitizers that have 

been studied include hematoporphyrin derivatives (Photofrin), m-tetrahydroxyphenylchlorin (Foscan), 

etiopurpurin dichloride (PhotoPoint), lutetium texaphyrin (LuTex), verteporfin (Visudyne), and palladium 

bacteriopheophorbide (WST09, also known as Tookad). 

Current PDT techniques primarily target the cellular compartment to destroy a tumor, but newer 

vascular-targeting photosensitizers (verteporfin, WST09) are activated while in the vasculature. This 

property can be exploited to cause vascular damage (occlusion, perforation, and stasis), enhancing tissue 

necrosis and allowing improved penetration of cytotoxic agents[35,37,38,39,40]. Verteporfin has been 

primarily assessed in preclinical models[41,42], while WST09 has been assessed in both the preclinical 

setting and early human trials. 

Given the ease of photosensitizer application, PDT is most frequently used on cutaneous lesions, but 

has also been tested on breast, central nervous system, head and neck, lung, esophageal, cervical, bladder, 

and prostate cancers. When used as prostate cancer therapy, advantages of PDT include minimally 

invasive access via the perineum, with techniques similar to brachytherapy (Fig. 2), and the ability to 

retreat lesions if necessary. Lesions created with PDT can be well visualized with perfusion imaging 

including gadolinium-enhanced endorectal MRI (Fig. 3). Disadvantages include risks of cutaneous and 

ocular photosensitivity, localized collateral damage to adjacent organs (including bowel, urethra, bladder, 

and nerve tissue), and systemic toxicity associated with intravenous administration that may include 

vasculopathy or involvement of other organs. 

Preclinical Studies 

WST09 is one of the latest PDT agents developed through the Weizmann Institute in Israel. WST09 is a 

chlorophyll-derived photosensitizer with several desirable properties, including rapid intravascular clearance  
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FIGURE 2. Axial transrectal ultrasound image of mid-prostate with fiberoptic 

fibers after positioning with stereotactic brachytherapy equipment for focal 

treatment. Fibers are labeled A–D in right lobe and E–H in left lobe. The 

urethra is indicated by a small vertical yellow line. Other echoic features 

indicate location of optical monitoring sensors. (Courtesy of Doug Pendsé, 

MD, Hashim Uddim Ahmed, MD, and Mark Emberton, MD.) 

 

FIGURE 3. Axial T1, postgadolinium-enhanced MRI of the 

prostate after focal treatment. The dark, low-signal areas (indicated 

by arrows) demonstrate lack of perfusion in the zone of treatment. 

(Courtesy of Doug Pendsé, MD, Hashim Uddim Ahmed, MD, and 

Mark Emberton, MD.) 

and minimal tissue accumulation, decreasing the risks of photosensitivity. Its absorption wavelength at 763 

nm is within the near infrared range, allowing reasonable tissue penetration using fiberoptic light 

application. Preclinical studies in animal models have demonstrated its safety profile and antitumor effect.  

Initial investigations in both canine and murine models identified the safety and treatment parameters 

for WST09-PDT treatment. Intravenous drug infusion to a dose concentration between 2 and 4 mg/kg was 

well tolerated. Fiberoptic-delivered interstitial illumination with a diode laser at lambda = 770 nm was 
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capable of creating lesions of hemorrhagic necrosis as large as 3 cm in the canine prostate gland[43]. 

Heterotopic and orthotopic tumors created with WISH-PC2 cells in the murine model were effectively 

eradicated in over 50% of lesions followed over 70 days[35].  

Photosensitivity studies were performed in both animals and humans to evaluate any cutaneous 

reaction to incident full-spectrum light exposure. Drug dosing at 2 mg/kg and skin exposure to both UV- 

and UV+ solar-simulated light at 128 J/cm
2
 did not demonstrate skin photosensitivity at exposure 

durations up to 3 h. Drug doses >2 mg/kg were associated with evidence of phototoxicity in the murine 

and porcine models, and were not administered to human subjects[44].  

Damage to tissue structures outside of the prostate gland are possible with PDT therapy and are likely 

when illumination outside of the boundaries of the prostate occurs. Evaluation of tissue sensitivities to 

WST09-PDT was performed in the canine model. Nerve conduction studies immediately and 1 week 

following treatment to the cutaneous branch of the saphenous nerve revealed light dose-dependent 

functional damage when light exposure over 100 J/cm
2
 was used. Exposure at 50 J/cm

2 
showed minimal 

conduction effects[45]. Direct treatment to regions outside the prostate, including the colon, bladder, 

abdominal muscle, and pelvic plexus, showed treatment effects consistent with necrosis in these areas. 

However, reaction within the adjacent prostate was considered more extensive on histologic analysis, 

suggesting some degree of tissue selectivity[46].  

WST09-PDT Technique 

A feasibility study of PDT in humans has been completed. In a Phase I trial of 24 patients with 

radiorecurrent prostate cancer, dose escalation of WST09 up to 2 mg/kg and light doses up to 360 J/cm 

were generally well tolerated[47]. Intravenous infusion of the photosensitizer occurred over a 20-min 

period. Since a proportion of patients experienced transient hypotension during the infusion, all patients 

were premedicated with an antihistamine and given intravenous fluid or vasopressors, as needed. In this 

published study, no serious adverse events were noted, including skin photosensitivity. 

Using general anesthesia, the patient was positioned in the lithotomy position with an ultrasound 

probe in the rectum and a brachytherapy template applied to the perineum. A catheter was inserted into 

each lobe of the prostate via the template and visualized via the transrectal probe. Optical fibers set at 763 

nm for light delivery and probes to detect light dosimetry and temperature were placed within the 

catheters. Additional probes were placed within a translucent urethral catheter and the anterior rectum to 

monitor light exposure to these areas. To minimize rectal exposure to light, a hydrodissection procedure 

on the plane between the rectum and prostate was performed. Following infusion of WST09, escalating 

doses and duration of light were administered. No signs of treatment response were seen at a drug dose 

<1.0 mg/kg, leading investigators to define these patients as nonresponders in the trial.   

In addition to safety data collected as part of this Phase I trial, tissue end points were also evaluated 

by interval radiographic imaging and prostate biopsy. At 7 days following treatment, hypoperfusion was 

noted on MRI at the maximum drug and light doses. Biopsies performed 6 months after treatment showed 

fibrosis and no evidence of viable cancer in areas found to be avascular on post-treatment MRI in men 

with response. However, small islands of benign tissue were seen, possibly indicating a selective effect of 

the treatment on tumor-bearing tissue. Treatment effects were not evident on biopsies from untreated 

regions. PSA declined to negligible levels in four of the six patients who received the maximum light and 

photosensitizer dose. Evidence of transient hepatic enzyme increase was seen in a subset of patients 

without sequelae.  

All patients voided spontaneously following 7–14 days of catheterization. A significant decline in 

urinary function was noted in five patients who demonstrated treatment response, defined by a prostate 

necrosis volume ≥20% on MRI 7 days post-PDT. The mean change in International Prostate Symptom 

Score (IPSS) score at 1 month following treatment was 20 points with gradual improvement resulting 

over the subsequent 5 months. Bowel and erectile function were not significantly affected, as measured 

by the Patient-Oriented Prostate Utility Scale (PORPUS)[48]. 
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Mature data from this trial and others are required to assess the potential role of PDT in treating 

localized prostate cancer following radiation therapy. Given the encouraging safety profile and evidence 

of a treatment effect, a Phase II trial of 24 patients in a similar clinical setting has begun. Of the 16 

patients with ≥6 month follow-up in the Phase II trial, hypoperfused MRI lesions and decreases in PSA 

have been noted. Given the results of these preliminary trials, PDT is also actively being investigated for 

primary treatment of low-risk, localized prostate cancer.  

RECOMMENDATIONS FOR RESEARCH OF PDT AND OTHER POTENTIAL FOCAL 
THERAPIES 

Single-arm feasibility trials with PDT have been designed as acceptable initial investigations in focal 

therapy. Further multiarm studies using several techniques for localized therapy will ideally follow. 

Critical to the advancement of focal treatment will be appropriate trial design and careful comparative 

assessment to identify superiority in technique and technology, as well as allow for continued 

advancements in the field. Unfortunately, as experienced with several other experimental ablative 

procedures in cancer care, exuberant enthusiasm should not supersede proper investigation and 

introduction of these techniques into clinical care. Outcome measures for focal therapy trials should 

include (a) scheduled systematic post-treatment mapping biopsy to determine the boundaries of the 

treatment effect and to assess for recurrent or new disease, (b) disease-free progression, and (c) morbidity 

outcomes and longitudinal health-related quality of life measures. Eventually, a rigorous comparison must 

be made between patients treated with focal ablation, and an age- and comorbidity-matched population of 

patients undergoing expectant management or an established treatment intervention. 
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