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ABSTRACT: Intelligent prediction of key output variables that are difficult to measure online in complex systems has important
research significance. In this paper, by using the least absolute shrinkage and selection operator (LASSO) algorithm to analyze the
principal elements of input variables, a temporal convolutional network fused with long short-term memory (TCN-LSTM) network
and self-attention mechanism (SAM) is designed to realize dynamic modeling of multivariate feature sequences. For complex
processes with multiple input variables, each variable has different effects on the output, so it is necessary to use the LASSO
algorithm to perform regression analysis on the input and output data for selecting the principal component variables and reducing
the redundancy and computation burden of the network. The TCN network is used to extract the features of the input variables
efficiently. The long-term memory performance of time series is enhanced by applying an LSTM network. The multihead SAM is
used to optimize the network, and the role of key features is enhanced by assigning weights with probability to further improve the
accuracy of sequence prediction. Finally, by comparison with the existing network model, the offline data generated by the high and
low converters in the synthetic ammonia industry is used to predict the CO content so as to verify the superiority and applicability of
the proposed network model.

1. INTRODUCTION
Accurate prediction of key variables of a complex system has
important theoretical engineering application value. Especially
for the key variables that are difficult to be measured online, a
soft sensing model can be established by using the measurable
variables.1−3 Complex systems can be modeled using mecha-
nism analysis, identification, or intelligent data-driven techni-
ques.4 However, themodeling techniques ofmechanism analysis
involve complex calculus operations and unknown parameters as
well as ideal simplification.5 The model established by
mechanism analysis not only has low precision but also is not
convenient for engineering application.6 Identification methods
can obtain satisfactory dynamic models for simple systems.
However, it is difficult to solve the modeling problems of non-
Gaussian disturbance, time delay, nonlinear, and weak excitation
in complex systems.7 In contrast, the data-driven intelligent
modeling technology can make use of the dynamic character-
istics of the sampled input−output data to build an accurate

model that can reflect the input−output relationship of the
system.8 It is difficult to establish satisfactory prediction models
for complex systems by using simple networks.9 Therefore,
according to the structure of the system, working condition, and
distribution characteristics of the sampled data, it is necessary to
fuse different modeling strategies and networks to build a
complex network that can reflect the dynamic characteristics of
the system.
For complex production processes with multiple input

variables, each variable does not have the same influence and
dominant role on the output.10 If all of the variables are used for
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prediction, it will not only increase the computation burden but
also increase the prediction error.11 It is necessary to reduce the
dimensionality of high-dimensional data.12 Principal component
feature selection is an important data preprocessing process in
the data mining field.13 The purpose of feature selection is to
select relevant feature subsets from the original feature set,
which can effectively describe the sample data and reduce the
influence of redundant or irrelevant features on the prediction
results.14 Using low-dimensional principal component variables
for modeling can not only reduce the risk of overfitting but also
improve the training efficiency, interpretability, and adaptability
of the model.15 At present, variable screening methods for high-
dimensional data mainly include penalty variable screening
methods (such as the LASSO algorithm), principal component
analysis, the partial least-square method, and so on.16 The
LASSO regression helps make some regression coefficients zero
by introducing the L1 regularization term in the loss function
and penalizing the absolute value of the regression coefficients so
as to achieve feature selection and data dimensionality reduction
and obtain a more interpretable model.17 Therefore, the LASSO
algorithm will be used to select principal component variables
for complex systems in this paper.
For complexmultivariable systems, it is difficult to establish an

accurate dynamic model for simple conventional networks due
to the absence of feature extraction or memory function.18−20

The LSTM network and TCN network have unique advantages
inmodeling time series data with long-term dependence because
of their long-term memory and feature extraction capabilities.21

The LSTM network is a variant of the recurrent neural network
(RNNS) to solve the problems of gradient disappearance and
gradient explosion when processing long sequences.22 The
LSTM network introduces memory cells and a number of gating
units to selectively remember or ignore information from input
data and transfer information in time.23 The LSTM network can
capture information for a longer period of time, retain useful
information, and discard useless information.24 The TCN
network is improved based on the CNN network, which has
causal convolution and extended convolution structures.25 The
TCN network learns of sequence data through causal
convolution and realizes the memory of historical information
through extended convolution and residual modules. The TCN
network can extract the feature information on long interval and
discontinuous time series data.26 The SAM can be used to
capture the relationship between the same types of features in
time series.27 By assigning different weights to different features,
it is expected to improve the feature extraction ability.28 The
SAM can better handle long-distance dependencies and capture
global information. Compared with the single-head attention
mechanism, multihead self-attention adopts the parallel
computing mode.29 Moreover, the multihead self-attention
mechanism calculates the attention of the current moment and
every moment in the data, which makes the multihead SAM pay
attention to the internal relationship of the time series data.30 By
integrating the LSTM network and TCN network, and
introducing the attention mechanism to strengthen the key
features of time series, it is expected to establish a complex
network with better prediction performance.
In this paper, a multilayer TCN-LSTM network integrating

LASSO variable selection and SAM will be proposed for
complex multivariable systems. The LASSO algorithm is used
for the regression analysis of input and output data to select
principal variables. The initial feature extraction of input
variables is obtained by using the TCN network. The LSTM

network is used to enhance the long-term memory performance
of the network. The multihead SAM is applied to enhance the
role of key features. Finally, the superiority of the proposed
network is verified by the industrial process of synthetic
ammonia.

2. TCN-LSTM NETWORK WITH SAM AND LASSO
A general complex multivariable system can be expressed as

=Y F X( ) (1)

[ ··· ] = ···y y y F x x x, , , ( , , , )m n1 2 1 2 (2)

where X is the input variable matrix, Y is the output variable
matrix, and F is a systemmodel function with unknown structure
and parameters.
2.1. LASSO Principal Variable Selection. For complex

multi-input and output systems, the LASSO regression
algorithm is used to select principal variables. The goal of linear
regression is to find a regression coefficient β that minimizes the
square error between the predicted value Xβ and the actual
target value y. The objective function of linear regression is
defined as

Figure 1. Diagram of causal convolution of the TCN network.

Figure 2. Diagram of extended convolution of the TCN network.

Figure 3. Basic residual block of the TCN network.
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To implement the LASSO regression, an L1 regularization
term is added to the objective function. The L1 term is the sum of
the absolute values of the regression coefficients multiplied by
the regularization parameter. This parameter controls the
strength of the regularization. The regularized LASSO objective
function can be written as
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where p is the number of features, i.e., the number of variables to
be determined; βj is the jth regression coefficient term; and
λ∑j=1

p |βj| is to punish the absolute value of the β.
Since the objective function of LASSO is convex and not

differentiable at βj = 0, the coordinate descent method was used
to optimize the LASSO regression problem. As λ increases, more
and more coefficients become zero, and unimportant features
are eliminated from the model, which means that the LASSO
algorithm is suitable for irrelevant or redundant features.

Figure 4. Gate structure unit of the LSTM network.

Figure 5. Generation of Q, K, and V matrices.

Figure 6. Generation of A and A′.

Figure 7. Generation of the output matrix O.

Figure 8. Diagram of multihead SAM.
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2.2. TCN Network. The TCN network adopts one-
dimensional causal convolution and extended convolution as
standard convolution layers. Every two of these convolution
layers and identity maps are encapsulated in a residual block. A
deep network is formed by superimposing multilayer residual
blocks. The causal convolutional structure diagram of the TCN
network is shown in Figure 1. In causal convolution, multiple
hidden layers can trace the long hidden layer information. The
causal convolution at xt is

× =
=

+F X x f X( )( )d t
k

K

k t K k
1 (5)

where F = ( f1, f 2, ···, f K) is the filter
The extended convolutional structure of the TCN network is

shown in Figure 2. With the increase in the number of layers, the
expansion factor and perception window of the network also
increase, but the convolution kernel size remains unchanged. In
practical applications, the general expansion factor increases by
an exponential multiple of 2. The expansion factor at xt is d and
the expanded convolution is

× =
=

F X x f X( )( )d t
k

K

k t K k d
1

( )
(6)

The basic residual block structure of the TCN network is
shown in Figure 3. The main function of introducing a residual
connection in TCN is to avoid gradient disappearance. The
feature x of the previous layer is added to the convolution F(x),
which is x + F(x). Two layers of convolution and nonlinear
mapping are contained in a residual block. Each layer also adds
the weight norm for weight normalization and dropout for
regularization. By combining elements with a 1 × 1 convolution,

the tensor is guaranteed to be the same when the next layer
receives it,i.e.,

= +R x F x( ) (7)

2.3. LSTMNeural Network.The LSTMnetwork consists of
basic cell units, as shown in Figure 4. Cell units mainly include
cell state, input gate, forget gate, and output gate. The state unit
is the most core point of LSTM, and it is the main memory unit,
responsible for storing and transmitting long- and short-term
information. The input gate is responsible for deciding whether
to allow new inputs and determining which values from the
input should be used. The forget gate is responsible for
determining the values to be discarded from the network block.
The output gate is responsible for determining the output result
at the current moment. The calculation formulas of basic cell
units mainly include the following formulas and content.
The activation value of the input gate is expressed as

= + +I X W H W b( )t t xi t hi i1 (8)

The activation value of the forget gate is expressed as

= + +F X W H W b( )t t xf t hf f1 (9)

The activation value of the output gate is expressed as

= + +O X W H W b( )t t xo t ho o1 (10)

The status of the last time step is expressed as

= + +C h X W H W btan ( )t t xc t hc c1 (11)

The state unit is expressed as

= · + ·C F C I Ct t t t t1 (12)

Hidden status of the current time step is expressed as

= ·H O Ctanh( )t t t (13)

LSTM performs the following steps at each time step.
(1) Using Xt and Ht−1, and activating with the sigmoid

function, calculate the value of It as shown in eq 8.
(2) Using Xt and Ht−1, and activating with the sigmoid

function, calculate the value of Ft as shown in eq 9.
(3) Using Xt and Ht−1, and activating with the sigmoid

function, calculate the value of Ot as shown in eq 10.
(4) Using Xt and Ht−1, and activating with the tanh function,

calculate the value of Ĉt as shown in eq 11.
(5) Update status unit Ct. Use the forget gate Ft to selectively

forget the state Ĉt of the previous time step. The input gate
It is used to selectively preserve the state Ĉt of the current
time step, and the two are added together to obtain a new
state unit Ct as shown in eq 12.

(6) The new state unit Ct is processed by the tanh function
and multiplied by the output gate Ot to obtain the hidden
state Ht of the current time step, as shown in eq 13.

(7) Output the updated hidden state and state unit as an
output of the current time step.

2.4. Multihead Self-Attention Mechanism. The SAM
can better capture the relationship between the same types of
features and effectively improve the ability of feature extraction
by assigning different weights to different features. By adding
SAM to four input variables a1, a2, a3, and a4 to transform into b1,
b2, b3, and b4, the basic principle and main ideas of SAM will be
introduced.

Figure 9. Diagram of the TCN-LSTM network.
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(a) For each vector a, on multiplying by three coefficientsWq,
Wk, and Wv, respectively, the values q, k, and v can be
obtained. The generation diagram of their matrix formsQ,
K, and V is shown in Figure 5.

= ·q w ai q i
(14)

= ·k w ai k i (15)

= ·v w ai v i (16)

Their matrix form can be expressed as

= ·Q W IQ (17)

= ·K W IK (18)

= ·V W IV (19)

whereWQ,WK, andWV are learnable parameters and I is a matrix
consisting of four input variables.
Instead of using input matrix I directly, the self-attention

mechanism uses these three matrices generated by matrix
multiplication. The fitting ability of the model can be enhanced
by using three trainable parameter matrices.
(b) Using the obtainedQ andK, the correlation between each

two input vectors is calculated using the dot product
operation, i.e., the value of attention α is calculated by

= ·q k( )i j
i j

, (20)

The matrix form can be expressed as

= ·A K QT (21)

where A is the similarity matrix formed by αi,j.
(c) The self-attention weight matrix A′ can be obtained by

softmax operation on the A matrix. The generation
diagram of A and A′ is shown in Figure 6.

(d) Use A′ and V to compute the output vector b of the self-
attention layer corresponding to each input vector α, i.e.,

= ·
=

b vi
j

n

i i j
1

,
(22)

The matrix form can be expressed as

= ·O V A (23)

where O is a matrix composed of bi. The generation
diagram of O is shown in Figure 7.

For the multihead SAM, the multihead is the connection of
multiple self-attention. Instead of using a single attention, the
multihead self-attention mechanism can independently learn n
sets of different linear projections to realize transform query, key,
and value. Transformed queries, keys, and values enter the
attention layer in parallel. The output of the n layers of attention
is then spliced together. Finally, the final output is obtained
through a linear layer. The expressions of multihead SAM are

= ···Q K V Wmultihead ( , , ) concat (head , , head )n1
(24)

Figure 10. High and low converter of the synthetic ammonia system.
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Figure 11. continued
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Figure 11. continued
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= QW KW VWhead attention ( , , )i i
Q

i
K

i
V (25)

where Wi
Q, Wi

K, and Wi
V, respectively, represent Q, K, and V in

the ith attention head of the weight matrix; W represents the
weight matrix of the multihead SAM; and Concat is a linear
combination.
A diagram of the multihead SAM is shown in Figure 8. Taking

the input a1 in the diagram on the left as an example, three
outputs bhead1 , bhead2 , and bhead3 are obtained through the three-head
mechanism. Then, the three output vectors are joined end to
end. Then, b1 was obtained by a linear transformation. The same
process is also performed for the other inputs in the sequence.
2.5. Proposed TCN-LSTM Network. The proposed

multivariable TCN-LSTM network model based on LASSO
feature selection and integrated self-attention mechanism is
shown in Figure 9, which mainly includes the LASSO feature
selection block based on the L1 regularization block, the TCN
residual block with two layers, the multihead SAM enhancement
block, and the LSTM sequence processing block. The proposed
algorithm mainly includes the following contents.
(1) For the input data, by adjusting the regularization

parameter λ, the LASSO algorithm is used to achieve
feature selection and dimensionality reduction.

(2) The data obtained through feature selection in step (1)
and the historical output data are normalized, which can

be converted into a data set suitable for neural network
training, and the training set and test set are divided.

(3) For the input sequence data, the TCN layer is used for
feature extraction. Two residual blocks are connected, and
the size of the convolution kernel is taken as 2 and the
number of convolution kernels is taken as 16.

(4) By setting 4 attention heads and 100 unit numbers, the
SAM layer calculates the weight matrix by assigning
weights probabilistically.

(5) The LSTM layer mainly learns the features extracted from
the SAM layer. The network layer builds a layer of LSTM
network with ten neurons, and the layer dropout is taken
to prevent overfitting during training.

(6) The full connection layer is fully connected with the
output layer, and the prediction result is output.

3. SYNTHETIC AMMONIA SYSTEM
In the ammonia synthesis process, nitrogen and hydrogen are
used to synthesize ammonia. In order to save production costs,
hydrogen in the feedstock is prepared by a methane decarbon-
ization unit. Different temperatures produce different types of
reaction results. Therefore, high- and low-temperature towers
with different catalysts are used to react for satisfying various
types of production needs. Some of the carbons in the feedstock

Figure 11. Sample data sequence of 26 variables (a), Sample data sequence of 26 variables (b). Sample data sequence of 26 variables (c). Sample data
sequence of 26 variables (d). Sample data sequence of 26 variables (e).
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gas are in the form of carbon monoxide and carbon dioxide, and
the high−low temperature converter will convert the difficult-to-
handle carbon monoxide into carbon dioxide. A CO2 absorption
column is used to absorb CO2. The reaction that takes place in
the high- and low-temperature reactor is

+ +CO H O CO H2 2 2 (26)

The production control objective is tominimize the residual CO
content at the outlet. However, in the actual production process,
the residual CO content is determined by offline laboratory
analysis, which has shortcomings such as an extremely low
sampling rate and time delay of measurement results. Therefore,
it is important to establish a soft sensing method that can
accurately predict the residual CO content online and in real
time. The flowchart of the high and low converter for the
ammonia synthesis process is shown in Figure 10. In order to
establish the soft sensing model of residual CO, this paper
conducted offline data acquisition for 26 production variables
that are easy to measure during the production process of the

system and sampled 5000 points for each variable, as shown in
Figure 11a−e. The variable names and descriptions are listed in
Table 1. The devices involved in the process are listed in Table 2.

4. EXPERIMENTAL VERIFICATION
The host processor used in this data processing and network
modeling experiment is an Intel i9−13900H. The GPU is an
NVIDIA GeForce GTX 4060 graphics card. Running memory is
8.00 GB. The operating system is Windows11. The network is
built and modeled on a Matlab2023a simulation software
platform. In order to reduce the redundancy and correlation of
26 variables, feature selection based on the LASSO technology is
performed on the collected data. A total of 10 dimensional data
are selected as the input of the TCN-LSTMnetworkmodel. The
auxiliary variables with singular values AI04001A-Ar (Ar content
in a high-temperature conversion tower) and AI04001B-Ar (Ar
content in a low-temperature conversion tower) are removed.
Remove one of the highly correlated variables, such as
AI04001A (high-temperature conversion tower flow) and
AI04001B-Ar (low-temperature conversion tower Ar content).
The selected variables and labels are shown in Table 3.
For 5000 points of data collected, the network is trained using

3500 points of data. The remaining 1500 points of data are used
to test the network. The input window length is taken as 5. The
dropout layer parameter is taken as 0.1. Take the Adam as the
optimizer. The initial learning rate is taken as 0.008.Multiply the
learning rate by 0.25 for every 15 rounds. The number of training
rounds is 50. The training batch size is 20. The BP network in,31

the CNN network in,32 the LSTM network in,33 the CNN-
LSTM network in,34 and the TNN-LSTM network without
LASSO in35 are also tested to illustrate the performance of the
proposed network. The head of the multihead attention
mechanism is taken as 4. In order to quantitatively evaluate
the test results of different networks, the root-mean-square error
(RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) are defined as
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where n is the number of sample points, yi is the real sample
output, and ŷ is the network prediction output.

5. RESULTS AND DISCUSSION
The fitting error of the training data is shown in Figure 12. It can
be seen that the fitting error of each algorithm for the training

Table 1. System Variable Labels and Descriptions

no. label description no. label description

1 AI04001A flow rate to
04R001

14 PC04003 press. at the exit of
04R002

2 AI04001A-
Ar

content of Ar to
04R001

15 TI04003 temp. of 04R001’s
down level

3 AI04001A-
CO

content of CO
to 04R001

16 TR04004 exit process gas
temp. of 04R001

4 AI04001A-
CH4

content of CH4
to 04R001

17 TI04005 temp. of BFW at
04E002

5 AI04001A-
H2

content of H2
to 04R001

18 TC04006 exit process gas
temp. of 04E002

6 AI04001B flow rate to
04R002

19 TI04008 temp. of 04R002’s
up level

7 AI04001B-
Ar

content of Ar to
04R002

20 TI04009 temp. of 04R002’s
middle level

8 AI04001B-
CO2

content of CO2
to 04R001

21 TI04010 temp. of 04R002’s
down level

9 AI04001B-
CH4

content of CH4
to 04R001

22 LC04011 level of 04E003

10 AI04001B-
H2

content of H2
to 04R001

23 PC04011 press. of process gas
to 05 unit

11 AI04001B-
N2

content of N2
to 04R001

24 TR04011 exit process gas
temp. of 04R002

12 TI04001 temp. of
04R001’s up
level

25 TI04012 temp. of recycled
N2 at 04K101

13 TI04002 temp. of
04R001’s
middle level

26 TI04013 entrance process
gas temp. of
04R002

Table 2. Devices Involved in the System

label description label description

04R001 high-temp. transform column 04E001 heat exchanger
04R002 low-temp. transform column 04E002 heat exchanger
04F001 gas−liquid separator 04E003 heat exchanger

Table 3. Selected Variables and Labels

no. original no. label β no original no label β
1 1 AI04001A 1.26 × 10−5 6 13 TI04002 4.05 × 10−4

2 3 AI04001A-CO 0.03012 7 14 PC04003 0.0104
3 4 AI04001A-CH4 0.0078 8 15 TI04003 0.0039
4 11 AI04001B−N2 −2.4 × 10−4 9 23 PC04011 −1.1185
5 12 TI04001 −0.0025 10 25 TI04012 −1.6 × 10−5
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data set is small, which means that the system data is learnable.
The training data loss function changes with the number of
iterations, as shown in Figure 13. It can be seen that the training
error of each network for training data is gradually reduced. The
proposed network has the fastest convergence speed and a small
training error. Different prediction results of the test data are
shown in Figure 14. It can be seen that the proposed algorithm
can better fit the key dynamic characteristics of the time series
data. Other algorithms can also reflect themain characteristics of
the system, to some extent. The fitting error of test data is shown
in Figure 15. Output prediction errors of test data based on
different networks are shown in Table 4. It can be seen that the
fitting error of the proposed algorithm is smaller and more
stable. In order to more intuitively represent the differences
between different models, the scatter plot is shown in Figure 16,
where the horizontal coordinate is the true value of the quality
variable, and the vertical coordinate is the model soft-
measurement results. As can be seen from the scatter plot
shown in Figure 16, the output prediction of the proposed

network is relatively close to the reference line and the
distribution is concentrated. This means that the proposed
network can accurately capture the characteristics of input and
output data of the system and effectively predict the changing
trend of CO. From the test results, it can be seen that the
traditional BP network has no memory function, it is difficult to
fully explore the historical key features of time-varying sequence,
and the established model is difficult to reflect the main dynamic
characteristics of the system. Especially for the nonstationary
complex system data with uncorrelated inputs, the shortcomings
of the BP neural network for time series prediction are more
obvious. When the CNN network is used to deal with the time
series data, it can only capture local information due to the
convolution kernel of fixed size, and it becomes difficult to deal
with a long-term dependence relationship, and the prediction
model established by the CNNnetwork also has large prediction
errors. If the key feature information in remote data is not
extracted and paid attention to, it will seriously affect the
dynamic prediction performance and estimation results of

Figure 12. Fitting error of training data based on different networks

Figure 13. Loss function variation of training data for different iterations.
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Figure 14. Output prediction results of test data based on different networks.

Figure 15. Fitting error of test data based on different networks
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current data points. Moreover, recent redundant data on
features can seriously weaken the impact of important features.
The LSTM network has good historical memory performance,
but it cannot strengthen the key features, so the prediction
model established by the LSTM network also has large errors for
complex multivariable dynamic systems. Because there is no
selective enhancement of key data features. It can be seen from
Figure 13 that the LSTM network has a slow convergence rate
and fitting error in the training data set. The TCN network
introduced expansive convolution, which can enlarge the
receptive field and effectively capture the long-term dependence
relationship, which is helpful in improving the modeling ability
of the model for sequence data. Compared with the CNN
network, the TCN network has a stronger feature extraction
ability. If combined with the memory network and attention
mechanism, it is expected to further improve the learning and
prediction performance of the TCN network for complex
system data. Compared with the TCN-LSTM network without
LASSO variable selection, the RMSE, MAE, and MAPE of the
test sample data set in the proposed network decreased by
0.0001, 0.00022, and 0.0865%, respectively. From the error
graphs of the training data set and the test data set, it can be seen
that although the error of the TCN-LSTM network without
LASSO feature selection is small in the training data set, it is
large in the test set. The reason for this typical overfitting
phenomenon is that the complex network TCN-LSTM, which
combines the advantages of various networks, has a good
learning ability so that even obviously unrelated variable data
information is fully learned. It can be seen that LASSO can

remove the redundancy of input data, reduce the complexity of
the model, and avoid overfitting to a certain extent. The
proposed algorithm not only has good fitting error for training
data but also has good adaptability to test data. However, other
algorithms have many discrete points far from the symmetric
line, which indicates that these algorithms are difficult to track
and fit the values near the dynamic peak or the zero of the time
series. This information can reflect the main dynamic character-
istics of the system. If the network cannot reflect the dynamic
information on these key points, it will affect the controller
design and fault diagnosis based on the networkmodel. It should
be noted that the regularization coefficient selection of the
LASSO algorithm is difficult. If the regularization coefficient is
too large, then the model will be underfitted. If it is too small, it
will not have a limiting effect on the model. Therefore, it is
necessary not only to select the undetermined coefficients
according to the system characteristics and data but also to
design adaptive parameters that change with different training
data. The networks proposed have different layers and
undetermined parameters. If the number of layers and
parameters cannot be selected reasonably, the computing
efficiency and learning characteristics of the network may be
reduced. Therefore, an intelligent optimization strategy can be
considered to optimize the undetermined parameters.

6. CONCLUSIONS
A TCN-LSTM intelligent prediction network model with
variable selection and multihead SAM has been proposed for
the output variables, which are difficult to be accurately
measured online in complex multivariable systems. Since each
input variable has different effects on the output, the LASSO
algorithm is used to perform regression analysis on the input and
output data, and the principal variable can be selected to reduce
the dimension of the input data. The feature selection strategy
reduces the redundancy and computational burden and
improves the model training efficiency. The features of input
variables are extracted by using the TCN network. Moreover,
the LSTMnetwork is used to capture long-term dependencies in
time series to enhance the long-term memory of features.

Table 4. Output Prediction Errors of Test Data Based on
Different Networks

Networks RMSE MAE MAPE

BP 0.00355 0.00282 1.0567
CNN 0.00334 0.00262 0.9822
LSTM 0.00341 0.00267 1.0119
CNN- LSTM 0.00320 0.00351 0.9396
TCN-LSTM without LASSO 0.00314 0.00263 0.9893
proposed TCN-LSTM 0.00304 0.00241 0.9028

Figure 16. Scatter plot of the prediction results versus the true output value.
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Besides, the key features are enhanced by probability using the
multihead SAM to further improve the accuracy of the network.
Finally, the proposed TCN-LSTM network model is compared
and verified in the soft sensing prediction of CO content in high
and low converters in the synthetic ammonia industry. The test
results show that the proposed network has a smaller prediction
error and generalization ability, which is expected to provide an
effective and reliable solution to the prediction problem in the
industrial production process. The undetermined parameters
involved in the proposed algorithm need to be selected
reasonably; otherwise, the performance of the network may be
reduced. It can be considered to design adaptive parameters
according to the system data or the intelligent algorithms are
applied to optimize the solution.
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