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Long-chain unsaturated fatty acids reduce the transcriptional activity of 
the rat follicle-stimulating hormone β-subunit gene
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Abstract. 	Here, we assessed the effects of long-chain fatty acids (LCFAs) and the LCFA receptor agonist GW9508 on the 
transcription of the gonadotropin subunit genes Cga, Lhb and Fshb because LCFA receptor GPR120 was observed in mouse 
gonadotropes in our recent study. A transcription assay using LβT2 cells demonstrated that LCFAs, oleic acid, α-linolenic 
acid, docosahexaenoic acid and palmitate, repressed the expression of Cga, Lhb, and Fshb at concentrations between 50 and 
100 µM. On the other hand, treatment with 10 µM unsaturated LCFAs, oleic acid, α-linolenic acid and docosahexaenoic 
acid, repressed only Fshb expression, while the same dose of a saturated LCFA, palmitate, had no effect on the expression 
of gonadotropin subunit genes. Furthermore, GW9508 did not affect promoter activity. Next, we examined deletion mutants 
of the upstream region of Fshb and found that the upstream regulatory region (-2824 to -2343 bp) of Fshb was responsible 
for the notable repression by 10 µM unsaturated LCFAs. Our results suggest that the upstream region of Fshb is susceptible 
to unsaturated LCFAs. In addition, unsaturated LCFAs play a role in repressing Fshb expression through the distal -2824 to 
-2343 bp region, which might be independent of the LCFA receptor GPR120 pathway.
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Gonadal function is regulated mainly at the hypothalamic level 
of the hypothalamic-pituitary-gonadal axis. However, increas-

ing evidence suggests that gonadal function is controlled at the 
pituitary level. For example, cortisol has been reported to directly 
suppress pulsatile luteinizing hormone (LH) secretion from the 
pituitary in sheep [1, 2]. Moreover, insulin, leptin, adiponectin, 
and other hormones are known to directly regulate LH secretion 
via gonadotropes [3–5]. These previous reports suggest that the 
synthesis and secretion of gonadotropic hormones can be directly 
regulated at the pituitary level by peripheral signals such as hormones. 
The pituitary gonadotropic hormones, LH and follicle-stimulating 
hormone (FSH), exist as heterodimers, comprised of a common 
glycoprotein α-subunit (Cga) and their specific β-subunits, LHβ 
and FSHβ, respectively. Genes encoding these three subunits are 
expressed in the pituitary gonadotropes, and several extracellular 
signals including GnRH, progesterone, estrogen, activin, and inhibin 
have been reported to regulate their expression via a specific upstream 
response element [6–14]. Therefore, characterization of response 
elements of gonadotropin subunit genes will help to determine the 
mechanisms underlying gonadotropin regulation at the pituitary level.

Long-chain fatty acids (LCFAs) may act as metabolic signals 

in the regulation of reproductive functions. This is supported by 
findings that peripheral or central lipoprivation suppresses pulsatile 
LH secretion [15, 16], and central exposure to linoleic acid increases 
Lhb mRNA expression levels in rats [17]. Interestingly, LCFAs are 
supposed to have some influence on the synthesis and secretion of 
gonadotropic hormones at the pituitary level, since a free fatty acid 
(FFA) cocktail directly increases Lhb mRNA levels and suppresses 
Fshb mRNA levels in the gonadotropic cell line LβT2 [18] and linoleic 
acid increases LH release and Lhb mRNA levels in both LβT2 cells 
and rat primary cultured pituitary cells [19]. Furthermore, LCFAs 
may induce these phenomena through LCFA receptor GPR120, 
which is known to be expressed in the gonadotropes of the mouse 
pituitary [20] and LβT2 cells [19]. However, in previous studies with 
LβT2 cells, the role of LCFAs in the gene expression and secretion 
of gonadotropic hormones has been examined using concentrations 
of LCFAs of several hundred micromolar. Therefore, the effect of 
lower than 100 μM LCFAs on the gene expression and secretion of 
gonadotropic hormones is still unclear.

In the present study, we investigated the effects of concentrations 
of LCFAs below 100 μM and a LCFA receptor agonist, GW9508, on 
the transcription of gonadotropin subunit genes, Cga, Lhb and Fshb, 
in LβT2 cells and identified the gene regulatory region responsive 
to LCFAs.

Materials and Methods

Cell culture
The gonadotropic cell line LβT2 (kindly provided by Dr PL Mellon) 

was maintained in monolayer cultures in Dulbecco’s modified Eagle’s 
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medium (Life Technologies, Carlsbad, CA, USA) supplemented with 
10% fetal bovine serum and 0.5% penicillin/streptomycin solution 
(Sigma-Aldrich, St. Louis, MO, USA) in a humidified 5% CO2/95% 
air incubator at 37°C.

At the time of the reporter assay, cells (2 × 104) were seeded in 
100 µl Opti-MEM (Life Technologies) per well of a 96-well plate, 24 
h prior to transfection and maintained in a humidified 5% CO2/95% 
air incubator at 37°C.

LCFA stock and working solutions
The LCFAs, oleic acid, α-linolenic acid, docosahexaenoic acid 

(DHA) and palmitate, were dissolved in 50% ethanol at 65°C to 
prepare 500 mM stock solutions. Stock solutions and fatty acid-free 
bovine serum albumin (Sigma-Aldrich) in Opti-MEM were vortexed 
for 40 min and filtered to obtain a 10 mM homogenous mixture in 
Opti-MEM containing 2% bovine serum albumin.

Reporter assay
Upstream regions of the rat Cga (NC_005104.4), Lhb 

(NC_005100.4) and Fshb (NC_005102.4) genes were amplified 
using specific primer sets. The fragments were ligated into the secreted 
alkaline phosphatase (SEAP) plasmid vector pSEAP2-Basic (Clontech 
Laboratories, Palo Alto, CA, USA) as described previously [21–23]. 
The resulting reporter vectors contained the following gonadotropin 
subunit upstream regions: -3793/+37 (Cga); -2930/+17 (Lhb); and 
-2824/+28, -2342/+28, -1718/+28, -1499/+28, -1219/+28, -970/+28, 
-650/+28, -346/+28, -43/+28 (Fshb).

Transfection was performed using 200 ng DNA and 0.3 µl FuGENE 
HD (Roche Diagnostics, Basel, Switzerland) per well according 
to the protocol described in a previous study [24]. The cells were 
treated with an LCFA solution (10 µl per well) or the LCFA receptor 
agonist GW9508 at 7–8 h after transfection. After another 72 h of 
incubation, 5 µl of culture medium from each well was assayed for 
SEAP activity using the Phospha-Light Reporter Gene Assay System 
(Applied Biosystems, Foster City, CA, USA) and Powerscan H1 
microplate luminometer (DS Pharma Biomedical, Osaka, Japan) 
according to the manufacturers’ protocols.

Statistical analysis
All values were expressed as the mean ± SEM. Dunnett’s method 

was used to analyze the effect of LCFAs or GW9508 on SEAP 
activity. P-values of < 0.05 were considered significant.

Results

Effect of LCFAs or GW9508 on transcriptional activation of 
gonadotropin subunit genes

The promoter activity of Fshb (-2824/+28) was significantly 
repressed by not only treatment with both 100 µM and 50 µM DHA, 
oleic acid, α-linolenic acid or palmitate but was also significantly 
repressed by 10 µM DHA, oleic acid or α-linolenic acid (P < 0.05; 
Fig. 1). On the other hand, the promoter activity of Cga (-3793/+37) 
was significantly repressed by treatment with 100 µM DHA and by 
both 100 µM and 50 µM of oleic acid, α-linolenic acid or palmitate, 
but it was not significantly repressed by 10 µM LCFAs. Similar to 
the results for Cga, the promoter activity of Lhb (-2930/+17) was 

significantly repressed by treatment with 100 µM DHA, oleic acid, 
α-linolenic acid or palmitate and by treatment with 50 µM palmitate.

Next, we determined whether LCFAs regulate the synthesis of 
gonadotropes through GPR120 at the pituitary level and found that 
the LCFA receptor agonist GW9508 did not affect promoter activity 
at any concentration of LCFA used in this study.

Deletion analysis for the Fshb upstream region
To confirm the marked repression of Fshb by 10 µM oleic acid, 

α-linolenic acid and DHA, deletion mutants of the upstream region 
of Fshb were examined using transfection and reporter gene as-
says. Oleic acid, α-linolenic acid and DHA significantly repressed 
promoter activity of the −2824 to +28 b region (Fig. 2). However, the 
-2342/+28, -1718/+28, -1499/+28, -1219/+28, -970/+28, -650/+28, 
-346/+28, and -43/+28 b regions lost the repression by oleic acid, 
α-linolenic acid and DHA.

Figure 3 shows the locations of putative binding sites for transcrip-
tion factors between the -2824 to -2343 b region of the rat Fshb 
upstream promoter, which responded to unsaturated LCFAs. Among 
the transcription factors binding to these sites, FOXJ1, GLU1, MSX, 
PITX1, PRRX2, RUNX1 and SOX2 were identified as those with 
expression in the murine pituitary gland.

Discussion

In this study, we determined the effect of LCFAs and the LCFA 
receptor agonist GW9508 on the transcription of gonadotropin 
hormone subunit genes, including Cga, Lhb and Fshb, and identified 
the gene regulatory regions that were responsive to LCFAs. As shown 
in Fig. 1, unsaturated LCFAs, DHA, oleic acid and α-linolenic acid, 
markedly repressed the expression of Fshb at a low concentration 
(10 µM), while the saturated LCFA, palmitate, caused no apparent 
change in gonadotropin subunit gene expression at the same dose. 
Further, treatment with 50–100 µM LCFAs repressed expression of the 
gonadotropin subunit genes Cga, Lhb and Fshb (Fig. 1). In previous 
studies, the role of LCFAs on the transcription of gonadotropin hormone 
subunit genes has been examined using concentrations in the range of 
several hundred micromolars of LCFAs [17–19]. In this study, however, 
the low concentration of 10 µM unsaturated LCFAs repressed the 
expression of Fshb. The concentration of nonesterified fatty acids in 
the rodent peripheral blood is in the hundreds of micromolar range 
[25, 26]; therefore, the concentration of LCFAs used in this study 
is similar to the physiological level or even slightly lower than that 
recorded in rodent peripheral blood. These findings suggest that the 
transcription of Fshb is more sensitive or susceptible to unsaturated 
LCFAs compared with the previously reported concentration and 
that unsaturated LCFAs may be involved in the repression of Fshb 
transcription. Reproductive aging in women is characterized by 
shortening of the estrous cycle length [27], increased incidences of 
oocyte spindle aberrations or aneuploidy [28] and declining fertility 
[29]. Similar to humans, female rodents also show similar age-related 
physiological changes in reproductive function [30, 31]. These changes 
are associated with elevated baseline levels of serum FSH in humans 
[32] and mice [33]. Interestingly, dietary administration of omega-3 
polyunsaturated fatty acids such as DHA decreased serum baseline 
FSH levels and FSH response to GnRH without changing serum LH 
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levels in reproductive-age women with normal body weights [34]. 
Furthermore, Nehra et al. [35] reported that dietary treatment with 
a diet rich in DHA prolonged reproductive lifespan and improved 

oocyte quality in mice. Thus, the effect of a low concentration of 
unsaturated LCFAs on the transcription of Fshb in this study may 
have identified a part of the mechanism of unsaturated LCFAs in the 
delay of female reproductive aging and improvement of oocyte quality.

A transfection assay using serial deletion mutants of the -2824 to 
+28 b upstream region of Fshb revealed that the 10 µM unsaturated 
LCFA-responsive region for reducing Fshb transcription is located 
in the -2824 to -2343 b region (Fig. 2). Previous studies have shown 
that an FFA cocktail or linoleic acid reduces basal Fshb mRNA 
levels by disrupting the effects of activin on transcription of Fshb 
in LβT2 cells [17, 18]. LβT2 cells have been reported to produce 
activin endogenously to maintain basal Fshb expression [36]. These 
previous results imply that the reduction of Fshb transcription caused 
by unsaturated LCFAs via the -2824 to -2343 b region in the present 
study may also be mediated by the disruption of activin effects on 

Fig. 1.	 Transient transfection assay of the rat gonadotropin subunit gene 
promoters in LβT2 cells with or without treatment with oleic 
acid, α-linolenic acid, docosahexaenoic acid (DHA), palmitic 
acid or the long-chain fatty acid (LCFA) receptor agonist 
GW9508. Reporter constructs containing Cga (-3793/+37 b), Lhb 
(-2930/+17 b) or Fshb (-2824 to +28 b) promoters fused with the 
secreted alkaline phosphatase (SEAP) gene in the pSEAP-Basic 
vector were transfected into LβT2 cells. The cells were exposed 
to oleic acid, α-linolenic acid, DHA, palmitic acid, or GW9508 
(1, 10, 50 or 100 µM) 7–8 h after transfection. An aliquot of the 
culture medium was used for the SEAP assay. SEAP activities are 
presented as the activity relative to that of the basic vector. Values 
are the mean ± SEM of four independent experiments. * P < 0.05 
vs. pSEAP2-Basic (Dunnett’s method).

Fig. 2.	 Deletion analysis of the rat Fshb promoter region (-2824 to 
+28 b regions) in LβT2 cells with or without treatment with 
10 µM unsaturated LCFAs oleic acid, α-linolenic acid, or 
docosahexaenoic acid (DHA). On the left, reporter constructs are 
shown containing serial deletion mutants of the Fshb promoter 
fused with the secreted alkaline phosphatase (SEAP) gene in 
the pSEAP2-Basic vector that were transfected into LβT2 cells. 
On the right, SEAP activities are represented as the activity 
relative to that of the basic vector. Values are the mean ± SEM 
for four independent experiments. * P < 0.05 vs. pSEAP2-Basic 
(Dunnett’s method).
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Fshb expression. However, Suszko et al. [9] reported that the most 
activin-responsive domain of the rat Fshb promoter within the 
proximal promoter region was between -230 and -199 b. Therefore, 
the -2824 to -2343 b region is a novel region for the transcriptional 
control with unsaturated LCFAs. It is not clear whether this region 
is an activin-responsive domain leading to the disruption of Fshb 
transcription by unsaturated LCFAs. Interestingly, the -2824 to 
-2343 b region may contain plural putative regulatory elements for 
diverse transcription factors, including Forkhead box protein J1 
(FOXJ1), glioma-associated oncogene homolog 1 (GLI1), hairy and 
enhancer of split/split-related with YRPW motif, Msh homeobox 1-like 
protein (MSX), paired-like homeodomain 1 (PITX1), paired related 
homeobox 2 (PRRX2), runt-related transcription factor 1 (RUNX1), 
sex-determining region Y-box 2 (SOX2)/sex-determining region Y-box 
8, and TEA domain family member 2 (Fig. 3). In particular, FOXJ1, 
GLI1, MSX, PITX1, PRRX2, RUNX1, and SOX2 are expressed in 
the murine pituitary gland [37–42]. Therefore, unsaturated LCFAs 
may directly and/or indirectly modulate the binding of any of these 
factors. Indeed, in a previous study [43], PITX1 was observed to 
regulate murine and human Fshb transcription. Nevertheless, the 
role of the -2824 to -2343 b upstream region of rat Fshb and its 
molecular mechanism for the suppression by unsaturated LCFAs 
will need to be clarified by further investigations.

We hypothesized that LCFAs directly regulate the synthesis 
of gonadotropes through GPR120 at the pituitary level, because 
GPR120 expression has been observed in the gonadotropes of the 
mouse pituitary [20]. To test our hypothesis, the LCFA receptor 
agonist GW9508 was used. However, treatment with GW9508 did 
not affect gonadotropin subunit gene expression at the LCFA doses 
used in our study, although LCFAs repressed the promoter activity 
of gonadotropin subunit genes in LβT2 pituitary gonadotropic cells 
(Fig. 1). The dose of GW9508 used in this study was similar to 
that used in a previous study in which LβT2 cells were exposed 
to GW9508 [19] and induced an agonistic effect on GRP120 [44]. 
These results indicate that the reduction of transcription of Fshb is 
likely mediated by the β-oxidation products of unsaturated LCFAs 
and/or by the direct or indirect action of unsaturated LCFAs on the 
Fshb transcriptional regulatory mechanisms.

The present results showing that LCFAs repressed the transcription 
of Cga and Lhb (Fig. 1) contradict the results of previous studies. 
Sharma et al. [18] reported that an FFA cocktail induced an increase 
in Lhb mRNA levels in LβT2 cells. Garrel et al. [17, 19] reported 

that linoleic acid treatment induced an increase in the Lhb mRNA 
levels, while it had no effect on Cga mRNA levels in LβT2 cells 
or rat anterior pituitary cells. The inconsistency may depend on the 
difference in experimental methods used. Previous studies have 
demonstrated the effect of LCFAs on gonadotropin hormone subunit 
mRNA levels using real-time PCR, whereas we investigated the 
function of the enhancer/promoter elements of the gonadotropin 
genes using the SEAP reporter gene assay system. We only examined 
the region ~3.8 kb upstream of the rat gonadotropic subunit genes. 
In the SEAP reporter gene assay system, it may be necessary to 
analyze additional upstream regions to determine the gonadotropin 
transcription control mechanism by LCFAs. The upstream regions of 
Cga and Lhb examined in this study may lack the specific response 
regions for LCFAs, in contrast to the results measured for Cga and 
Lhb mRNA in the previous studies. The evidence concerning the 
LCFA response in the transcription of Cga and Lhb is not conclusive.

In conclusion, the promoter assay using reporter vectors revealed 
that the transcription of Fshb was susceptible to unsaturated LCFAs 
compared with the transcription of Cga and Lhb. Furthermore, the 
unsaturated LCFAs, DHA, oleic acid and α-linolenic acid, exhibited 
repressive regulation of rat Fshb expression at -2824 and -2343 b of the 
5′-flanking region and might be independent of the GPR120 pathway.
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