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T
he ubiquitous presence of insulin resistance
cannot be understated. First brought to light by
Himsworth and Kerr (1) in 1939, insulin re-
sistance, defined as a subnormal response to a

given dose of insulin, was ushered into prime time by
Gerald Reaven (2), where it has remained at center stage.
Insulin resistance is a major feature of type 2 diabetes (2).
Insulin resistance is also associated with obesity, essential
hypertension, dyslipidemia, nonalcoholic fatty liver disease,
obstructive sleep apnea, and cancer (3). This cluster of
maladies has been termed by Reaven as the “insulin
resistance syndrome.” Therefore, an individual with in-
sulin resistance is strongly predisposed to an increased risk
of life-threatening clinical conditions, including cardiovas-
cular disease.

As Reaven points out, the clinical consequences of insulin
resistance are not due to insulin resistance per se but come
from the hyperinsulinemia that occurs as the individual with
insulin resistance attempts to maintain normoglycemia. In
reality, compensatory hyperinsulinemia is akin to cut-
ting a deal with the devil. Chronic hyperinsulinemia may
be beneficial to resistant tissues requiring it, for example
to maintain insulin action in liver, muscle, and adipose
tissues; however, it may wreak havoc with tissues that
have normal sensitivity to insulin. Even within the same
tissue, some of the insulin-regulated pathways, such as the
glucose metabolic pathway, are more resistant to insulin
than others, including the mitogenic pathway (4). Thus, it
is likely that chronic overstimulation of the mitogenic
pathway by insulin also plays a causative role in mediating
the clinical consequences of insulin resistance. Therefore,
intensive efforts are being directed toward identifying
novel nutritional and pharmacological approaches that
improve insulin sensitivity in target tissues.

Our knowledge of the molecular mechanism(s) of in-
sulin action has increased dramatically over the past 30
years (5–10). Impaired insulin signaling can result from
mutations or posttranslational modifications of the in-
sulin receptor tyrosine kinase or its downstream effector
proteins, although this does not appear to be the cause in
the majority of insulin resistance in individuals (5). Addi-
tional candidate molecules that have been implicated in
insulin resistance in humans include plasma cell membrane
glycoprotein-1 (11) and protein tyrosine phosphatase-1B (12).

The strongest mechanistic evidence for the negative reg-
ulation of insulin action has emerged for stimuli that

activate inflammatory serine/threonine kinases (e.g., c-Jun
NH2-terminal kinase and inhibitor of kB kinase). These
stimuli include nutrient oversupply (especially lipids), en-
doplasmic reticulum stress, and oxidative stress (6,8–10).
Many of these stressors have previously been linked to
mitochondrial dysfunction and/or reduced mitochondria
content (Fig. 1) (10,13). However, in contrast, numerous
studies have reported that insulin resistance may cause
mitochondrial dysfunction. Holloszy and colleagues (14)
have pointed out that reduced mitochondrial content is still
sufficient to oxidize fatty acids in the resting state and is
unlikely to cause accumulation of fat or insulin resistance.

The insulin receptor substrate (IRS) proteins mediate the
metabolic effects of insulin (7). Serine/threonine phos-
phorylated forms of IRS molecules are less able to associate
with the insulin receptor and downstream effector mole-
cules, such as phosphatidylinositol 3-kinase, resulting in the
attenuation of insulin action on glucose metabolism and
other metabolic functions (7,15). In addition, the serine/
threonine phosphorylated forms of IRS molecules are more
susceptible to proteasome-mediated degradation (16).

Increased nitric oxide (NO) production, especially as
a consequence of inducible nitric oxide synthase (iNOS),
has also been implicated in insulin resistance, especially
in the context of obesity (17). iNOS is markedly increased
in macrophages and other inflammatory cells stimulated
by proinflammatory cytokines. In the presence of O2, NO
covalently attaches to cysteine residues of target pro-
teins forming S-nitrosothiol adducts in a reversible post-
translational modification termed protein S-nitrosation (or
S-nitrosylation). Dietary (obesogenic diet) and phar-
macological induction of NO production increases S-
nitrosation of the insulin receptor IRS-1 and AKT/PKB (a
key enzyme in the regulation of glucose metabolism) in
rodent skeletal muscle along with inducing insulin re-
sistance in the metabolic pathway (18). In adipocytes
from insulin-resistant obese mice and humans, increased
S-nitrosation of the insulin receptor and AKT/PKB have re-
cently been reported (19). Thus, protein S-nitrosation re-
sulting from NO overproduction or impaired denitrosation
can be regarded as a causative molecular mechanism for
insulin resistance.

Insulin resistance increases with aging, and in this issue
of Diabetes, Ropelle et al. (20) report that aging in mice
was associated with increased iNOS expression and S-
nitrosation of the insulin receptor IRS-1 and AKT/PKB in
skeletal muscle, along with insulin resistance. Elegantly us-
ing three independent approaches, including iNOS-null mice,
pharmacological inhibition of iNOS, and acute exercise to
reduce iNOS expression, they report that each method
protected against iNOS-mediated protein S-nitrosation and
insulin resistance. These results provide further evidence
implicating protein S-nitrosation mechanistically with insulin
resistance and extend the mechanism from insulin resis-
tance in the context of obesity to aging.

This article has a number of notable strengths, including
the use of three independent approaches to reduce iNOS
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expression and activity along with the simultaneous de-
termination of 1) whole-body insulin sensitivity (euglycemic-
hyperinsulinemic clamp method), 2) glucose transport in
isolated muscle, and 3) characterization of the insulin re-
ceptor IRS-1 and AKT/PKB with respect to phosphorylation
state and S-nitrosation. Limitations of the study include 1)
the use of only soleus muscle and not other insulin target
tissues, 2) the use of only male mice, and 3) lack of in-
formation regarding the extent of protein nitration or serine/
threonine phosphorylation, which has also been linked to
insulin resistance in aging.

Future work needs to include an assessment of the role
of protein S-nitrosation in other conditions and insulin tar-
get tissues and on other molecules in the insulin-signaling
pathways. The molecular mechanisms of insulin resistance
are diverse and likely to be context specific. For example,
the decreased whole-body glucose infusion rates during
a hyperinsulinemic clamp (a measure of whole-body insulin
sensitivity) that are observed in type 2 diabetic patients are
also observed in other conditions including obesity, aging,
polycystic ovary syndrome, and hypertension. Are the mo-
lecular mechanisms of insulin resistance identical in all
these conditions? And are those mechanisms the same for
each insulin-regulated pathway? Ropelle et al. have con-
vincingly linked protein S-nitrosation to insulin resistance in
aging mice, whereas, previously, it had been linked princi-
pally to obesity-related insulin resistance. The emergence of
protein S-nitrosation as a causative link to insulin resistance

is a welcome advance in the field and suggests additional
research and molecular targets for intervention.
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