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ABSTRACT

Mutations in LMNA, encoding A-type lamins, are responsible for laminopathies including muscular
dystrophies, lipodystrophies, and premature ageing syndromes. LMNA mutations have been shown
to alter nuclear structure and stiffness, binding to partners at the nuclear envelope or within the
nucleoplasm, gene expression and/or prelamin A maturation. LMNA-associated lipodystrophic
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features, combining generalized or partial fat atrophy and metabolic alterations associated with
insulin resistance, could result from altered adipocyte differentiation or from altered fat structure.

Recent studies shed some light on how pathogenic A-type lamin variants could trigger
lipodystrophy, metabolic complications, and precocious cardiovascular events. Alterations in
adipose tissue extracellular matrix and TGF-beta signaling could initiate metabolic inflexibility.
Premature senescence of vascular cells could contribute to cardiovascular complications. In
affected families, metabolic alterations occur at an earlier age across generations, which could
result from epigenetic deregulation induced by LMNA mutations. Novel cellular models
recapitulating adipogenic developmental pathways provide scalable tools for disease modeling
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and therapeutic screening.

Introduction

Lipodystrophic syndromes are rare diseases character-
ized by generalized or partial fat atrophy (lipoatrophy)
and metabolic alterations resulting from insulin resis-
tance (glucose tolerance abnormalities, dyslipidemia,
non-alcoholic fatty liver disease). Obesity and lipodys-
trophy share similar metabolic defects thus illustrating
the complex relationships between deregulation of adi-
pose tissue and systemic metabolism. Several authors
postulate that a personal threshold controls the individ-
ual capacity to store nutrient excess as triglycerides in
the lipid droplet of white subcutaneous adipocytes [1-3]
When the nutrient intake exceeds adipose tissue storage
capacity, this results in ectopic lipid deposition in non-
adipose tissues and in metabolic inflexibility. These

alterations characterize both metabolically-unhealthy
obesity and lipodystrophic diseases. Accordingly, a
recent genomic study, performed in the general popula-
tion, has revealed that limited peripheral adipose storage
capacity is a major determinant of insulin resistance [4].

Important questions remain unanswered regarding
factors that modulate the personal threshold of adipo-
cyte expandability. These factors depend on multiple
mechanisms, notably formation of new adipocytes from
precursors (adipogenesis) and biogenesis, maintenance
and regulation of the adipocyte lipid droplet, but also
interactions between adipocytes and other cellular and
extracellular components of adipose tissue, and cross-
talks between the different body fat depots and other
organs.
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Although lipodystrophic syndromes are rare dis-
eases, deciphering their pathogenic mechanisms
would provide valuable insights into adipose tissue
physiology, notably regarding its capacity to ade-
quately expand and maintain metabolic homeostasis.
Major advances have been achieved since 1999 thanks
to the identification of several monogenic causes of
lipodystrophic syndromes [5-18]. Their description is
far beyond the scope of this review, but it is worth
mentioning that pathophysiological molecular mecha-
nisms of most of them involve defects in adipocyte dif-
ferentiation, in biogenesis and/or structural properties
of the adipocyte lipid droplet, in triglyceride synthesis
and/or in lipolysis [19]. This further stresses the
important role played by the lack of lipid storage in
the occurrence of post-receptor insulin resistance
(Figure 1) [20]. LMNA mutations are responsible for
the most frequent genetic form of lipodystrophy.
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Figure 1. Impaired adipose tissue lipid storage induces metabolic
complications in lipodystrophic syndromes. Most genes involved
in lipodystrophic syndromes have been shown to regulate adipo-
cyte differentiation, triglycerides synthesis, lipolysis, and/or lipid
droplet structure or biogenesis. Impaired storage of excess
energy as triglycerides in adipocytes leads to ectopic fat deposi-
tion and lipotoxicity in several tissues such as muscle, heart, liver
and pancreas, resulting in post-receptor insulin resistance, dysli-
pidemia and liver steatosis.

However, the mechanisms by which these molecular
variants alter adipocyte function remain largely
unknown. Strikingly, the different LMNA mutations,
located all along the gene, give rise to very diverse clin-
ical phenotypes of laminopathies, comprising not only
lipodystrophic syndromes but also dystrophic myopa-
thies, neuropathies, premature ageing syndromes and
rare overlapping syndromes. This very large clinical
spectrum associated with LMNA defects, illustrates
the pathophysiological complexity of laminopathies
[21].

After a brief overview of the pathogenic mecha-
nisms that have been discussed since the discovery of
the first laminopathies in 1999 [22], we will propose
an update of some recent studies on LMNA-related
lipodystrophies, dealing with some genetic, preclinical
and fundamental aspects, which allow to refine or
readdress the pathophysiological hypotheses.

Several pathogenic mechanisms contribute
to laminopathies

A- and B-type lamins are nuclear proteins belonging
to the intermediate filaments family. Lamins have been
shown to play an essential role in nuclear function.
Lamins A and C, both encoded by LMNA, are devel-
opmentally regulated in most lineage precursors and are
expressed in differentiated cells. They represent A-type
lamins main isoforms and interact with the ubiquitous
B-type lamins, encoded by LMNBI and LMNB2. The
lamin functional domains are organized into a short N-
terminal head domain, a central alpha helical rod
domain, driving lamin dimerization and polymerization,
and a large C-terminal tail, containing the nuclear locali-
zation signal and an immunoglobulin-like fold domain
with multiple binding properties [23]. A CaaX motif, at
the C-terminal end, allows post-translational farnesyla-
tion of both prelamin A isoform produced by LMNA
and B-type lamins. While B-type lamins retain the farne-
syl moiety, thus increasing their affinity for the inner
nuclear membrane, prelamin A undergoes further post-
translational modifications. Farnesylated prelamin A is
finally cleaved by the ZMPSTE24/FACE-1 metallopro-
teinase, removing its farnesylated C-terminal end, and
producing a mature, non-farnesylated lamin A [24].
Lamin filaments form the lamina meshwork at the
nucleoplasmic side of the inner nuclear membrane,
which provides a structural support for the nucleus
[25,26], and controls the functional organization of



interphase chromatin [27]. At the inner nuclear periph-
ery, lamins interact with several inner nuclear mem-
brane proteins. Among them, the SUN-domain proteins
span the inner nuclear membrane and bind to the
KASH domain of proteins embedded in the outer
nuclear membrane, which, in turn, bind to cytoskeletal
proteins. All these proteins together form a complex that
links the nucleoskeleton to the cytoskeleton [28-30].
Lamin-associated nuclear envelope proteins can impact
on chromatin, and influence the spatial positioning of
developmental genes in a tissue-specific manner [31,32].
Through these multistep interactions, lamins control
nuclear stiffness and mechano-sensitivity, which are
strongly modified during stem cell differentiation
[33-35]. In addition, A- type lamin filaments, although
mainly localized at the nuclear periphery, are also found
in the nucleoplasm, where they interact with lamina-
associated protein 2alpha (LAP2alpha), a modulator of
cell-cycle progression and apoptosis [36], and where
they regulate several other signaling proteins and tran-
scription factors [37]. Lamins also bind DNA and histo-
nes, ensuring the formation of multiprotein complexes
associated with chromatin, able to regulate the expres-
sion of genes such as retinoblastoma protein (Rb) and
barrier-to-integration factor (BAF) [37]. Importantly,
lamins organize chromatin at the nuclear periphery
through lamin-associated domains (LAD) [38], and reg-
ulate interactions with epigenetic factors such as the Pol-
ycomb group of proteins [39]. Thus, there is increasing
evidence that A-type lamins epigenetically influence
stem cell differentiation and tissue-specific developmen-
tal programs [40-42]. As many structural and regulatory
roles of A-type lamins are impaired by LMNA muta-
tions, the pathophysiological mechanisms of the differ-
ent laminopathies could involve distinct pathways.

Defects in adipocyte differentiation in LMNA-
associated lipodystrophies

The clinical features of LMNA-associated lipody-
strophic syndromes are reviewed by David Araujo-
Vilar in this journal issue. The typical familial partial
lipodystrophy of the Dunnigan type (FPLD2, OMIM
#151660) is mainly due to heterozygous amino acid
substitutions at the 482nd position in the C-terminal
domain of A-type lamins, the most frequent being the
p-Arg482Trp variant. Closely related lipodystrophic
phenotypes are due to other point mutations in the
immunoglobulin-fold domain [6,7,43]. In contrast to
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LMNA mutations involved in muscular dystrophies or
cardiomyopathies, lipodystrophy-causing mutations
do not disrupt the tridimensional structure of A-type
lamins but modify a positively charged amino acid at
the surface of their C-terminal domain [44,45].

In accordance, several studies have confirmed that
LMNA mutations specific for lipodystrophies result in
modified interactions of the protein C-terminal
domain with distinctive partners in vitro. Thus, in
vitro studies have revealed that two FPLD-causing
mutations, LMNA p.Gly465Asp and p.Lys486Asn,
alter the lamin A C-terminal tail SUMOylation, a
posttranslational modification known to regulate the
localization, interactions and functions of proteins
[46]. The LMNA p.Arg482Leu mutation down-regu-
lates Notch signaling in mesenchymal stem cells,
decreasing their adipogenic potential [47]. SREBPlIc,
an important transcription factor driving adipogene-
sis, binds differently wild-type and lipodystrophy-
causing lamin A variants [48,49]. In addition, the
LMNA p.Arg482Trp and p.Arg482GIn mutations
impair the interaction between lamin A and DNA in
vitro [50]. It has been shown that lamin A, SREBP1
and its DNA responsive elements form ternary com-
plexes in vitro, and that Arg482Trp lamin A deregu-
lates SREBP1 activity in patients’ cells [51], suggesting
that it could disrupt adipocyte differentiation. The
expression of Arg482Trp or Arg482Gln lamin A, but
also overexpression of wild-type lamin A, inhibit adi-
pocyte differentiation of 3T3-L1 cells [52]. Recently,
the Fragile X related protein (FXR1P), a mRNA bind-
ing protein, was identified as a lamin A partner at the
nuclear envelope. Its expression and localization
inside the nucleus are modified in the presence of
lamin A bearing lipodystrophy-causing mutations
[53]. The expression of Arg482Trp lamin A in human
adipose stem cells increases FXR1P protein expression
and impairs adipocyte differentiation through a pro-
cess involving epigenetic and conformational changes
in chromatin organization [42,53].

At the clinical level, FPLD2 illustrates how the dif-
ferent body fat depots, which are characterized by dis-
tinct developmental origins [54], respond in a very
different manner to the same constitutional LMNA
mutation. Indeed, while patients’ subcutaneous fat
mass at the limbs and buttocks level is severely
decreased, the mass of cervical, facial, perineal and vis-
ceral depots is increased. In addition, the lipody-
strophic phenotype becomes apparent generally after
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puberty, and is more pronounced in women [43,55,56].
In agreement with the hypothesis of impaired adipo-
genesis induced by LMNA mutations, we and others
reported that expression of adipogenic genes was
altered in adipose tissue from patients with FPLD2,
both at thigh [57,58] and cervical levels [59], with a
decreased expression of the master adipogenic factor
PPAR-gamma. Dystrophic features characterized not
only lipoatrophic adipose tissue, but also lipomatous
areas, and accumulated cervical fat, from patients with
FPLD2 [57-59].

In addition to FPLD2, due to hotspot mutations in
the C-terminal region, lipodystrophic features are also
observed in uncommon forms of complex laminopa-
thies due to mutations affecting different protein
domains of A type-lamins. These mixed forms associ-
ate lipodystrophy and muscular and/or cardiac symp-
toms [60-62], and also often signs of premature aging
[63-69]. Mandibulo-acral dysplasia, due to mutations
in LMNA or ZMPSTE24, was identified as the first
laminopathy associating premature ageing and lipody-
strophic features [63,64]. This phenotypic combina-
tion was further observed with other LMNA
mutations in typical Hutchinson-Gilford progeria
[66,67] or in atypical progeroid syndromes [65,68,69].

In that setting, similar cellular defects have been
observed in different laminopathies. Nuclear abnormal
morphology and nuclear envelope disorganization
appear as hallmarks of human cultured laminopathic
cells, independently of the associated clinical presenta-
tion [66,67,70-75]. The typical LMNA mutation
responsible for Hutchinson-Gilford progeria results in
the expression of a constitutively farnesylated prelamin
A pathogenic variant, called progerin. Although other
lipodystrophy-causing mutations in LMNA do not
directly modify the proteolytic maturation site of the
protein, they could secondarily alter its maturation and
result in prelamin A accumulation. Accordingly, we
and others observed an accumulation of prelamin A in
cells and/or tissues from patients with FPLD2 or other
LMNA-related lipodystrophies associated or not with
progeroid signs [57,76,77]. Although this prelamin A
accumulation is controversial [78], some HIV protease
inhibitors, used as antiretroviral drugs, and involved in
the development of a lipodystrophic syndrome with
premature cellular senescence [75], were also shown to
increase the cellular amount of farnesylated prelamin A
through inhibition of ZMPSTE24 [77,79]. Prelamin A
accumulation, by sequestrating SREBP1c at the nuclear

periphery, may alter adipogenesis [76,80,81]. Accumu-
lated prelamin A could sequestrate the transcription
factor Spl, resulting in altered extracellular matrix gene
expression and adipose lineage differentiation of human
mesenchymal stem cells [82]. In addition, prelamin A
and progerin were shown to induce the recruitment of
the chromatin remodeling factor BAF inside the
nucleus, which could result in altered gene expression
[83,84].

However, accumulation of farnesylated prelamin A
is not mandatory for the development of lipody-
strophic diseases upon expression of lipodystrophy-
causing lamin A variant. We have described a
pathogenic homozygous frameshift mutation in
LMNA, leading to the synthesis of a prelamin A vari-
ant lacking the consensus CaaX farnesylation site. This
variant results in the expression of a non-farnesylated
form of prelamin A, without any production of mature
lamin A, and is responsible for a severe lipodystrophic
syndrome [85]. Other studies also showed that obser-
vation of prelamin A accumulation may depend on
the antibodies used, and is not a prerequisite for lipo-
dystrophy diseases [78,86].

Taken as a whole these studies show that lipodystro-
phy-causing LMNA mutations could result in several
defects leading to defective adipocyte differentiation.
Several recent studies extend and refine these hypothe-
ses, further linking pathogenic molecular mechanisms
to clinical features.

Early extracellular matrix alterations in
lipodystrophic laminopathies

Altered adipose tissue extracellular matrix (ECM),
acknowledged as a major contributor to metabolic
alterations associated with obesity [87], has also been
observed in patients with lipodystrophic syndromes of
different etiologies [15,17,59,88].

Le Dour et al generated transgenic mice overexpress-
ing the human p.Arg482GIn pathogenic lamin A vari-
ant specifically in adipose tissue, and also studied a
transgenic mice expressing higher levels of p.Arg482GIn
lamin A [89]. The severity of the lipodystrophic pheno-
type in mice probably depends on the level of expres-
sion of p.Arg482GIn lamin A, since only the latter
mouse model displayed a decreased capacity to accu-
mulate body fat, associated with decreased insulin sensi-
tivity and liver steatosis [90]. However, ECM alterations
adipose tissue from mice

were observed in



overexpressing p.Arg482GIn lamin A only in fat tissue,
similar to those reported in adipose tissue from patients
with FPLD2, even though these mice did not show
overt lipoatrophy. This suggests that these tissular
abnormalities may be early defects in the pathogenesis
of the disease [59,90]. Indeed, human and mice subcu-
taneous adipose tissue expressing p.Arg482GlIn lamin A
displayed increased fibrosis and decreased mean adipo-
cyte area. In addition, the level of gene expression of
fibronectin, which binds type 1 collagen and is involved
in the maintenance of adipocyte shape, was increased.
Conversely, the level of gene expression of elastin, a
major component of elastic fibers providing strength
and flexibility to connective tissue, and of decorin,
which also binds to type 1 collagen and participates to
matrix assembly, was decreased. Similar ECM abnor-
malities were also observed in cultured fibroblasts from
patients with FPLD2 or other LMNA-associated lipody-
strophic syndromes. These abnormalities were linked to
activation of TGF-beta signaling, a driver of matrix
deposition, and were associated with increased expres-
sion and activity of matrix metalloproteinase 9, an
endopeptidase that degrades ECM proteins.

These results suggest that an early detrimental
remodeling of fat ECM develops upon expression of
lipodystrophy-causing lamin A variants in adipose
tissue. This could hamper adipocyte differentiation
and contribute to the limited capacity of fat storage,
previously shown to induce adipose tissue dysfunc-
tion, fatty acid spillover to non-adipose organs, lipo-
toxicity and associated metabolic defects in humans
(Figure 2).

ECM alterations with fibrosis, altered metallopro-
teinase activity and/or increased TGF-beta signaling
have been previously described in LMNA-linked car-
diomyopathy [91,92], mandibulo-acral dysplasia [93—
95], and Hutchinson-Gilford progeria (Figure 3) [96].
This suggests that ECM alterations, triggered by sev-
eral LMNA mutations in different tissues, could glob-
ally contribute to the pathophysiology of
laminopathies, and that antagonists of TGF-beta may
have potential therapeutic benefit in these diseases.

Premature senescence and osteoblast-like
differentiation of smooth vascular cells in
lipodystrophic laminopathies

Cardiovascular events are frequent and precocious in
patients with FPLD2, inasmuch as they are frequently

NUCLEUS (&) 239

PATHOGENIC —> EXTRACELLULAR
A-TYPE LAMIN MATRIX REMODELLING
VARIANTS )

Z

ALTERED
ADIPOGENESIS

1/
Prelamin A &

DECREASED
LIPID STORAGE

ADIPOCYTE

MACROPHAGE

i

\ADIPOSE TISSUE

%
EXPANDABILITY  'NFLAMMATION

/
ADIPOSE TISSUE DYSFUNCTION

Figure 2. An early detrimental remodeling of adipose tissue
extracellular matrix could contribute to the pathophysiology of
LMNA-associated lipodystrophies. Extracellular matrix alterations
induced by lipodystrophy-causing LMNA mutations could hamper
adipocyte differentiation and limit the expandability of adipose
tissue, triggering adipocyte dysfunction and metabolic defects.

exposed to dyslipidemia, insulin resistance and/or dia-
betes [97,98]. However, in addition to metabolic risk
factors, FPLD2-associated LMNA mutations could
have a direct impact on the vascular wall cells.

In Hutchinson-Gilford progeria, severe premature
atherosclerosis leads to myocardial infarction and
strokes, the major causes of patients’ death at a mean
age of 14.6 years. This has been linked to accumula-
tion of progerin, a farnesylated mutated form of
prelamin A expressed in patient’s cells [99-101]. We
observed, in FPLD2, that p.Arg482Trp prelamin A
accumulated abnormally at the nuclear envelope and
induced endothelial cell dysfunction with increased
oxidative stress and cellular senescence [98]. Addi-
tionally, we recently showed that several LMNA
mutations, either leading to a lipodystrophy typical
of the FPLD2 type, or associated with signs of prema-
ture ageing, also triggered vascular smooth muscle
cell senescence with osteoblastic transdifferentiation
and calcification [102]. This could lead to early vas-
cular calcifications, as observed in patients [102]. All



240 C. VIGOUROUX ET AL.

LMNA mutations

—>

Lipodystrophies
Dunningan-type familial partial lipodystrophy (FPLD)

Metabolic laminopathies

Premature ageing syndromes
Hutchinson-Gilford progeria syndrome (HGPS)

Mandibulo-acral dysplasia (MAD)

Restrictive dermopathy (RD)

Skeletal and cardiac muscular dystrophies

Emery-Dreifuss muscular dystrophy (EDMD)
Cardiomyopathy dilated 1A (CMD1A)

Limb-girdle muscular dystrophy 1B (LGMD1B)

\

\

Fibrosis, TGF3 and MMP9 expression/activity

Adipose tissue fibrosis

Altered expression of extracellular matrix components
Altered MMP9 activity

Increased TGFJ signaling

Artery wall fibrosis

Increased MMP9 in patients’ serum

Increased TGFp secretion (osteoblasts)

Heart fibrosis
Increased TGFp activity

Figure 3. Several laminopathies are characterized by tissular fibrosis, increased TGF-beta signaling and/or metalloproteinase expression/
activity. Extracellular matrix alterations at the level of adipose tissue, vascular wall or heart have been described in several laminopathies
and participate to the clinical phenotype and to the complications of laminopathies.

together, these studies suggest that LMNA mutations
responsible for lipodystrophies may directly affect
the arterial wall, resulting in early atherosclerosis

59,90-96

atherosclerotic lesions resulting from associated met-
abolic risk factors (Figure 4). In human induced plu-
ripotent stem cells, p.R482W lamin A was recently
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Figure 4. Vascular effects of LMNA mutations causing lipodystrophy. A. Prelamin-A physiologically undergoes a complex post-transla-
tional maturation process affecting its C-terminal CaaX motif. After farnesylation of the carboxy-terminal cysteine, aaX amino acids are
removed, farnesyl-cysteine is carboxymethylated, then the 15 C-terminal amino acids are cleaved by the metalloprotease ZMPSTE24 to
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early vascular differentiation, which is also in favor of
a cell-autonomous origin of endothelial cell dysfunc-
in FPLD2 [103]. This should encourage
researchers to develop therapeutic strategies aiming

tion

at minimizing the cellular amount and toxicity of
pathogenic A-type lamin variants, not only in Hutch-
inson-Gilford progeria but also in LMNA-linked lip-
odystrophic diseases.

Anticipation of metabolic complications in
lipodystrophic laminopathies

The study of our cohort, that represents the largest
cohort of familial forms of LMNA-associated lipody-
strophies reported to date (85 patients from 24 fami-
lies), revealed that diabetes and hypertriglyceridemia
occurred at an earlier age over successive generations
(Figure 5) [104]. This happened independently of the
potential earlier screening of metabolic alterations
over time. In contrast, lipodystrophy, which is the ear-
liest clinical feature, appeared at similar age in all
patients. Notably, body mass index and total fat mass
were similar in patients from different generations,
showing that these factors cannot account by them-
selves for this observation. This major decrease in the
age at onset of metabolic complications provides one
of the very rare examples of anticipation in a Mende-
lian disorder that does not fit with the well-known
model of trinucleotide repeat disorders [105]. Recog-
nition of this phenomenon is important for proper
management of the disease. In this regard, we propose
to perform presymptomatic genetic screening during
childhood in affected families, with reinforcement of

first clinical sign metabolic complications

lipodystrophy diabetes hypertriglyceridemia
generation
G1
19 years 42 years 36 years
G2
16 years 25 years 24 years
G3
14 years 14 years 14 years

Figure 5. Anticipation of metabolic complications in lipody-
strophic laminopathies. The comparison of the natural history
and disease severity in familial forms of lipodystrophic syndromes
due to LMNA pathogenic variants reveals similar characteristics
and age at onset for lipodystrophy, but an anticipation of meta-
bolic complications over generations. The mean age at onset of
each clinical sign is indicated below symbols representing
patients from different generations.
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metabolic monitoring and adoption of preventive life-
style measures in young affected patients.

This anticipation phenomenon has to be consid-
ered in the light of recent studies, showing that LMNA
mutations could modify, by epigenetic mechanisms,
the chromatin architecture regulated by lamins during
development [38,106-108]. Complications of lipody-
strophic laminopathies might thus be sensitive to
environmental agents triggering chromatin rearrange-
ments. As an example, several environmental stres-
sors, including prenatal exposure to parental disease,
have been shown to drive type 2 diabetes inheritance
at the epigenetic level [109]. Disruptions in gene
expression could alter either adipocyte [42,110,111] or
myogenic [41] cell differentiation, depending on the
type of LMNA mutation. These studies, reviewed by
Briand and Collas in this issue, suggest that lamin A
mutations could differently alter the cell fate of difter-
ent cell lineages. They provide major keys to under-
stand how different pathogenic mutations in the same
LMNA gene can lead to tissue-specific phenotypes in
humans.

Recombinant leptin therapy in the management
of metabolic alterations in patients with LMNA-
associated lipodystrophies

International guidelines for the management of lipo-
dystrophy syndromes were recently published [112].
Patients with LMNA-associated lipodystrophies are
mainly treated with therapies recommended for clas-
sical diabetes and dyslipidemia. Among them, diet
and exercise are of major importance to reduce insu-
lin resistance and metabolic complications. Metfor-
min is a first-line therapy for insulin resistance and
diabetes. Hypoglycemic agents, including insulin, can
be useful, although their efficiency has not been spe-
cifically studied in these rare diseases. Lipids should
also be managed in accordance with guidelines for
the general population, although stricter targets for
LDL-cholesterol may be discussed in the presence of
several metabolic and cardiovascular risk factors.
There is no current treatment that can reconstitute
adipose tissue, but plastic surgery can be helpful
when lipodystrophy causes psychological distress
and/or physical discomfort [112].

Leptin deficiency, which correlates with the decreased
amount of body fat, was shown to contribute to meta-
bolic complications of lipodystrophies, whatever their
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underlying molecular mechanisms, both in mice
[113,114] and humans [115,116]. Recombinant leptin
(metreleptin) therapy is approved in the US and Japan
for the treatment of lipodystrophic syndromes, and is
available through named compassionate programs in
several European countries. Treatment with metreleptin
decreases insulin resistance, hyperglycemia, dyslipide-
mia and liver steatosis in hypoleptinemic lipodystrophic
patients, in part independently of an improved control
of deregulated eating behavior [115-118]. However, this
treatment is less efficient in partial forms of lipodystro-
phies than in generalized ones [119]. We have recently
shown that metreleptin improves not only insulin sensi-
tivity, but also insulin secretion in patients with lipody-
strophies, which could result from decreased lipotoxicity
in pancreatic islets [120]. Insulin secretion also
improved under metreleptin therapy in the subgroup of
patients with lipodystrophic syndromes due to LMNA
mutations, either of the FPLD2 type or associated with
mixed laminopathic phenotypes. We also confirmed
that the effect of metreleptin on glucose control was
related to the severity of baseline hyperglycemia. In addi-
tion, we observed, in these patients, that one-year metre-
leptin therapy significantly decreased the plasma
concentrations of proprotein convertase subtilisin/kexin
type 9 (PCSK9) [121]. PCSKO9 is an endogenous inhibi-
tor of LDL receptor that increases LDL-cholesterol cir-
culating levels. In accordance, metreleptin-mediated
decrease in PCSK9 was associated with a reduction in
the level of the proatherogenic apolipoprotein B [121].

These results further stress that metreleptin improves
the metabolic consequences of LMNA-associated lipo-
dystrophies and should be integrated in the therapeutic
strategy [112].

New cellular tools to study adipocyte
development in vitro

As stated above, it is likely that developmental defects
affecting the adipocyte lineage underlie, at least in
part, important pathophysiological mechanisms lead-
ing to lipodystrophic laminopathies.

In that setting, reprogramming of patients’ primary
cells into human induced pluripotent stem cells
(hiPSCs) provides a relevant cellular model for patho-
physiological studies. One limitation of this strategy is
the incomplete knowledge of developmental pathways
leading towards the distinct human adipose depots.
Indeed, several types of adipocytes co-exist in the
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Figure 6. A new cellular tool for studying adipocyte development
in vitro. Patients’ primary cells reprogramming into induced Plu-
ripotent Stem Cells (iPSCs) allow to study several relevant cells
types that would be otherwise inaccessible. This also avoids using
non-physiological lamin overexpression strategies. Differentiation
of iPS cells originating from patients with lipodystrophic lamino-
pathies into adipocytes through a developmentally relevant pro-
tocol also provides an unlimited source of cells for high
throughput screening (HTS) of therapeutic compounds, opening
perspectives for the treatment of these rare diseases.

human body. Whereas adipocytes store excess energy
as triglycerides, brown adipocytes are able to dissipate
energy through mitochondrial thermogenesis [122]. A
third type of adipocytes, called beige adipocytes, dis-
plays thermogenic properties upon activation, and
could therefore be a relevant target to treat metabolic
complications of diabetes [123].

Most of the current protocols for in vitro adipocyte
differentiation of hiPSCs are based on generation of
embryoid bodies and/or derivation of mesenchymal
stem cells prior to adipose differentiation [124]. A
strategy involving overexpression of adipogenic tran-
scription factors has also been proposed [125], but
this results in a bypass of developmental pathways
and therefore hampers pathophysiological studies.

Guénantin, Briand et al have recently set up an effi-
cient protocol allowing the differentiation of hiPSCs
into adipose progenitors with a dual white and beige dif-
ferentiation potential [126]. This protocol recapitulates
adipocyte developmental processes in vitro through
mesodermal then adipose stem cells stages. Engraftment
of hiPSC-derived progenitor cells allowed the generation
of a well-organized human adipose tissue in vivo.

This new iPS cell-based tool may be particular rele-
vant to study adipose differentiation in lipodystrophic



laminopathies. In addition, this unlimited source of
adipocytes could provide a valuable material for drug
screening and further development of targeted thera-
peutic approaches (Figure 6).
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