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ABSTRACT
Background.Mycobacterium avium subsp. hominissuis (MAH) is an emerging
opportunistic human pathogen. It can cause pulmonary infections, lymphadenitis
and disseminated infections in immuno-compromised patients. In addition, MAH is
widespread in the environment, since it has been isolated from water, soil or dust. In
recent years, knowledge on MAH at the molecular level has increased substantially. In
contrast, knowledge of the MAHmetabolic phenotypes remains limited.
Methods. In this study, for the first time we analyzed the metabolic substrate utiliza-
tion of ten MAH isolates, five from a clinical source and five from an environmental
source. We used BIOLOG Phenotype MicroarrayTM technology for the analysis. This
technology permits the rapid and global analysis of metabolic phenotypes.
Results. The ten MAH isolates tested showed different metabolic patterns pointing
to high intra-species diversity. Our MAH isolates preferred to use fatty acids such as
Tween, caproic, butyric and propionic acid as a carbon source, and L-cysteine as a
nitrogen source. Environmental MAH isolates resulted in being more metabolically
active than clinical isolates, since the former metabolized more strongly butyric acid
(p= 0.0209) and propionic acid (p= 0.00307).
Discussion. Our study provides new insight into the metabolism of MAH. Under-
standing how bacteria utilize substrates during infection might help the developing of
strategies to fight such infections.

Subjects Microbiology, Infectious Diseases, Public Health, Metabolic Sciences
Keywords Mycobacterium avium, Biolog, OmniLog R©, Metabolism, Phenotype microarray

INTRODUCTION
Mycobacterium avium subsp. hominissuis (MAH) is clinically one of the most relevant
non-tuberculous mycobacteria (Tortoli, 2014). MAH is an opportunistic human pathogen
causing pulmonary infections, lymphadenitis in small children and disseminated
infections (Despierres et al., 2012; Rindi & Garzelli, 2014). It is of increasing public health
relevance, with reports of MAH infections increasing worldwide (Hoefsloot et al., 2013).
Moreover, MAH is widespread in the environment (Falkinham , 2013; Lahiri et al., 2014).
In recent years, there have been substantial advances in the analysis of bacteria at the
molecular level. Indeed, several whole genome sequences are now available for many
mycobacterial species, including MAH (Bannantine et al., 2014; Kim et al., 2012; Uchiya
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et al., 2013;Wynne et al., 2010). In contrast, there has been little concomitant advance in
knowledge at the phenotypic level. Phenotype analysis deserves greater attention, as it is
the phenotype that selection pressure acts upon to confer evolutionary advantages to the
bacterial species (Plata, Henry & Vitkup, 2015). In order to address this knowledge gap
for bacterial phenotypes, BIOLOG Inc. developed the Phenotype MicroArrayTM (PM)
(BIOLOG, Hayward CA), a high throughput method for the rapid and global analysis
of microbial metabolic phenotypes (Bochner, 2003; Bochner, 2009; Bochner, Gadzinski
& Panomitros, 2001; Bochner, Giovannetti & Viti, 2008). The PM technology consists of
several commercially available 96-well plates in which every well has a different substrate,
allowing nearly 2,000 different microbial metabolic phenotypes to be tested (Bochner,
2003; Bochner, 2009; Bochner, Gadzinski & Panomitros, 2001; Bochner, Giovannetti &
Viti, 2008). PM technology has been applied to several microorganisms, including
mycobacteria (Baloni et al., 2014; Bochner, Giovannetti & Viti, 2008; Borglin et al., 2012;
Chen, Scaria & Chang, 2012; Gupta, Kasetty & Chatterji, 2015; Johnson et al., 2008; Khatri
et al., 2013; Lofthouse et al., 2013;Mackie et al., 2014;Mishra & Daniels, 2013; Nai et al.,
2013; Omsland et al., 2009; Tohsato & Mori, 2008). One possible application of PM is
the detection of phenotype changes due to gene knock-out. For example, Chen and co-
authors showed that a leuDmutant ofM. avium subsp paratuberculosis lost the ability
to use several carbon, nitrogen, sulfur and phosphorous substrates (Chen, Scaria &
Chang, 2012). Other researchers showed that the use of 12 carbon substrates differentiated
M. tuberculosis fromM. bovis (Khatri et al., 2013; Lofthouse et al., 2013).

In this study we tested clinical and environmental isolates of MAH using the PM
technology. Our aim was to describe the metabolic substrates utilized by MAH isolates
and to identify any metabolic differences between clinical and environmental MAH
isolates.

MATERIALS AND METHODS
Bacterial isolates and BIOLOG phenotype microarray
We analyzed five clinical and five environmental MAH isolates (Table 1).

We performed the BIOLOG Phenotype MicroarrayTM (BIOLOG, Hayward, CA,
USA) according to the manufacturer’s recommendations. The technology is based on
the measurement of bacterial respiration, which produces NADH (Bochner, Gadzinski &
Panomitros, 2001). If bacteria are able to metabolize a specific substrate, electrons from
NADH reduce a tetrazolium dye in an irreversible reaction generating a purple color
in the PM plate wells. This color change is measured and recorded every 15 min by the
reporter instrument OmniLogTM (BIOLOG, Hayward, CA, USA), generating a kinetic
response curve for each well (Bochner, 2003; Bochner, 2009).

The ten MAH isolates were tested with the 96-wells plates PM1 to PM4, containing 190
carbon (PM1 and PM2), 95 nitrogen (PM3), 59 phosphorous (PM4) and 35 sulfur (PM4)
substrates. The PM plates 1, 2 and 3 include one negative control well, in which bacteria
are tested without any substrate. The PM4 plate includes two negative control wells,
one for the phosphorus and one for the sulfur substrates. All isolates were tested three
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Table 1 Characteristics of the tenMAH isolates analyzed in this study.

MAH Isolate
name

Year of
isolation

Source Provider or reference Accession of whole
genome sequence

P-10091-06 2006 Clinical—Child with lymphadenitis NRC for Mycobacteria, Borstel, Germany LNAV00000000
2721 2004 Clinical—Child with lymphadenitis NRC for Mycobacteria, Borstel, Germany AWXJ00000000
P-9-13 2013 Clinical—Adult pulmonary infection Charité Hospital, Berlin, Germany LNBB00000000
104 1983 Clinical—Adult pulmonary infection Reference strain, USA CP000479
TH135 2013 Clinical—Adult pulmonary infection Reference strain, Japan AP012555
E-128 2010 Environmental—Soil Friedrich Löffler Institute, Jena, Germany LVCS00000000
E-96-2 2010 Environmental—Soil This study LMVW00000000
E- 82-7 2010 Environmental—Dust This study LNAF00000000
27-1 2010 Environmental—Dust This study AWXK00000000
E-2514 na Environmental—Water University of Düsseldorf, Germany LNBJ00000000

Notes.
MAH, Mycobacterium avium subsp. hominissuis; NRC, National reference center; na, Not available.

times. Briefly, we cultivated each MAH isolate in 30 ml of 7H10 Middlebrook medium
supplemented with 10% modified ADC-enrichment (2% of glucose, 5% of BSA, 0,85%
of NaCl) until an OD600 nm of 0.3–0.6 was achieved (mid-logarithmic phase of growth).
The use of liquid cultures in place of agar reduces bacterial clumping. Bacterial cultures
were harvested by centrifugation for 10 min at 4,000 g and pellets were re-suspended
in 10 ml of distilled water. Bacterial cells were starved for one night in water at room
temperature to minimize false positive reactions due to nutrient accumulation in MAH
cells and to ensure the use of the substrates provided by the PM plates. The following day
the cells were centrifuged and re-suspended using a sterile stick in tubes containing 10 ml
of GN/GP-IF-0a (BIOLOG inoculating fluid), 120 µl of 100× BIOLOG Redox Dye Mix
G and 1 ml of the appropriate additive (Table 2), until 85% transmittance was reached
as measured using the turbidimeter provided by BIOLOG. In order to reduce bacterial
clumping, the sterile stick used for inoculation was ground against the wall of the tube.
A volume of 100 µl of this final suspension was added to each of the 96 wells of the PM
plates. The PM plates were then sealed to avoid drying and incubated at 37 ◦C in the
OmniLog R© (BIOLOG, Hayward, CA, USA) incubator reader for 8 days.

As recommended by BIOLOG, we tested plates PM1 to PM4 using the same assay
protocol but without the addition of bacteria in order to identify wells with abiotic dye
reduction, which can generate false positive results.

Analysis of BIOLOG phenotype microarray data
The raw kinetic data were exported as CSV files using OmniLog PM file Management/ki-
netic Analysis module (Bochner, 2003; Khatri et al., 2013). Differences in the metaboliza-
tion of the different substrates by the ten MAH isolates were investigated by analyzing
the maximum height of the bacterial respiration curves (parameter A) using the R-
package opm (Vaas et al., 2013). To allow comparisons across plates processed in different
experimental runs, the A parameters were normalized by subtracting the well mean of
the negative control (Vaas et al., 2013). Furthermore, the A parameters of the triplicates
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Table 2 Additives used for each PM plates. As additive are usually provided nutrient that are absent to
the PM minimal media, but present in a standard MAH growth conditions. We used additives to make
a complete minimal medium but omitted anything that could act as a source of the substrates of interest
(for example, we did not include nitrate additives in the nitrogen source plates).

Additive a Additive b

PM plate usage PM1, PM2, PM4 PM3

Ingredients 24 mMMgCl2 24 mMMgCl2
12 mM CaCl2 12 mM CaCl2
0,0012% ZnSO4 0,0012% ZnSO4
0,06% ferric ammonium citrate 0,01% tween 80
1,2% NH4Cl
0,01% tween 80

were combined by calculating the mean and discretized into ‘‘positive,’’ ‘‘moderate’’
and ‘‘negative’’ metabolization using the method ‘‘discrete’’ within the R-opm package.
Substrates differentiating the isolates from each other were visualized as a heatmap
generated using the R-packages heatmap.plus with the Euclidean algorithm. The heatmap
displays the utilization of each substrate with a color key: yellow for strong positive
metabolization, green for moderate metabolization and blue for no metabolization.

Analysis of metabolic pathways
The metabolic pathways of the two substrates of interest butyric and propionic acid have
been further analyzed. Specifically, we extracted all sequences of the genes known to be as-
sociated with the pathways related to butyric and propionic acid from the KEGG pathway
database (Kanehisa et al., 2016). We extracted the genes from all theM. avium subspecies
(n= 8) present in the KEGG pathway database, namely:M. avium subsp. paratuberculosis
K-10,M. avium subsp. paratuberculosisMAP4,M. avium subsp. paratuberculosis E1,M.
avium subsp. paratuberculosis E93,M. avium subsp. avium DJO-44271,M. avium subsp.
avium 2285 (R),M. avium subsp. avium 2285 (S) and theM. avium 104. The redundant
genes have been excluded. Then we screened all such genes in genomes of our ten MAH
isolates by performing a Custom BLAST analysis using Geneious version 9 (Kearse et al.,
2012). The parameters for the screening that we used to determine if a gene was present or
not were: sequence identity ≥ 90%, sequence coverage ≥ 90%, e value ≤ 0.01.

In addition, we analyzed the number of Single Nucleotide polymorphisms (SNP)s
(both synonymous and nonsynonymous) in the sequence of the genes detected in our
MAH isolates. For each gene, we also constructed a phylogenetic tree using the nucleotide
sequences to determine whether any SNP was associated with clinical or environmental
source of the isolates based on the Tamura–Nei model using Geneious version 9.

Statistical analyses
We generated two groups, one with data from all clinical isolates and the other with data
from all environmental isolates. Statistical differences between clinical and environmental
isolates in the metabolization of butyric acid and propionic acid were evaluated by means
of 95% family-wise comparison of group means (Tukey contrast test) of the parameter A
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on specific wells using the function ‘‘opm_mcp’’ within the opm R-package. A p value less
than 0.05 was considered to be statistically significant.

Whole genome sequencing of MAH isolates
Genomic DNAs were extracted from the MAH isolates as described previously (Lewin et
al., 2003). Whole genome sequencing (WGS) was performed using Illumina MiSeq 300 bp
paired-end sequencing, yielding a coverage that exceeded 100×. The NGS QC tool kit was
used to assess the quality of the data reads, which was set as reads with a minimum of 70%
of bases having a phred score greater than 20 (Patel & Jain, 2012). De novo assembly of
the resulting reads into multiple contigs was performed using CLC Genomics Workbench
8.0 (CLC bio, Aarhus, Denmark) and contigs annotation was done using RAST (Aziz et
al., 2008).

Determination of the maximum common genome and of the
accessory genome
We determined the maximum common genome (MCG), comprising those genes present
in all of the ten MAH genomes, as reported previously (Von Mentzer et al., 2014). All these
genes were then extracted from all genomes, concatenated and aligned. The resulting
alignment was used to generate a clustering tree using RAxML 8.1 (Stamatakis, 2014).

For determination of the accessory genome we applied the PanGenome Pipeline –
Roary. After determination of the accessory genome of the ten MAH genomes and its
distribution within them, we separated those genes that are exclusively present only in
either the environmental strains or the clinical strains (Page et al., 2015).

RESULTS
Substrate utilization of the ten MAH isolates
We tested the capability of our ten MAH isolates to metabolize 379 different substrates.
In total, 334/379 (88.1%) substrates were negative for all of the isolates (see Table S1). A
total of 23/379 (6.1%) substrates caused abiotic reactions and were excluded from further
analysis. A list of false-positive substrates is shown in the Table S2. The kinetic curves
corresponding to the control plates PM1 to PM4 tested without bacteria are presented
in the Fig. S1.

Only two carbon substrates, the fatty acid derivatives Tween 20 and Tween 40 were
strongly positive for all of the ten MAH isolates. The kinetic curves for these substrates
reached 250 Omnilog units, amongst the highest values recorded in our analysis (see Fig.
S2 for all kinetic curves of the ten MAH isolates). The opm analysis revealed that a total of
20/379 (5.3%) substrates were metabolized differently among the MAH isolates (Table
3). We therefore carried out further analysis using only these substrates. The majority
of these 20 substrates were carbon substrates, 15/20 (75.0%), followed by 3 nitrogen
and 2 phosphorous substrates. The heatmap in Fig. 1 shows the utilization of these 20
substrates among the ten MAH isolates. The isolates are grouped according to their
substrate utilization. Isolates utilizing similar substrates appear to cluster together.

Two major clusters, each composed of five isolates, could be observed. One was rich
in environmental isolates (4/5) and the other was rich in clinical isolates (4/5). The
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Table 3 The 20 substrates differentiating the tenMAH isolates analyzed in this study.

PM Plate Substrate and well number Pathway involved Reference

PM1 Carbon Acetic acid –C08 Pyruvate metabolism Baloni et al. (2014), Nai et al. (2013)
Acetoacetic acid –G07 Pyruvate metabolism Baloni et al. (2014), Nai et al. (2013)
Methyl pyruvate –G10 Pyruvate metabolism Baloni et al. (2014), Nai et al. (2013)
Mono–methyl Succinate –G09 Tricarboxylic acid cycle Baloni et al. (2014), Nai et al. (2013)
Propionic acid –F07 Propanoate metabolism,

Nicotinate and nicotinamide metabolism,
Degradation of aromatic compounds

Baloni et al. (2014), Kanehisa & Goto (2000),
Kanehisa et al. (2016), Nai et al. (2013)

D-psicose –H05 Glycolysis and branches Baloni et al. (2014), Nai et al. (2013)
Pyruvic acid –H08 Pyruvate metabolism Baloni et al. (2014), Nai et al. (2013)
Tween 80 –E05 Fatty acid metabolism Baloni et al. (2014), Nai et al. (2013)

PM2 Carbon L-alaninamide –G02 Amino acid metabolism Nai et al. (2013)
Butyric acid –D12 Butanoate metabolism Baloni et al. (2014), Kanehisa & Goto (2000),

Kanehisa et al. (2016), Nai et al. (2013)
Caproic acid –E02 Carboxylic acid metabolism Nai et al. (2013)
L-histidine –G06 Amino acid metabolism Nai et al. (2013)
γ -hydroxy-butyric acid –E09 Succinate metabolism Breitkreuz et al. (2003), Nai et al. (2013)
β -methyl-D-galactoside –C07 Galactose Metabolism Nai et al. (2013)
Sebacic acid –F08 Carboxylic acid metabolism Nai et al. (2013)

PM3 Nitrogen D,L-α -amino-caprylic acid –G10 Amino acid metabolism Baloni et al. (2014)
L-cysteine –A11 Amino acid metabolism Baloni et al. (2014)
D-galactosamine –E09 Amino-sugar pathway Baloni et al. (2014)

PM4 Phosphorous
and sulphur

Carbamyl phosphate –B05 Urea cycle and Pyrimidine synthesis Nelson & Cox (2004)

Sodium pyrophosphate –A03 Phosphoric acid synthesis Nelson & Cox (2004)

substrates predominantly contributing to this clustering were butyric acid and propionic
acid and indeed, the Tukey’s test revealed that environmental isolates metabolized more
strongly butyric acid (p= 0.0209) and propionic acid (p= 0.00307) than clinical isolates
with statistical significance.

Metabolic pathways analysis
The propionic and butyric acid are involved in three and one pathway, respectively (Table
3). A total of 151 genes have been identified in the KEGG database associated with all
these pathways (Kanehisa et al., 2016). In Table S3 we reported the distribution and SNPs
analysis of those genes in the MAH genomes. Of the 151 genes, 134 (88.7%) are present
in all the ten MAH. The median gene length was 1,099 bp (range 318–2,253), whereas
the median number of SNPs per gene is 17 (range 1–147). The phylogenetic analysis
revealed that none of the SNPs could be associated with the group of the clinical or the
group of environmental MAH isolates (see Table S4). In the propanoate pathway four
operons have been identified: fadAB associated with the β-oxidation of several fatty acids
(DiRusso, 1990), ech8-9 encoding for hydrogenases that play a role in energy conversion
(Sant’Anna et al., 2015), sucCD responsible for the succinate metabolism (Cerdeno-
Tarraga et al., 2003) andmutAB involved in the methylmalonate pathway (Schoenwolf
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Figure 1 Heatmap showing the 20 substrates that were differently metabolized by the tenMAH iso-
lates analyzed in this study. The color key scale for each substrate is based on dye reduction quantified by
Omnilog units. A yellow color indicates strong positive substrate metabolization, a green color moderate
metabolization and a blue color indicates no substrate metabolization. Regarding the MAH isolates, envi-
ronmental isolates are marked in orange, while clinical isolates are marked in blue.

& Alvarez, 1989). In the nicotinate pathway there are two operons: the pntAA-AB-B
responsible for the transhydrogenation between NADH and NADP (Anderlund et al.,
1999) and nadABC involved in the biosynthesis of NAD+ (Vilcheze et al., 2010). In the
degradation of aromatic compounds pathway we identified the pcaHGB operon involved
in the β-ketoadipate pathway (Harwood & Parales, 1996). In the butanoate pathway
we identified the fadAB and ech8-9operons, the sdhCDAB encoding for the succinate
dehydrogenase complex involved in the fatty acid metabolism (Nam et al., 2005) and
the ilvBN responsible for the acetolactate synthesis, a precursor of several amino acids
(Keilhauer, Eggeling & Sahm, 1993).

Clustering analysis and determination of the accessory genome
The WGS of the two reference strains MAH 104 and MAH TH135 were already in the
GenBank database and we submitted the remaining genomes at DDBJ/EMBL/GenBank
under the BioProject Number PRJNA299461. The MCG, the maximum number of genes
shared by all ten MAH isolates was 1,658, the alignment of which spanned 1.378 Mbp.
The clustering analysis of the ten MAH isolates is shown in Fig. 2. By comparing the
genetic clustering obtained by WGS with the phenotypic clustering obtained through
BIOLOG PM we observed slight differences. For examples, the isolates MAH E-96-2 and
MAH E-82-7, which share identical metabolic profiles, were genetically more distant from
each other. Interestingly, at the genetic level there was no obvious clustering between the
group of clinical and the group of environmental isolates.

The accessory genome is constituted by 4,067 genes. A total of 1,688 genes were specific
for the group of clinical isolates (Table S5). On the other hand, 698 genes were specific
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Figure 2 Clustering of the 10MAH isolates. The tree was generated using RAxML 8.1. The alignment comprised 1,658 genes constituting the max-
imum common genome of our ten MAH isolates. Two reference strains were also included (MAH 104 and MAH TH135). The genome sequence
ofM. avium subsp. paratuberculosis K10 (Accession Number: AE016958) was used as outgroup. Isolate origin is also represented by blue for clin-
ical origin and orange for environmental origin. The percentage of trees in which the associated taxa clustered together is shown adjacent to the
branches.

for the group of environmental isolates (Table S6). We found no genes that were present
in all the clinical and absent in all the environmental isolates, and vice-versa. Among the
most abundant specific genes of the two groups of isolates, there were no known genes
associated with the pathways which involved butyric and propionic acid. However, genes
annotated as hypothetical proteins represented the most abundant specific genes of the
two groups

DISCUSSION
This study represents the first phenotypic analysis of a collection of clinical and en-
vironmental MAH isolates using the Biolog PM technology. We showed that the PM
technology works well and can be performed with MAH isolates. Strong positive reactions
with several substrates were observed with kinetic curves exceeding 200 Omnilog dye
units. Although some substrates were metabolized only moderately by our MAH isolates
(green in Fig. 1), this might be due to the fact that the use of such substrates by bacteria
has a time lag.

The ten MAH isolates showed different metabolic patterns pointing to high intra-
species diversity. Only two out of the ten isolates had identical heatmap profiles (MAH
E-96-2 and MAH E-82-7).

Our study showed that MAH isolates prefer to metabolize fatty acids as a carbon
source. Indeed, the Tween substrates were strongly metabolized by all MAH isolates
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tested. This is in agreement with prior studies, showing that Tween substrates were widely
used by different mycobacterial species (Baloni et al., 2014; Chen, Scaria & Chang, 2012;
Hayashi et al., 2010; Khatri et al., 2013; Lofthouse et al., 2013;Wang et al., 2011). It has
been reported that mycobacteria hydrolyze Tween 80 to generate the fatty acid oleic
acid, which can enter the Tricarboxylic acid (TCA) cycle or can be used as a substrate
for energy production (Lofthouse et al., 2013; Vandal, Nathan & Ehrt, 2009). Other fatty
acids used by the majority of our MAH isolates are represented by two short fatty acids,
caproic acid and butyric acid (Kanehisa & Goto, 2000; Kanehisa et al., 2016; Khatri et al.,
2013). Caproic acid and its derivatives are involved in several mycobacterial pathways
such as the degradation of aromatic compounds, oxocarboxylic acid metabolism or lysine
degradation (Kanehisa & Goto, 2000; Kanehisa et al., 2016). The butyric acid is the final
product of butanoate metabolism. Propionic acid is another fatty acid used by our MAH
isolates and this represents the terminal product of propanoate metabolism (Kanehisa &
Goto, 2000; Kanehisa et al., 2016). The nitrogen source L-cysteine, used by six of our MAH
isolates, is the final product of cysteine metabolism and is involved in the biosynthesis of
other amino acids such as methionine and histidine (Baloni et al., 2014; Kanehisa & Goto,
2000; Kanehisa et al., 2016).

The question of whether bacteria of the same species originating from either clinical
or environmental sources differ from each other is still a matter of discussion. Li and co-
authors (2014) showed that comparative genome analysis clearly distinguished clinical
and environmental Vibrio parahaemolyticus isolates from each other. In contrast, other
researchers have reported no difference between clinical and environmental Pseudomonas
aeruginosa isolates with regard to virulence and metabolic properties (Alonso, Rojo &
Martinez, 1999; Vives-Florez & Garnica, 2006). Although our study did not reveal any
clear distinction between clinical or environmental MAH isolates at the level of the whole
genome, we observed differences between clinical and environmental isolates with regard
to substrate utilization. The most intriguing difference is that the two fatty acids butyric
acid and propionic acid are metabolized more by the environmental than by clinical
isolates.

We observed no difference in the presence / absence of genes associated with butyric
or propionic acid pathways among the group of clinical and the group of environmental
MAH isolates. The SNPs analysis of the genes involved in the pathways revealed that
no SNPs were associated with clinical or environmental origin of the MAH isolates.
These evidences suggest that the metabolic differences observed among clinical and
environmental MAH isolates might be due to difference in gene regulation. However, we
screened all the genes that up to now have been associated with the pathways of interest.
We can speculate that there might be additional genes, of unknown function, that might
play a role in the above pathways.

The analysis of the accessory genome revealed that none of the genes specific for the
clinical or for the environmental isolates could be associated with the pathways of interest.
However, future studies on the high number of hypothetical proteins might clarify
whether they have a role in the pathways which involved the butyric and propionic acid.
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The higher metabolic activity observed among environmental MAH isolates might
be advantageous for survival in an environment presenting a wider range of nutritional
conditions than the host cells alone. Further studies testing a larger number of isolates
from different origins might clarify this. In addition, it has been showed that in bacteria
the fatty acids have a role in adaptation to different environmental conditions (De Sarrau
et al., 2012; De Sarrau et al., 2013; Diomande et al., 2015).

CONCLUSIONS
Our study contributes to the understanding of the emerging pathogen MAH at the
phenotypic and metabolic level. Understanding how bacteria utilize their own or host-
derived substrates during infection might help the development of strategies to fight
such infections. We encourage phenotypic testing of microbial isolates from different
ecological niches to identify key substrates or pathways that can be used as targets for drug
development or for selective growth media development.

ACKNOWLEDGEMENTS
We would like to thank Barry Bochner (President of BIOLOG) for his invaluable input
to this study and Brian Weinrick (Albert Einstein College of Medicine, New York City)
for his support in developing the BIOLOG laboratory protocol. Elvira Richter (National
Reference Center for Mycobacteria, Borstel, Germany) and Roland Schulze-Röbbecke
(University Hospital Düsseldorf) provided a number of MAH isolates, Carsten Schwarz
(Christiane Herzog Zentrum, Charité, Berlin) provided respiratory samples from cystic
fibrosis patients and Kei-ichi Uchiya provided the reference strain MAH TH135. We
thank Katharina Schaufler (Free University Berlin) for her support with the BIOLOG data
analysis and Inga Eichorn (Free University Berlin) for her help with the whole genome
sequencing data. We thank Steve Norley (Robert Koch Institute, Berlin) for the English
revision of the manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by a grant from the German Research Foundation (DFG)-
sponsored International Research Training Group (IRTG) entitled ‘Internationales
Graduiertenkolleg –Functional Molecular Infection Epidemiology –GRK1673 (Berlin-
Hyderabad)’ to AS and FD. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
German Research Foundation (DFG)-sponsored International Research Training Group
(IRTG).

Sanchini et al. (2017), PeerJ, DOI 10.7717/peerj.2833 10/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.2833


Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Andrea Sanchini performed the experiments, analyzed the data, wrote the paper,
prepared figures and/or tables, reviewed drafts of the paper.
• Flavia Dematheis conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures
and/or tables, reviewed drafts of the paper.
• Torsten Semmler analyzed the data, contributed reagents/materials/analysis tools,
prepared figures and/or tables, reviewed drafts of the paper.
• Astrid Lewin conceived and designed the experiments, analyzed the data, wrote the
paper, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

The raw data has been supplied as Supplementary Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.
7717/peerj.2833#supplemental-information.

REFERENCES
Alonso A, Rojo F, Martinez JL. 1999. Environmental and clinical isolates of Pseudomonas

aeruginosa show pathogenic and biodegradative properties irrespective of their ori-
gin. Environmental Microbiology 1:421–430 DOI 10.1046/j.1462-2920.1999.00052.x.

AnderlundM, Nissen TL, Nielsen J, Villadsen J, Rydstrom J, Hahn-Hagerdal B,
Kielland-Brandt MC. 1999. Expression of the Escherichia coli pntA and pntB genes,
encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae
and its effect on product formation during anaerobic glucose fermentation. Applied
and Environmental Microbiology 65:2333–2340.

Aziz RK, Bartels D, Best AA, DeJonghM, Disz T, Edwards RA, Formsma K, Gerdes
S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek
RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C,
Stevens R, Vassieva O, Vonstein V,Wilke A, Zagnitko O. 2008. The RAST
server: rapid annotations using subsystems technology. BMC Genomics 9:75
DOI 10.1186/1471-2164-9-75.

Baloni P, Padiadpu J, Singh A, Gupta KR, Chandra N. 2014. Identifying feasible
metabolic routes inMycobacterium smegmatis and possible alterations under diverse
nutrient conditions. BMCMicrobiology 14:276 DOI 10.1186/s12866-014-0276-5.

Bannantine JP, Bayles DO, Robbe-Austerman S, Burrell AM, Stabel JR. 2014. Draft
genome sequence of aMycobacterium avium complex isolate from a Broadbill Bird.
Genome Announc 2 DOI 10.1128/genomeA.01268-13.

Sanchini et al. (2017), PeerJ, DOI 10.7717/peerj.2833 11/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.2833/supplemental-information
http://dx.doi.org/10.7717/peerj.2833#supplemental-information
http://dx.doi.org/10.7717/peerj.2833#supplemental-information
http://dx.doi.org/10.1046/j.1462-2920.1999.00052.x
http://dx.doi.org/10.1186/1471-2164-9-75
http://dx.doi.org/10.1186/s12866-014-0276-5
http://dx.doi.org/10.1128/genomeA.01268-13
http://dx.doi.org/10.7717/peerj.2833


Bochner BR. 2003. New technologies to assess genotype-phenotype relationships. Nature
Reviews Genetics 4:309–314 DOI 10.1038/nrg1046.

Bochner BR. 2009. Global phenotypic characterization of bacteria. FEMS Microbiology
Reviews 33:191–205 DOI 10.1111/j.1574-6976.2008.00149.x.

Bochner BR, Gadzinski P, Panomitros E. 2001. Phenotype microarrays for high-
throughput phenotypic testing and assay of gene function. Genome Research
11:1246–1255 DOI 10.1101/gr.186501.

Bochner BR, Giovannetti L, Viti C. 2008. Important discoveries from analysing bacterial
phenotypes.Molecular Microbiology 70:274–280
DOI 10.1111/j.1365-2958.2008.06383.x.

Borglin S, Joyner D, DeAngelis KM, Khudyakov J, D’Haeseleer P, JoachimiakMP,
Hazen T. 2012. Application of phenotypic microarrays to environmental microbiol-
ogy. Current Opinion in Biotechnology 23:41–48 DOI 10.1016/j.copbio.2011.12.006.

Breitkreuz KE, AllanWL, Van Cauwenberghe OR, Jakobs C, Talibi D, Andre B, Shelp
BJ. 2003. A novel gamma-hydroxybutyrate dehydrogenase: identification and
expression of an Arabidopsis cDNA and potential role under oxygen deficiency.
Journal of Biological Chemistry 278:41552–41556.

Cerdeno-Tarraga AM, Efstratiou A, Dover LG, HoldenMT, PallenM, Bentley SD,
Besra GS, Churcher C, James KD, De Zoysa A, Chillingworth T, Cronin A, Dowd
L, Feltwell T, Hamlin N, Holroyd S, Jagels K, Moule S, Quail MA, Rabbinowitsch
E, Rutherford KM, Thomson NR, Unwin L,Whitehead S, Barrell BG, Parkhill J.
2003. The complete genome sequence and analysis of Corynebacterium diphtheriae
NCTC13129. Nucleic Acids Research 31:6516–6523 DOI 10.1093/nar/gkg874.

Chen JW, Scaria J, Chang YF. 2012. Phenotypic and transcriptomic response of
auxotrophicMycobacterium avium subsp. paratuberculosis leuD mutant under
environmental stress. PLoS ONE 7:e37884 DOI 10.1371/journal.pone.0037884.

De Sarrau B, Clavel T, Clerte C, Carlin F, Ginies C, Nguyen-The C. 2012. Influence
of anaerobiosis and low temperature on Bacillus cereus growth, metabolism, and
membrane properties. Applied and Environmental Microbiology 78:1715–1723
DOI 10.1128/AEM.06410-11.

De Sarrau B, Clavel T, Zwickel N, Despres J, Dupont S, Beney L, Tourdot-Marechal R,
Nguyen-The C. 2013. Unsaturated fatty acids from food and in the growth medium
improve growth of Bacillus cereus under cold and anaerobic conditions. Food
Microbiology 36:113–122 DOI 10.1016/j.fm.2013.04.008.

Despierres L, Cohen-Bacrie S, Richet H, Drancourt M. 2012. Diversity ofMycobac-
terium avium subsp. hominissuismycobacteria causing lymphadenitis, France.
European Journal of Clinical Microbiology and Infectious Diseases 31:1373–1379
DOI 10.1007/s10096-011-1452-2.

Diomande SE, Nguyen-The C, Guinebretiere MH, Broussolle V, Brillard J. 2015. Role
of fatty acids in Bacillus environmental adaptation. Frontiers in Microbiology 6:
Article 813 DOI 10.3389/fmicb.2015.00813.

DiRusso CC. 1990. Primary sequence of the Escherichia coli fadBA operon, en-
coding the fatty acid-oxidizing multienzyme complex, indicates a high degree

Sanchini et al. (2017), PeerJ, DOI 10.7717/peerj.2833 12/16

https://peerj.com
http://dx.doi.org/10.1038/nrg1046
http://dx.doi.org/10.1111/j.1574-6976.2008.00149.x
http://dx.doi.org/10.1101/gr.186501
http://dx.doi.org/10.1111/j.1365-2958.2008.06383.x
http://dx.doi.org/10.1016/j.copbio.2011.12.006
http://dx.doi.org/10.1093/nar/gkg874
http://dx.doi.org/10.1371/journal.pone.0037884
http://dx.doi.org/10.1128/AEM.06410-11
http://dx.doi.org/10.1016/j.fm.2013.04.008
http://dx.doi.org/10.1007/s10096-011-1452-2
http://dx.doi.org/10.3389/fmicb.2015.00813
http://dx.doi.org/10.7717/peerj.2833


of homology to eucaryotic enzymes. Journal of Bacteriology 172:6459–6468
DOI 10.1128/jb.172.11.6459-6468.1990.

Falkinham 3rd JO. 2013. Ecology of nontuberculous mycobacteria–where do human
infections come from? Semin Respir Crit Care Med 34:95–102
DOI 10.1055/s-0033-1333568.

Gupta KR, Kasetty S, Chatterji D. 2015. Novel functions of (p)ppGpp and Cyclic di-
GMP in mycobacterial physiology revealed by phenotype microarray analysis of
wild-type and isogenic strains ofMycobacterium smegmatis. Applied and Environ-
mental Microbiology 81:2571–2578 DOI 10.1128/AEM.03999-14.

Harwood CS, Parales RE. 1996. The beta-ketoadipate pathway and the biology of self-
identity. Annual Review of Microbiology 50:553–590
DOI 10.1146/annurev.micro.50.1.553.

Hayashi D, Takii T, Mukai T, MakinoM, Yasuda E, Horita Y, Yamamoto R, Fujiwara
A, Kanai K, KondoM, Kawarazaki A, Yano I, Yamamoto S, Onozaki K. 2010.
Biochemical characteristics amongMycobacterium bovis BCG substrains. FEMS
Microbiology Letters 306:103–109 DOI 10.1111/j.1574-6968.2010.01947.x.

HoefslootW, Van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P, Beylis N,
Boeree MJ, Cacho J, Chihota V, Chimara E, Churchyard G, Cias R, Daza R, Daley
CL, Dekhuijzen PN, Domingo D, Drobniewski F, Esteban J, Fauville-Dufaux
M, Folkvardsen DB, Gibbons N, Gomez-Mampaso E, Gonzalez R, Hoffmann H,
Hsueh PR, Indra A, Jagielski T, Jamieson F, Jankovic M, Jong E, Keane J, KohWJ,
Lange B, Leao S, Macedo R, Mannsaker T, Marras TK, Maugein J, Milburn HJ,
Mlinko T, Morcillo N, Morimoto K, Papaventsis D, Palenque E, Paez-PenaM,
Piersimoni C, PolanovaM, Rastogi N, Richter E, Ruiz-SerranoMJ, Silva A, Da
Silva MP, Simsek H, Van Soolingen D, Szabo N, Thomson R, Tortola Fernandez
T, Tortoli E, Totten SE, Tyrrell G, Vasankari T, Villar M,Walkiewicz R,Winthrop
KL,Wagner D, Nontuberculous Mycobacteria Network European Trials G.
2013. The geographic diversity of nontuberculous mycobacteria isolated from
pulmonary samples: an NTM-NET collaborative study. European Respiratory Journal
42:1604–1613 DOI 10.1183/09031936.00149212.

Johnson DA, Tetu SG, Phillippy K, Chen J, Ren Q, Paulsen IT. 2008.High-throughput
phenotypic characterization of Pseudomonas aeruginosa membrane transport genes.
PLoS Genet 4:e1000211 DOI 10.1371/journal.pgen.1000211.

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Research 28:27–30 DOI 10.1093/nar/28.1.27.

Kanehisa M, Sato Y, KawashimaM, Furumichi M, TanabeM. 2016. KEGG as
a reference resource for gene and protein annotation. Nucleic Acids Research
44:D457–D462 DOI 10.1093/nar/gkv1070.

Kearse M, Moir R,Wilson A, Stones-Havas S, CheungM, Sturrock S, Buxton S,
Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond
A. 2012. Geneious basic: an integrated and extendable desktop software platform
for the organization and analysis of sequence data. Bioinformatics 28:1647–1649
DOI 10.1093/bioinformatics/bts199.

Sanchini et al. (2017), PeerJ, DOI 10.7717/peerj.2833 13/16

https://peerj.com
http://dx.doi.org/10.1128/jb.172.11.6459-6468.1990
http://dx.doi.org/10.1055/s-0033-1333568
http://dx.doi.org/10.1128/AEM.03999-14
http://dx.doi.org/10.1146/annurev.micro.50.1.553
http://dx.doi.org/10.1111/j.1574-6968.2010.01947.x
http://dx.doi.org/10.1183/09031936.00149212
http://dx.doi.org/10.1371/journal.pgen.1000211
http://dx.doi.org/10.1093/nar/28.1.27
http://dx.doi.org/10.1093/nar/gkv1070
http://dx.doi.org/10.1093/bioinformatics/bts199
http://dx.doi.org/10.7717/peerj.2833


Keilhauer C, Eggeling L, SahmH. 1993. Isoleucine synthesis in Corynebacterium
glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. Journal of Bacteriology
175:5595–5603 DOI 10.1128/jb.175.17.5595-5603.1993.

Khatri B, Fielder M, Jones G, Newell W, Abu-OunM,Wheeler PR. 2013.High through-
put phenotypic analysis ofMycobacterium tuberculosis andMycobacterium bovis
strains’ metabolism using biolog phenotype microarrays. PLoS ONE 8:e52673
DOI 10.1371/journal.pone.0052673.

Kim BJ, Choi BS, Lim JS, Choi IY, Lee JH, Chun J, Kook YH, Kim BJ. 2012. Complete
genome sequence of Mycobacterium intracellulare strain ATCC 13950(T). Journal of
Bacteriology 194:2750 DOI 10.1128/JB.00295-12.

Lahiri A, Kneisel J, Kloster I, Kamal E, Lewin A. 2014. Abundance ofMycobacterium
avium ssp. hominissuis in soil and dust in Germany—implications for the infection
route. Letters in Applied Microbiology 59:65–70 DOI 10.1111/lam.12243.

Lewin A, Freytag B, Meister B, Sharbati-Tehrani S, Schafer H, Appel B. 2003. Use of
a quantitative TaqMan-PCR for the fast quantification of mycobacteria in broth
culture, eukaryotic cell culture and tissue. J Vet Med B Infect Dis Vet Public Health
50:505–509 DOI 10.1046/j.1439-0450.2003.00715.x.

Li L, Wong HC, NongW, CheungMK, Law PT, KamKM, Kwan HS. 2014. Comparative
genomic analysis of clinical and environmental strains provides insight into the
pathogenicity and evolution of Vibrio parahaemolyticus. BMC Genomics 15:1135
DOI 10.1186/1471-2164-15-1135.

Lofthouse EK,Wheeler PR, Beste DJ, Khatri BL,WuH,Mendum TA, Kierzek
AM,McFadden J. 2013. Systems-based approaches to probing metabolic vari-
ation within theMycobacterium tuberculosis complex. PLoS ONE 8:e75913
DOI 10.1371/journal.pone.0075913.

Mackie AM, Hassan KA, Paulsen IT, Tetu SG. 2014. Biolog Phenotype Microarrays
for phenotypic characterization of microbial cells.Methods in Molecular Biology
1096:123–130 DOI 10.1007/978-1-62703-712-9_10.

MishraMN, Daniels L. 2013. Characterization of the MSMEG_2631 gene (mmp) encod-
ing a multidrug and toxic compound extrusion (MATE) family protein inMycobac-
terium smegmatis and exploration of its polyspecific nature using biolog phenotype
microarray. Journal of Bacteriology 195:1610–1621 DOI 10.1128/JB.01724-12.

Nai C,Wong HY, Pannenbecker A, BroughtonWJ, Benoit I, De Vries RP, Gueidan
C, Gorbushina AA. 2013. Nutritional physiology of a rock-inhabiting, model mi-
crocolonial fungus from an ancestral lineage of the Chaetothyriales (Ascomycetes).
Fungal Genetics and Biology 56:54–66 DOI 10.1016/j.fgb.2013.04.001.

Nam TW, Park YH, Jeong HJ, Ryu S, Seok YJ. 2005. Glucose repression of the Es-
cherichia coli sdhCDAB operon, revisited: regulation by the CRP*cAMP complex.
Nucleic Acids Research 33:6712–6722 DOI 10.1093/nar/gki978.

Nelson DL, CoxMM. 2004. Lehninger principles of biochemistry. Fourth edition. New
York: W.H. Freeman.

Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K, Sturdevant DE, Porcella
SF, Heinzen RA. 2009.Host cell-free growth of the Q fever bacterium Coxiella

Sanchini et al. (2017), PeerJ, DOI 10.7717/peerj.2833 14/16

https://peerj.com
http://dx.doi.org/10.1128/jb.175.17.5595-5603.1993
http://dx.doi.org/10.1371/journal.pone.0052673
http://dx.doi.org/10.1128/JB.00295-12
http://dx.doi.org/10.1111/lam.12243
http://dx.doi.org/10.1046/j.1439-0450.2003.00715.x
http://dx.doi.org/10.1186/1471-2164-15-1135
http://dx.doi.org/10.1371/journal.pone.0075913
http://dx.doi.org/10.1007/978-1-62703-712-9_10
http://dx.doi.org/10.1128/JB.01724-12
http://dx.doi.org/10.1016/j.fgb.2013.04.001
http://dx.doi.org/10.1093/nar/gki978
http://dx.doi.org/10.7717/peerj.2833


burnetii. Proceedings of the National Academy of Sciences of the United States of
America 106:4430–4434 DOI 10.1073/pnas.0812074106.

Page AJ, Cummins CA, Hunt M,Wong VK, Reuter S, HoldenMT, Fookes M, Falush D,
Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis.
Bioinformatics 31:3691–3693 DOI 10.1093/bioinformatics/btv421.

Patel RK, JainM. 2012. NGS QC Toolkit: a toolkit for quality control of next generation
sequencing data. PLoS ONE 7:e30619 DOI 10.1371/journal.pone.0030619.

Plata G, Henry CS, Vitkup D. 2015. Long-term phenotypic evolution of bacteria. Nature
517:369–372 DOI 10.1038/nature13827.

Rindi L, Garzelli C. 2014. Genetic diversity and phylogeny ofMycobacterium avium.
Infection, Genetics and Evolution 21:375–383 DOI 10.1016/j.meegid.2013.12.007.

Sant’Anna FH, Lebedinsky AV, Sokolova TG, Robb FT, Gonzalez JM. 2015. Analysis
of three genomes within the thermophilic bacterial species Caldanaerobacter
subterraneus with a focus on carbon monoxide dehydrogenase evolution and
hydrolase diversity. BMC Genomics 16:757 DOI 10.1186/s12864-015-1955-9.

Schoenwolf GC, Alvarez IS. 1989. Roles of neuroepithelial cell rearrangement and
division in shaping of the avian neural plate. Development 106:427–439.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis
of large phylogenies. Bioinformatics 30:1312–1313
DOI 10.1093/bioinformatics/btu033.

Tohsato Y, Mori H. 2008. Phenotype profiling of single gene deletion mutants of E. coli
using Biolog technology. Genome Inform 21:42–52.

Tortoli E. 2014.Microbiological features and clinical relevance of new species of the
genusMycobacterium. Clinical Microbiology Reviews 27:727–752
DOI 10.1128/CMR.00035-14.

Uchiya K, Takahashi H, Yagi T, MoriyamaM, Inagaki T, Ichikawa K, Nakagawa T,
Nikai T, Ogawa K. 2013. Comparative genome analysis ofMycobacterium avium
revealed genetic diversity in strains that cause pulmonary and disseminated disease.
PLoS ONE 8:e71831 DOI 10.1371/journal.pone.0071831.

Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N, Klenk HP, Goker M. 2013. opm:
an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics
29:1823–1824 DOI 10.1093/bioinformatics/btt291.

Vandal OH, Nathan CF, Ehrt S. 2009. Acid resistance inMycobacterium tuberculosis.
Journal of Bacteriology 191:4714–4721 DOI 10.1128/JB.00305-09.

Vilcheze C,Weinrick B,Wong KW, Chen B, Jacobs JrWR. 2010. NAD+ auxotro-
phy is bacteriocidal for the tubercle bacilli.Molecular Microbiology 76:365–377
DOI 10.1111/j.1365-2958.2010.07099.x.

Vives-Florez M, Garnica D. 2006. Comparison of virulence between clinical and
environmental Pseudomonas aeruginosa isolates. Int Microbiol 9:247–252.

VonMentzer A, Connor TR,Wieler LH, Semmler T, Iguchi A, Thomson NR,
Rasko DA, Joffre E, Corander J, Pickard D,Wiklund G, Svennerholm AM,
Sjoling A, Dougan G. 2014. Identification of enterotoxigenic Escherichia coli

Sanchini et al. (2017), PeerJ, DOI 10.7717/peerj.2833 15/16

https://peerj.com
http://dx.doi.org/10.1073/pnas.0812074106
http://dx.doi.org/10.1093/bioinformatics/btv421
http://dx.doi.org/10.1371/journal.pone.0030619
http://dx.doi.org/10.1038/nature13827
http://dx.doi.org/10.1016/j.meegid.2013.12.007
http://dx.doi.org/10.1186/s12864-015-1955-9
http://dx.doi.org/10.1093/bioinformatics/btu033
http://dx.doi.org/10.1128/CMR.00035-14
http://dx.doi.org/10.1371/journal.pone.0071831
http://dx.doi.org/10.1093/bioinformatics/btt291
http://dx.doi.org/10.1128/JB.00305-09
http://dx.doi.org/10.1111/j.1365-2958.2010.07099.x
http://dx.doi.org/10.7717/peerj.2833


(ETEC) clades with long-term global distribution. Nature Genetics 46:1321–1326
DOI 10.1038/ng.3145.

Wang C, Mahrous EA, Lee RE, VestlingMM, Takayama K. 2011. Novel polyoxyethylene-
containing glycolipids are synthesized in Corynebacterium matruchotii and
Mycobacterium smegmatis cultured in the presence of tween 80. J Lipids 2011:676535
DOI 10.1155/2011/676535.

Wynne JW, Seemann T, Bulach DM, Coutts SA, Talaat AM,Michalski WP. 2010. Rese-
quencing theMycobacterium avium subsp. paratuberculosis K10 genome: improved
annotation and revised genome sequence. Journal of Bacteriology 192:6319–6320
DOI 10.1128/JB.00972-10.

Sanchini et al. (2017), PeerJ, DOI 10.7717/peerj.2833 16/16

https://peerj.com
http://dx.doi.org/10.1038/ng.3145
http://dx.doi.org/10.1155/2011/676535
http://dx.doi.org/10.1128/JB.00972-10
http://dx.doi.org/10.7717/peerj.2833

