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Abstract 

Sequence classification facilitates a fundamental understanding of the str uct ure of microbial communities. Binary metagenomic sequence 
classifiers are insufficient because environmental metagenomes are typically derived from multiple sequence sources. Here we introduce a 
deep-learning based sequence classifier, DeepMicroClass, that classifies metagenomic contigs into five sequence classes, i.e. viruses infecting 
prokaryotic or eukaryotic hosts, eukaryotic or prokaryotic chromosomes, and prokaryotic plasmids. DeepMicroClass achieved high performance 
for all sequence classes at various tested sequence lengths ranging from 500 bp to 100 kbps. By benchmarking on a synthetic dataset with 
variable sequence class composition, we showed that DeepMicroClass obtained better performance for eukaryotic, plasmid and viral contig 
classification than other state-of-the-art predictors. DeepMicroClass achie v ed comparable perf ormance on viral sequence classification with 
geNomad and VirSorter2 when benchmarked on the CAMI II marine dat aset. Using a coast al daily time-series metagenomic dataset as a case 
study, w e sho w ed that microbial eukary otes and prokary otic viruses are integral to microbial communities. By analyzing monthly metagenomes 
collected at HOT and B ATS , we found relatively higher viral read proportions in the subsurface layer in late summer, consistent with the seasonal 
viral infection patterns pre v alent in these areas. We expect DeepMicroClass will promote metagenomic studies of under-appreciated sequence 
types. 
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icrobes play an essential role in the biogeochemical cy-
ling of elements in diverse ecosystems on the planet ( 1 ,2 ).

icrobial communities are a collection of diverse biological
ntities, including ribosome-encoding cellular organisms,
apsid-encoding organisms (i.e., viruses) that can only re-
roduce within cellular organisms, and orphan replicons
plasmids, transposons, etc.) that parasitize various life forms
or propagation ( 3 ). Viruses and plasmids are extrachromo-
omal genetic elements that have important implications for
he diversity and function of microbial communities owing to
heir roles in transferring genetic materials between or within
icrobes. Thus, together with transposable elements, they are

ollectively referred to as mobile genetic elements (MGEs).
icrobial community diversity can range from a consortium

f several dominant strains to a conglomerate of thousands
f species, depending on where, when and how metagenomic
amples were collected. Thanks to the discovery of the small
ubunit rRNA gene (SSU) as a universally conserved phyloge-
etic marker ( 4 ), the biodiversity of environmental microbial
ommunities can be easily assessed using the SSU-based am-
licon surveys ( 5 ,6 ). Microbial coding potentials and genomic
lements can be further probed using cloning libraries of nat-
ral microbial assemblages (e.g., cosmid and fosmid libraries)
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( 6–12 ), which have been transformed by shotgun
metagenomes to infer genome-scale functional capabili-
ties of uncultured microbes ( 13 ,14 ). The rapid expansion of
metagenomic datasets presents opportunities and challenges.
Metagenomics enables the exploration of complex micro-
bial interactions and genetic evolution of individual species
( 15 ,16 ). On the other hand, efficient and reliable retrieval of
microbial genomes and MGEs from metagenomic sequence
pools requires strategic approaches. 

By categorizing metagenomic contigs, consecutive se-
quences assembled from metagenomic reads, into distinct
groups, the complexity of metagenomes can be reduced to
certain taxonomic levels, from coarse domains to consensus
species or strains. Metagenomic tools to classify contigs can
be broadly framed into two categories, supervised contig clas-
sification tools (i.e., viral contig predictors) and unsupervised
contig clustering tools (i.e. metagenomic binners, see ( 17 ) for
a review of binning strategies). Metagenomic contig classifi-
cation has been heavily focused on predicting viral sequences.
Viruses are prevalent in aquatic, soil and host-associated sys-
tems, and are presumably the most numerous biological enti-
ties on Earth ( 18 ,19 ). In marine systems, viral lysis is crucial
in redirecting carbon and energy flow to the lower trophic
levels (termed ‘Viral Shunt’), which has great implications for
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the global biogeochemical cycles ( 20 , 21 ). V irSorter ( 22 ) and
VirFinder ( 23 ) are two pioneer tools to identify viral contigs
from metagenomic assemblies. VirSorter predicts viral contigs
based on viral signals and categorizes them into three tiers
with different confidence levels. VirFinder employs k -mer fre-
quencies and a logistic regression model to classify contigs to
either viral or host sequences, which outperforms VirSorter
for shorter contigs without detectable viral hallmark genes
( 23 ). The success of k -mer based methods has inspired the ap-
plication of deep learning in viral sequence discovery, which
led to the development of DeepVirFinder ( 24 ) and PPR-Meta
( 25 ), both of which use one-hot encoding to convert DNA
sequences into presence / absence matrices of nucleotides, and
use neural networks to train virus-host classifiers at different
contig lengths. Besides, PPR-Meta combines both nucleotide
path and codon path in the encoding step, and classifies con-
tigs into viruses, host chromosomes and plasmids ( 25 ). VI-
BRANT ( 26 ) uses neural networks to distinguish prokaryotic
dsDNA, ssDNA and RNA viruses based on ‘v-score’ metrics,
which are calculated from significant protein hits to a collec-
tion of Hidden Markov Model (HMM) profiles derived from
public databases. The latest VirSorter2 ( 27 ) utilizes a multi-
classifier design and expands viral identification to under-
represented viral groups, such as RNA viruses, giant viruses
and virophages. Plasmids are another major type of MGEs
heavily studied in environmental microbiome, particularly in
host-associated systems or wastewater treatment plants. Via
transferring among hosts or exchanging genes with their host
genomes, plasmids facilitate the host acquisition of new traits
( 28 ). Thus, by carrying genes related to resource utilization,
antibiotic, metal resistance, and defense systems, plasmids
contribute to the genetic and phenotypic plasticity of hosts,
and increase their fitness to changing environments. PPR-Meta
( 25 ) and geNomad ( 29 ) can be used to simultaneously identify
both viral and plasmid sequences from metagenomes in one
run. The latter combines the gene-centric and deep-learning
approaches, providing a framework for both sequence classifi-
cation and gene annotation of viruses and plasmids. There are
also multiple dedicated tools developed for plasmid identifica-
tion, such as cBar ( 30 ), PlasFlow ( 31 ), PlaScope ( 32 ) and Plas-
Class ( 33 ). In principle, PlaScope employs a similarity search-
ing approach based on species-specific databases, while cBar,
PlasFlow and PlasClass use differential k -mer frequencies with
different machine-learning methods. 

Beyond viruses and plasmids, there is a paucity of appli-
cations towards the classification of eukaryotic contigs from
metagenomes, though microbial eukaryotes are prevalent in
diverse ecosystems such as host-associated habitats ( 34 ), deep-
sea benthos ( 35 ), and geothermal springs ( 36 ), etc. Despite
achievements in probing eukaryotic diversity using amplicon-
based methods ( 37 ,38 ), or investigating metabolic potentials
using genomic ( 39 ,40 ) and transcriptomic ( 41 ,42 ) methods,
our knowledge is still limited by the availability of diverse
microbial eukaryotic genomes ( 43 ). Alignment-based applica-
tions such as Kaiju ( 44 ) and MetaEuk ( 45 ) search for close
matches in reference databases, thus can be used to assign
reads or contigs to taxonomic groups. While the accuracy of
these applications depends on the completeness of reference
databases, their performance in classifying eukaryotic con-
tigs is impaired due to the lack of a comprehensive microbial
eukaryotic database ( 41 ). Eukaryotic sequences could also
be identified using alignment-independent applications. Eu-
kRep ( 46 ) is a pioneer application that uses k -mer frequency
and linear-SVM to classify metagenomic contigs into eukary- 
otic and prokaryotic sequences. Tiara ( 47 ) is a deep-learning 
based method used for eukaryotic sequence identification in 

metagenomes, and Whokaryote ( 48 ) is a random forest clas- 
sifier that uses gene-structure based features to distinguish eu- 
karyotic and prokaryotic sequences. 

Despite the significant progress made in binary se- 
quence classification, there isn’t one tool that could clas- 
sify eukaryotic / prokaryotic genomes, eukaryotic / prokaryotic 
viruses, and plasmids in one shot. Here we introduce DeepMi- 
croClass, a versatile multi-class metagenomic contig classifier 
based on convolutional neural networks (CNN). DeepMicro- 
Class is superior to the other tools by classifying all sequence 
types simultaneously, which will greatly reduce the time and 

computational resource usage compared to the conventional 
workflow of chaining a set of different predictors. We show 

that DeepMicroClass outperforms all the existing tools by ac- 
curacy and F1 score across 20 designed benchmark datasets 
with variable sequence-type composition. When benchmarked 

on the CAMI II marine dataset, DeepMicroClass showed com- 
parable performance on viral prediction with geNomad and 

VirSorter2, but with a significantly reduced running time. Us- 
ing a coastal marine metagenomic dataset as a case study,
we showed that microbial eukaryotes and prokaryotic viruses 
contributed significantly to the metagenomic sequence pools.
By analyzing monthly marine metagenomes of the open ocean,
a dynamic viral abundance pattern in the subsurface layer 
could be detected. These results suggest the importance of ac- 
curately predicting different microbial sequence types for eco- 
logical studies. The implementation of DeepMicroClass and 

code for data analysis described in this paper can be accessed 

at https:// github.com/ chengsly/ DeepMicroClass . 

Materials and methods 

Dataset preparation 

We collected five classes of sequences: prokaryotic chromoso- 
mal, eukaryotic chromosomal, prokaryotic plasmid, prokary- 
otic viral and eukaryotic viral sequences. For prokaryotic 
chromosomal sequences, we downloaded all the prokary- 
otic genomes at the assembly level ‘Chromosome’ or ‘Com- 
plete’ from NCBI Genome database on 22 August 2022.
The prokaryotic genomes were cleaned up by removing all 
sequences annotated as ‘Plasmid’ according to the assem- 
bly reports, and sequences not annotated as plasmids but 
have identical sequence IDs in the plasmid dataset were 
also removed. The resulting sample set contains 40,208 se- 
quences. The eukaryotic sequence database includes genomic 
sequences from the eukaryotic taxa used by Kaiju ( 44 ) and 

the PR2 database ( 49 ). Specifically, we downloaded 612 mi- 
crobial eukaryotic genomic sequences under taxa names: 
‘ Amoebozoa’, ‘ Apusozoa’, ‘Cryptophyceae’, ‘Euglenozoa’,
‘Stramenopiles’, ‘Alveolata’, ‘Rhizaria’, ‘Haptista’, ‘Heterolo- 
bosea’, ‘Metamonada’, ‘Rhodophyta’, ‘Chlorophyta’ and 

‘Glaucocystophyceae’ using genome_updater (available at 
https: // github.com / pirovc / genome_updater) on 22 August 
2022. In addition to these eukaryotic genomes, we also in- 
cluded 32 073 625 eukaryotic transcripts from the 678 ma- 
rine eukaryotic transcriptomic re-assemblies ( 50 ) generated 

by the MMETSP project ( 41 ), which included 306 pelagic 
and endosymbiotic marine eukaryotic species representing 
> 40 phyla. 

https://github.com/chengsly/DeepMicroClass
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Plasmid sequences and corresponding metadata were re-
rieved from PLSDB ( 51 ) released on 23 June 2021. The
ataset contains 34 513 plasmid records. Viral sequences and
ssociated metadata were retrieved from Virus-Host DB ( 52 )
eleased on 1 June 2022, which contains 17 357 nucleic acid
ecords, including 5209 prokaryotic viruses and 12 148 eu-
aryotic viruses. In all downloaded sequences, we further
ross compared sequence IDs in each class, and any sequence
ith an identical ID occurring in more than one class was re-
oved to reduce potential erroneous taxonomy assignments

rom the source database. 

raining, validation and test dataset preparation 

equences were split into two parts according to the dates
ubmitted to NCBI, using 1 January 2020 as a cutoff date. Se-
uences submitted before 1 January 2020 were used for train-
ng and validation, with 80% as training and 20% as valida-
ion using stratified split, where the split was conducted on
ach class separately, and the sequences submitted after this
ate were used for testing. The Mash ( 53 ) distance was used
o estimate the similarity between sequences among train-
ng, validation and test sets. Sequences in the test set with a

ash distance < 0.1 to any sequence in the training or valida-
ion sets were removed from the test set. Virus-Host DB de-
ived viral sequences ( 52 ) and MMETSP derived eukaryotic
equences were not dated. These sequences were randomly
plit into training, validation and test sets with the propor-
ions of 60%, 20% and 20%, respectively . Similarly , sequences
ere removed from the test set when the Mash distance to any

equence in the training or validation sets is less than 0.1. 

enchmark dataset preparation 

o compare the performance of different predictors on classi-
ying one specific sequence class or multiple sequence classes
nder different community composition scenarios, we de-
igned 20 equisized (1000 contigs, each 10 kbps long) bench-
ark datasets with a variable composition of the 5 sequence

lasses. Briefly, the fractions of PROK (including prokary-
tic genomes, prokaryotic viruses, and plasmids) to EUK (in-
luding eukaryotic genomes and eukaryotic viruses) sequences
ere determined using the ratios of 9:1, 7:3, 5:5, 3:7 and 1:9.
hen for each fixed PROK:EUK ratio, the PROK fraction was

urther split into prokaryotic genomes, prokaryotic viruses
nd plasmids based on the ratios of 5:1:1, 4:1:1, 3:1:1 and
:1:1; and the EUK fraction was further split into eukary-
tic genomes and eukaryotic viruses according to the ratio of
:1, 4:1, 3:1 and 2:1. Finally, the corresponding number of se-
uences were drawn from the test sequence pool for each class
sing the ratios specified above. The actual sequence source
omposition of the 20 benchmark datasets was shown in
upplementary Figure S1 and Supplementary Table S1 in the
upplementary Material. The CAMI II (Critical Assessment of
etagenome Interpretation II) dataset is a comprehensive re-

ource designed for evaluating metagenomic software. It pro-
ides a set of simulated and real-world microbial communi-
ies with varying complexity, which are used to benchmark
nd improve metagenomic analysis tools. This dataset plays a
rucial role in advancing the understanding and interpretation
f microbial ecosystems by providing standardized challenges
or algorithm development and comparison. In this study, we
sed the CAMI II marine dataset comprising prokaryotic and
viral sequences to evaluate the performance of DeepMicro-
Class and other viral sequence classifiers. 

Model design and training 

DeepMicroClass employs a di-path convolutional neural net-
work comprising a base-path and a codon-path to classify in-
put sequences into one of the five classes. For the base-path,
the input nucleotide sequence was firstly encoded as a one-
hot matrix. Specifically, each of the A, C, G and T nucleotides
was translated into [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0,
0, 0, 1], respectively. Any non-ACGT nucleotide was repre-
sented with [0,0,0,0]. The reverse complementary strand of
the input sequence is encoded by inverting the order of the
rows in the forward one-hot matrix and then reversing the
order of elements within each row. For the codon-path, the
forward or reverse base-path matrix was first converted into
three 64 dimensional one-hot matrices based on three reading
frames, and then the three matrices were concatenated into
one matrix. Thus, for each strand of an input contig, a di-
path incorporating both the base and codon level information
was encoded and fed into the convolutional layers (Figure 1 ).
The overview of the network structure of DeepMicroClass is
shown in Figure 1 . In comparison to the more intricate frame-
works of deep learning, such as Recurrent Neural Networks
(RNNs) and Transformers, CNNs offer the benefits of sim-
plified and accelerated training processes. Additionally, CNNs
exhibit lower computational intensity when processing longer
sequences. They further facilitate efficient transformation of
codon one-hot matrix from a base one-hot matrix. Conse-
quently, these considerations led to the selection of CNNs for
the implementation of DeepMicroClass in our study. 

The di-path CNN model was trained by minimizing the
cross-entropy loss between the predicted and actual sequence
classes of input contigs. The training was run for 3000 epochs
with a learning rate of 0.001 and a batch size of 256. The selec-
tion of hyperparameters was conducted through a grid search,
encompassing learning rates of 0.1, 0.01, 0.001 and 0.0001,
alongside batch sizes of 64, 128, 256 and 512. The number of
epochs was consistently set at 3000 across all configurations,
a point beyond which a visual plateau in performance metrics
was observed. For each batch, sequences from the whole train-
ing dataset were firstly subsampled with weighted random
sampling without replacement within an epoch. The weight
for samples of each class i was defined as 

w i = 

numb er of samp les 
5 × numb er of samp l es in cl ass i 

} , 

so that the numbers of samples in the five classes were kept
the same. After the sequences were sampled, a contig length
was chosen from 0.5, 1, 2, 3 and 5 kbps, and a contig with the
given length was sampled from the original sequence to con-
struct the batch. In the testing stage, sequences with lengths
< 5 kbps were fed directly to the model for prediction. For se-
quences with lengths > 5 kbps, each input sequence was first
split into multiple non-overlapping 5 kbps chunks, then scores
given by the model for each chunk were collected, and the
mean score of all chunks was used as the final output of the
input sequence. 

Use-case data preparation and analysis 

The daily time-series metagenomic samples were taken off
the coast of Santa Catalina Island (Southern California)

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
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Figure 1 . Sc hematic representation of the multi-class CNN str uct ure used in this st udy. T he netw ork has tw o con v olutional paths, a base-path encodes 
the nucleotide le v el inf ormation and a codon-path encodes the codon le v el inf ormation. T he h yperparameters used f or each con v olutional la y er are 
marked on the figure. For each strand, the output dimension of base- and codon-paths are 256 and 256, respectiv ely. T he di-path outputs of f orw ard and 
re v erse strands are concatenated into a 1024-dimensional vector, which is used as the input of f ollo wing linear la y ers. T he final linear la y er outputs a 
5-dimensional vector, with each dimension indicating the probability of the input contig being eukaryotic host, eukaryotic virus, plasmid, prokaryotic host 
and prokaryotic virus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

near SPOT (San Pedro Ocean Time-series) using an
Environmental Sample Processor (ESP). Seawater was
prefiltered using a 300 μm mesh, and the 1 μm A / E filters
(Pall Gelman) were used to collect microbial cells during day
and night ( 54 ), and only samples taken during the day were
used for DNA extraction and metagenomic sequencing here.
Metagenomic libraries were prepared using the Ovation 

®

Ultralow V2 DNA-Seq library preparation kit (NuGEN,
Tecan Genomics) under the manufacturer’s instruction using
10 ng of starting DNA and amplified for 13 PCR cycles.
Metagenomic libraries were sequenced on an Illumina No-
vaSeq 6000 platform (2 × 150 bp chemistries) at Berry
Genomics Co. (Beijing, China). After demultiplexing, the
raw reads were first checked with FastQC v0.11.2, then
adapter and low-quality regions were trimmed using fastp
v0.21.0 ( 55 ) with the following parameters: -q 20 -u 20 -l 30
–cut_tail -W 4 -M 20 -c. PhiX174 and sequencing artifacts
were removed using bbduk.sh and human genome sequences
were removed using bbmap.sh with default parameters,
both scripts can be found in the BBTools package v37.24
( https:// jgi.doe.gov/ data- and- tools/bbtools ). Metagenomic
samples were assembled independently using metaSPAdes
v3.13.0 ( 56 ) with a custom kmer set (-k 21,33,55,77,99,127).
The assembled contigs were further coassembled as previ-
ously described ( 57 ). Briefly, all the contigs were pooled and
sorted into short ( < 2 kbps) or long ( ≥2 kbps) contig sets,
the short contig set was first co-assembled using Newbler
v2.9 ( 58 ), the resulting ≥2 kbps contigs were further co-
assembled with the long contig set using minimus2 from the
AMOS v3.1.0 toolkit ( 59 ). A minimum overlap thresholds
of 80 nt and 200 nt were set for Newbler and minimus2,
respectively. For both co-assembly steps, a minimum iden- 
tity cutoff of 0.98 was applied. After co-assembly, contigs 
were further dereplicated at a 0.98 identity using cd-hit 
v4.6.8 ( 60 ), the resulting contigs were used as reference 
contigs for sequence classification and read recruitment 
analysis. 

Two monthly time-series metagenomic datasets were used 

in this study, with samples originally collected at either the 
Station ALOHA of the Hawaii Ocean Time-series (HOT) pro- 
gram, or the Bermuda-Atlantic Time-series Study (BATS) Sta- 
tion in the Sargasso Sea as previously described ( 61 ). Briefly,
500 ml seawater samples were directly filtered onto 0.2 μm 

polycarbonate filters using a vacuum pump, and preserved at 
−80 

◦C for metagenomic analysis. Details on DNA extraction 

and metagenomic sequencing have been described previously 
( 61 ). These samples were taken from different depths during 
2003 −2004, with several additional samples collected within 

2009. Metagenomes were released as a companion to the 
bioGEO TRA CES datasets. Assemblies and clean reads were 
downloaded from the NCBI Sequence Read Archive database 
using accession numbers according to authors’ description 

( 61 ). For both the daily and monthly time-series studies, reads 
were mapped to reference contigs using bwa mem v0.7.17 

with default parameters, and the number of reads aligned 

> 30 nt to reference contigs were counted using bamcov v0.1 

(available at https:// github.com/ fbreitwieser/ bamcov ) with de- 
fault parameters. Metagenomic contigs were classified using 
DeepMicroClass v0.1.0 (in hybrid mode), and read counts 
assigned to each sequence class were summarized using cus- 
tom Python scripts (available at https:// github.com/ chengsly/ 
DeepMicroClass/scripts ). 

https://jgi.doe.gov/data-and-tools/bbtools
https://github.com/fbreitwieser/bamcov
https://github.com/chengsly/DeepMicroClass/scripts
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 CNN-based multi-class classifier 

ccurate classification of metagenomic contigs of different
rigins is crucial for gaining a better understanding of mi-
robial community structure and ecological roles of microbes.
owever, current state-of-the-art sequence classification tools

ften do not fully appreciate some of the under-represented
equence classes. Here two commonly used viral contig pre-
ictors, VirFinder ( 23 ) and PPR-Meta ( 25 ), were evaluated
ased on their predicted viral scores. As expected, both pre-
ictors gave high scores to prokaryotic viral sequences and
ow scores to prokaryotic host sequences. However, the scores
or eukaryotic host and eukaryotic viral sequences were more
venly distributed ( Supplementary Figure S2 ), revealing an in-
ufficient accuracy in classifying these sequence classes. Out
f 500 randomly subsampled genomic sequences for each se-
uence type of prokaryotes, prokaryotic viruses, microbial eu-
aryotes, and eukaryotic viruses downloaded from NCBI, 454
rokaryotic viruses and 85 prokaryotic hosts had VirFinder-
cores (VF-scores) above 0.5, while 238 eukaryotic viruses
nd 157 eukaryotic hosts had VF-scores above this value
 Supplementary Figure S2 A). A similar trend can be observed
or PPR-Meta ( Supplementary Figure S2 B), confirming these
ools are not adequately equipped to handle eukaryotic viral
nd host sequences. This emphasizes the need for novel pre-
ictors that consider more sequence types during the model
raining process. 

Here we trained DeepMicroClass as a multi-class predic-
or to classify five sequence classes, and evaluated its perfor-
ance on test sequence data of different lengths (0.5, 1, 2, 3,
, 10, 50 and 100 kbps). The model performance for each se-
uence type was visualized via bar plots showing the Area un-
er Receiver Operating Characteristics curve (AUROC) score
sing a one-versus-rest strategy (Figure 2 ) and line plots show-
ng the corresponding ROC curve ( Supplementary Figure S3 ).
verall, we showed that as the sequence length increased, the
odel’s performance improved across most sequence types, as

ndicated by the Area Under the Receiver Operating Charac-
eristic (AUC) measurements (Figure 2 ). DeepMicroClass per-
ormed well on all sequence types when the input sequence
ength was ≥1 kbps, with the minimum AUC score being
.963 on classifying prokaryotic sequences. At the sequence
ength of 500 bp, DeepMicroClass achieved fairly high AUC
cores for eukaryotic (0.944) or prokaryotic (0.96) viruses,
hilst the scores for both viral sequence types were always
0.99 at longer sequence lengths ( ≥2 kbps) (Figure 2 ). For
on-viral sequences, the AUC scores were highest for eukary-
tic sequences, followed by plasmid and prokaryotic genome
equences. However, a slight drop in the True Positive Rate
TPR) could be observed for eukaryotic sequences when the
alse Positive Rate (FPR) was near 0 ( Supplementary Figure 
3 ). With further investigation, the rough curve could be
aused by the sharp drop in the number of available eukary-
tic sequences in the training dataset, which dropped from 16
02 to 255 when the contig length changed from 10 kbps to
0 kbps. 

eepMicroClass outperforms Tiara and 

hokaryote in eukaryotic sequence prediction 

n the following three sections, we investigate the performance
f DeepMicroClass for particular sequence classes. We used
ccuracy and F1 score as the metrics to assess the model per-
formance. The former calculates the ratio between the count
of correctly predicted sequences and the total number of pre-
dictions. The latter is a statistical measure used in binary clas-
sification that combines precision and recall into a single met-
ric, calculated as F 1 = 2 × precision ×recall 

precision + recall , where precision is the
ratio of true positive predictions to all positive predictions,
and recall is the ratio of true positive predictions to all actual
positives. For multi-class predictions, the weighted average of
F1 scores for each class was used as the final F1 score. The
sequence type composition of 20 benchmark datasets was de-
scribed in the section ‘Benchmark dataset preparation’. 

First, we compared the performance of DeepMicroClass
with Tiara ( 47 ) and Whokaryote ( 48 ) on the classification
of microbial eukaryotes. Both predictors can be used to iden-
tify eukaryotic contigs from metagenomic assemblies without
prior knowledge of phylogenetic affiliation. With the com-
piled benchmark datasets, we showed that DeepMicroClass
persistently outcompeted both tools in all scenarios in terms
of accuracy and F1 score (Figure 3 and Supplementary Figure 
S4 ), and DeepMicroClass was robust to the different compo-
sitions of benchmark datasets ( Supplementary Figure S4 ). The
average accuracy and F1 score across all benchmark datasets
for DeepMicroClass were both 0.99, which were significantly
higher than those metrics of Tiara and Whokaryote (pairwise
Wilcoxon test P -values ≤ 9.5e-05 for both accuracy and F1
score). The accuracy of Whokaryote dropped from ∼0.95 to
∼0.75 as the proportion of eukaryotic sequences increased,
and the F1 scores were substantially lower than 0.8 in all test
datasets. In contrast, Tiara maintained high accuracy and F1
score across different eukaryotic proportions, though a slight
decrease in accuracy could be observed when the eukaryotic
proportion was high. DeepMicroClass achieved accuracy and
F1 score above 0.98 for all tested scenarios and was robust to
variable sequence composition. 

A further look into those misclassified sequences revealed
that Whokaryote mainly suffered from a lower sensitiv-
ity in distinguishing eukaryotic sequences from other se-
quence types. Tiara showed comparatively lower sensitivity
than DeepMicroClass in eukaryotic sequence identification,
but received fewer misclassified sequences than Whokary-
ote ( Supplementary Figure S5 ). Beyond the low sensitivity of
identifying eukaryotic sequences, a substantial amount of eu-
karyotic viruses were mistakenly classified as eukaryotes by
Whokaryote, when the proportions of eukaryotic and eukary-
otic viral sequences were high in the community . Conversely ,
when prokaryotic sequences dominated the community, Tiara
could potentially classify prokaryotic and plasmid sequences
into eukaryotes. Although relatively fewer sequences were
misclassified, DeepMicroClass could be further improved by
incorporating more eukaryotic viruses during the model train-
ing step ( Supplementary Figure S5 ). 

DeepMicroClass outcompetes PlasFlow, PPR-Meta 

and geNomad in plasmid sequence classification 

We then compared the performance of DeepMicroClass with
PlasFlow ( 31 ), PPR-Meta ( 25 ) and geNomad ( 29 ) in classi-
fying plasmid sequences using the same benchmark datasets
described above. DeepMicroClass showed significantly im-
proved results than PlasFlow, PPR-Meta and geNomad in all
cases based on both accuracy and F1 score metrics (pair-
wise Wilcoxon test adj. P -value ≤ 1.1e-07; Figure 4 and
Supplementary Figure S6 ). Although PlasFlow, PPR-Meta and

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
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Figure 2. The AUC scores of different length models assessed on test datasets. The barplot shows the AUC scores for five sequence classes at 
different contig lengths (500 bp, 1 kbps, 2 kbps, 3 kbps, 5 kbps, 10 kbps, 50 kbps and 100 kbps). Euk, eukaryotic sequences; EukVir, eukaryotic viral 
sequences; Plasmid, plasmid sequences; Prok, prokaryotic genome sequences; ProkVir, prokaryotic viral sequences. 

A B

Figure 3. DeepMicroClass outperforms Tiara and Whokaryote on eukaryotic sequence classification. Comparison of ( A ) prediction accuracy and ( B ) F1 
score of the three methods on eukaryote sequences. Both the accuracy and F1 score were compared based on 20 designed benchmark datasets. The 
sequence class composition of the 20 datasets can be found in Supplementary Table S1 . Values on top of the pairwise comparisons are Bonferroni 
adjusted t -test P -values. The significance of the overall ANO V A test was shown in the bottom left corner. 

 

 

 

 

 

 

 

 

geNomad were able to achieve a maximum F1 score of 0.68,
0.74 and 0.86, respectively, their performance was severely
impaired with increasing proportions of eukaryotic sequences
in the benchmark datasets ( Supplementary Figure S6 ). In con-
trast, the F1 score of DeepMicroClass was constantly higher
than the other three tools, though a slight decrease could also
be observed with increasing eukaryotic proportions. 

We further examined the misclassified sequences and found
PlasFlow had high sensitivity but low specificity, and the
dominance of misclassified sequence types was in line with 

the composition of benchmark datasets ( Supplementary 
Figure S7 ). PPR-Meta might benefit from its modeling of 
prokaryotic genomes and phages, while it still had a low 

specificity mainly due to the misclassification of prokary- 
otic and eukaryotic chromosomal sequences into plasmids 
( Supplementary Figure S7 ). On the other hand, geNomad 

mainly suffered from misclassifying prokaryotic chromo- 
somes into plasmids, though the misclassified eukaryotic se- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
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A B

Figure 4. DeepMicroClass outperforms PlasFlow, PPR-Meta and geNomad on plasmid sequence classification. Comparison of ( A ) prediction accuracy 
and ( B ) F1 score of the four methods on plasmid sequences. The benchmark datasets and the statistical analyses are the same as in Figure 3 . DMC, 
DeepMicroClass; PPR, PPR-Meta. 
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uences also accounted for a significant share compared to
eepMicroClass ( Supplementary Figure S7 ). It’s noteworthy

hat DeepMicroClass might benefit from its inclusive mod-
ling of eukaryotic genomic and viral sequences since they
ere rarely misclassified as plasmids, though the misclassifi-

ation rates between plasmids and prokaryotic chromosomal
equences were still the highest among all misclassifications
 Supplementary Figure S8 ). Probable reasons for such obser-
ation are the high affinity and frequent genetic exchange be-
ween plasmids and prokaryotic chromosomes. In addition,
t should be noted that some of the Integrative and Con-
ugative Elements (ICEs) on prokaryotic chromosomes may
hare essential genes with conjugative plasmids or have a
lasmid origin, and defective ICEs may have lost their ca-
ability to conjugate. Differentiating ICEs and other MGEs
rom plasmids requires strategical modeling approaches,
nd further improvements on the neural network structures
r incorporating additional features extracted from gene-
r operon-centric approaches might yield a more accurate
lassifier. 

eepMicroClass achieves improved results in viral 
equence prediction 

ext, we compared the performance of DeepMicroClass with
irSorter2, geNomad, VIBRANT, DeepVirFinder and PPR-
eta on viral contig prediction using the aforementioned

enchmark datasets. Among these methods, DeepVirFinder,
IBRANT, PPR-Meta, and geNomad were trained to predict
rokaryotic viruses, while VirSorter2 was trained to predict
oth eukaryotic and prokaryotic viruses. We compared the
erformance of DeepMicroClass with VirSorter2 on the pre-
iction of both prokaryotic and eukaryotic viruses, and the
erformance of DeepMicroClass with other predictors on the
rediction of prokaryotic viruses. In either case, DeepMicro-
lass achieved better performance in terms of both accuracy
nd F1 score than all the other tested tools (Figure 5 and
Supplementary Figure S9 ). VIBRANT and VirSorter2 showed
slightly lower accuracy than DeepMicroClass, followed by
geNomad, PPR -Meta and DeepV irFinder. More distinct dif-
ferences were observed in the F1 score metric of these tools
across dataset composition, DeepMicroClass achieved an av-
erage F1 score of ∼0.96, followed by VirSorter2 and VI-
BRANT ( ∼0.90 and ∼0.85, respectively). The F1 score of
VIBRANT dropped from 0.94 to < 0.80 as increasing pro-
portions of eukaryotic chromosomal and viral sequences in
the benchmark datasets ( Supplementary Figure S9 ). Similarly,
geNomad, PPR -Meta and DeepV irFinder showed a decreasing
tendency in both accuracy and F1 score with the increasing of
eukaryotic chromosomal and viral sequences (Figure 5 and
Supplementary Figure S9 ). When considering both prokary-
otic and eukaryotic viral sequences as the positive viral set,
DeepMicroClass and VirSorter2 were both able to achieve
accuracy > 0.90 and F1 score > 0.80 without being signifi-
cantly affected by the variations of sequence type composition,
and DeepMicroClass constantly outperformed VirSorter2 in
both metrics across the benchmark datasets (Figure 5 and
Supplementary Figure S9 ). 

The number of misclassified sequences by PPR-Meta, Deep-
VirFinder , VIBRANT , geNomad and VirSorter2 is shown
in Supplementary Figure S10 . The distribution of misclassi-
fied sequences by PPR -Meta, DeepV irFinder and geNomad
showed a similar pattern, that eukaryotic chromosomal and
viral sequences were prone to be misidentified as prokary-
otic viruses. This indicates tools or models trained without
knowledge of eukaryotic sequences are likely to behave simi-
larly when eukaryotes are not rare in the metagenomic com-
munity. Although VIBRANT and VirSorter2 had fewer mis-
classified sequences compared to PPR -Meta, DeepV irFinder
and geNomad, both suffered from misclassifying prokaryotic
chromosomal or plasmid sequences into prokaryotic viruses
( Supplementary Figure S10 ). Since both VIBRANT and Vir-
Sorter2 use a gene-centric approach, it’s possible that some of
the viral signature genes or fragments could also be widely

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
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A B

C D

Figure 5. DeepMicroClass outperforms DeepVirFinder, VIBRANT, PPR-Meta and geNomad on prokaryotic viral sequence classification and VirSorter2 on 
prokaryotic and eukaryotic viral sequence classification. Comparison of ( A ) prediction accuracy and ( B ) F1 score of the five methods on prokaryotic viral 
sequences. Comparison of ( C ) prediction accuracy and ( D ) F1 score of DeepMicroClass and VirSorter2 on prokaryotic and eukaryotic viral sequences. 
The benchmark datasets and the statistical analyses are the same as in Figure 3 . DMC, DeepMicroClass; DVF, DeepVirFinder; PPR, PPR-Meta. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

detected in prokaryotic genomes or plasmids as a result of
frequent gene transfer among them. DeepMicroClass could be
improved by increasing its sensitivity in prokaryotic viral con-
tig identifications and reducing the misclassification of plas-
mids as prokaryotic viruses. 

Since DeepMicroClass, PPR-Meta and geNomad are multi-
class classifiers, here we also compared their performance
based on accuracy and F1 score metrics on multiclass se-
quence classification using the same benchmark datasets
( Supplementary Figures S11 and S12 ). Here we only consid-
ered prokaryotic chromosomal, prokaryotic viral and plas-
mid sequences for comparison with PPR-Meta and geNomad
as they were not trained for eukaryotic sequence classifica-
tion. On the other hand, all five sequence types were con-
sidered for the evaluation of DeepMicroClass. In this case,
DeepMicroClass still outperformed PPR-Meta and geNomad 

in all tested scenarios as evaluated by both the accuracy or 
and F1 score metrics (pairwise Wilcoxon test p -values ≤ 1.9e- 
06; Supplementary Figures S11 and S12 ). Both accuracy and 

F1 scores of DeepMicroClass were rarely below 0.95 across 
the sequence composition of the 20 benchmark datasets, while 
they were rarely above 0.9 for geNomad, or rarely above 0.8 

for PPR-Meta ( Supplementary Figure S11 ). Although the per- 
formance of DeepMicroClass was also deteriorated by the 
misclassification between prokaryotic chromosomal and plas- 
mid sequences ( Supplementary Figure S8 ), the amounts of mis- 
classified sequences were significantly lower than VIBRANT,
VirSorter2 or geNomad ( Supplementary Figure S10 ). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
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omparison of different viral predictors on the 

AMI II marine dataset 

e also compared the different viral sequence prediction
ethods using the CAMI II marine dataset ( https://frl.
ublisso.de/ data/ frl:6425521/ marine/ ). This dataset contains
equences of different source origins, including archaea, bac-
eria, viruses and unknown sequences. To preprocess this
ataset, we removed the sequences with a Mash distance lower
han 0.1 to our training dataset so that the performance of
eepMicroClass would not be inflated due to data overlap-
ing. We employed DeepMicroClass and five other selected
iral predictors, PPR -Meta, DeepV irFinder , VIBRANT , Vir-
orter2, and geNomad, to classify sequences in this dataset
nd to check their performance on viral prediction. As shown
n Figure 6 , VirSorter2 and DeepVirFinder were comparable
n accuracy (0.845) and were better than those of DeepMi-
roClass, VIBRANT, and geNomad (0.789, 0.802 and 0.761,
espectively)(Figure 6 A). In terms of F1 score, DeepMicro-
lass, VirSorter2, and geNomad obtained very close F1 scores

0.748, 0.730 and 0.752, respectively), which were substan-
ially higher than those obtained by VIBRANT and Deep-
irFinder (0.577 and 0.589, respectively) (Figure 6 B). It

hould be noted that the F1 scores obtained by different tools
ased on the CAMI II dataset were much lower than those ob-
ained on our synthetic datasets, possibly due to the presence
f unknown sequences in this dataset. Surprisingly, PPR-Meta
chieved the best performance with the F1 score ∼0.955 (Fig-
re 6 B). Although the overlap between the training dataset
f PPR-Meta and the CAMI II dataset hasn’t been examined
ere, we suggest further verification should be performed to
ccept this exceptional performance. 

In the evaluation of various tools for sequence classifica-
ion, runtime efficiency is another critical factor. Therefore, we
ompared the running time of the five tools, DeepMicroClass,
eNomad, DeepV irFinder, VIBRANT and V irSorter2, tested
n a server running Ubuntu 20.04, equipped with AMD Epyc
742 (64 cores) and Nvidia T4 GPU, using the latest version
f each tool as of 17 January 2024. In the speed test, GPU
ill be used if the software supports GPU calculation; other-
ise, 32 CPU cores will be used. All five tools were tested on
 subsampled CAMI II marine dataset consisting of 1084 se-
uences, and the runtime results for these tools are shown in
upplementary Figure S13 . DeepMicroClass, benefiting from
ts CNN-based structure, achieved the fastest prediction time
f 17 seconds. VIBRANT ranked second in terms of run-
ing speed with 69 seconds, thanks to fully utilizing multi-
le CPU cores. Due to additional tasks such as gene annota-
ion and provirus identification, geNomad took 117 seconds
o complete the whole process. Despite being a CNN-based
ool, DeepVirFinder’s less efficient code optimization put it in
he fourth place with a runtime of 294 seconds. On the other
and, VirSorter2 performed multiple tasks in its default work-
ow and exhibited suboptimal CPU core utilization, which
ook > 1600 s, the longest among all the tested predictors.
his comparative analysis underscores the efficiency of Deep-
icroClass for large-scale metagenomic analyses. 

eepMicroClass complements alignment-based 

redictors for sequences without close 

epresentative sequences 

lignment-based classifiers can suffer from incomplete ge-
omic databases of under-represented sequence types, par-
ticularly for complex natural environments such as marine
or soil systems. Since some of the eukaryotic sequences in
the designed benchmark dataset were not included in the
databases of Kaiju ( 44 ) and MetaEuk ( 45 ), the benchmark
dataset allowed us to compare the performance of DeepMi-
croClass with these alignment-based predictors on eukary-
otic sequence classification. The evaluation showed signifi-
cantly increased accuracy and F1 score of DeepMicroClass
over Kaiju and MetaEuk on the synthetic benchmark dataset
( Supplementary Figure S14 ). Therefore, this evaluation dis-
tinctly highlighted DeepMicroClass’s superior performance
compared to Kaiju and MetaEuk on complex metagenomes
with uncultured microbial eukaryotes. Thus, DeepMicroClass
could complement alignment-based tools to classify novel
sequences that are not represented in the current reference
database. 

DeepMicroClass predicts abundant eukaryotic and 

viral contigs in real metagenomes 

Our results from the synthetic benchmark data and the CAMI
II marine data clearly showed the superior performance of
DeepMicroClass over other individual or multi-class sequence
classification methods. For real metagenomic data such as
SPO T, HO T and BATS, the true distributions of different
classes of microbes are not known. Thus, they cannot be used
to compare the performance of the different sequence classi-
fication methods. Instead we use the best performing method,
DeepMicroClass to analyze the real data and understand the
composition and dynamics of the different microbes in these
communities. 

We first applied DeepMicroClass to a cell size fraction-
ated daily marine metagenomic dataset sampled near SPOT,
off the coast of Southern California ( 54 ). The filters could
potentially capture microbes within 1-300 μm in size, sug-
gesting that diverse microbial eukaryotes may be retained.
The short reads were first assembled using the methods de-
scribed in the ‘Use-case data preparation and analysis’ sub-
section. DeepMicroClass was then used to classify the contigs
into different classes. Thirdly, the short reads were mapped to
the different contigs to calculate the abundance of different
classes of microbes. Using the co-assembled contigs as the ref-
erence, DeepMicroClass classified prokaryotes (prokaryotic
genomes and plasmids) recruited on average 26.72% of all
clean reads, followed by read percentages recruited by eukary-
otes (17.86%), prokaryotic viruses (7.89%) and eukaryotic
viruses (3.24%) (Figure 7 A, B). Reads recruited by prokary-
otes or microbial eukaryotes could occasionally account for
35.42% and 21.14% of all clean reads, respectively. Simi-
larly, the maximum read percentages for prokaryotic or eu-
karyotic viruses were 15.86% and 4.29%, respectively. These
percentages suggest microbial eukaryotes and viruses can rep-
resent a large fraction of all the microbes and are essen-
tial components of natural microbial communities. Accurate
prediction of the sequence types is crucial to evaluate their
abundance. 

We then analyzed the non-fractionated HOT and BATS
monthly metagenomes ( ≥0.2 μm) ( 61 ) to understand the vari-
ations of abundance levels of various classes of microbes in
cellular metagenomes across spatial and temporal scales. Us-
ing reference-based taxonomy assignment, reads assigned to
viruses contributed only ∼2% of the whole metagenomes,
slightly higher than reads assigned to eukaryotes ( ∼1%) ( 61 ).

https://frl.publisso.de/data/frl:6425521/marine/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
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A B

Figure 6. Barplot of prediction accuracy and F1 scores of different sequence prediction tools on the CAMI II marine dataset. The x -axis denotes different 
tools and the y -axis denotes accuracy and F1 score. The red dashed line denotes the accuracy and F1 score achieved by DeepMicroClass. DVF denotes 
DeepVirFinder and PPR denotes PPR-Meta. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

needed. 
In contrast, by classifying the same assemblies using DeepMi-
croClass at a length cutoff of 2 kbps and mapping reads back
to these assemblies, we found that the mean read percentages
of all clean reads for eukaryotes and prokaryotic viruses were
3.83% and 3.11% for the HOT metagenomes (Figure 7 C–
E), or 5.15% and 3.38% for the BATS metagenomes (Fig-
ure 7 F–H). A higher proportion of prokaryotic viruses could
be observed at both the HOT and BATS sites in the subsur-
face layers (61–125 m) in the late summer or fall seasons (Fig-
ure 7 C–H). It appeared to be seasonal, with the annual viral
contribution peaked from July to October. We further profiled
the viral communities using marker genes of known viruses
with MetaPhlAn v3 ( 62 ), and found that among these known
marine viruses, Cyanophage P-RSM6, Prochlorococcus phage
P-SSM2 and P-SSM7 were enriched in the subsurface layer
in late summer at HOT ( Supplementary Figure S15 A). Sim-
ilarly, Cyanophage P-RSM6 and Prochlorococcus phage P-
SSM2 were also abundant at BATS in the subsurface layer in
the same month range ( Supplementary Figure S15 b). 

Discussion 

The advantages and limitations of DeepMicroClass 

DeepMicroClass has demonstrated significant advantages
over traditional binary classifiers and other compared tools
across all benchmark datasets due to its multi-class model de-
sign. Unlike binary classifiers that often suffer from the mis-
classification of sequence types not modeled by them, Deep-
MicroClass provides a more reliable and encompassing clas-
sification of target sequences by modeling all common se-
quence types in metagenomes, thereby reducing cross mis-
classification. This inclusive modeling approach not only en-
hances the precision and sensitivity of classification but also
addresses the propagation of errors to downstream analysis.
For instance, recovering eukaryotic genomes requires accu-
rate classification of eukaryotic contigs from metagenomic
assemblies ( 46 ,63 ), so that genomic coding potentials, tran-
scriptomic and ecological insights can be derived from these
bins ( 42 , 64 , 65 ). Compared with other multi-class metage-
nomic sequence classifiers, such as PPR-Meta and geNo-
mad, DeepMicroClass achieved better or comparable perfor-
mance in plasmid and viral sequence prediction (Figures 4–
6 and Supplementary Figures S6 , S9 ), simultaneously pro- 
viding classification for eukaryotic sequences. Despite using 
similar CNN models with PPR-Meta (Figure 1 ), DeepMicro- 
Class excelled at more comprehensive and up-to-date train- 
ing datasets, in addition to the broader modeled sequence 
spectrum ( 25 ). Compared to geNomad, DeepMicroClass ob- 
tained a faster running speed ( Supplementary Figure S13 ).
This could be attributed to the additional tasks performed 

by geNomad as aforementioned, while the underlying model 
structures may also matter. CNN models are generally simpler 
and faster than Transformer models used by geNomad, which 

have been shown when comparing text classification models 
( 66 ). By leveraging the DeepMicroClass model as a prelimi- 
nary classification step in metagenomic studies, we advocate 
for a paradigm shift towards multi-class models in microbial 
ecology to facilitate a comprehensive understanding of micro- 
bial communities. 

There are several caveats that should be mentioned while 
using DeepMicroClass. First, like most kingdom-level se- 
quence classifiers, DeepMicroClass may be complemented by 
alignment-based classifiers, such as Kaiju or MetaEuk. For se- 
quences with good database coverage, confident alignments 
to close reference genomes should be used to resolve the dis- 
agreements. On the other hand, for unclassified sequences,
DeepMicroClass should provide a better broad classifica- 
tion. Second, DeepMicroClass has a relatively lower accuracy 
in distinguishing plasmids from prokaryotic host genomes 
( Supplementary Figure S8 ), when compared to the classifica- 
tion of other sequence classes (Figure 2 ), despite being the best 
plasmid classifiers benchmarked (Figure 4 and Supplementary 
Figure S6 ). Since the misclassification mostly happens between 

plasmids and prokaryotic chromosomal sequences, users may 
simply group them into the same category if this informa- 
tion is not required, or employ an alignment-based method 

to further refine plasmid classification. Additionally, DeepMi- 
croClass may benefit from modeling the gene contents of plas- 
mids and prokaryotic chromosomes in future implementa- 
tion. Third, viral sequences predicted by DeepMicroClass may 
contain proviruses integrated into host genomes. Users may 
use geNomad, VirSorter2 or CheckV ( 67 ) to identify them if 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae044#supplementary-data
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Figure 7. Sequence classification and read abundance analysis of real marine metagenomic samples. Metagenomic samples used in this analysis were 
taken near SPOT ( A, B ), HOT ( C–E ) and BATS ( F–H ) sampling stations. Metagenomic contigs were classified using DeepMicroClass at a length cutoff of 
2 kb, and read percentages of each sequence type were calculated by taking the ratio of read counts assigned to each sequence type and all clean reads 
of that sample. Samples were taken at a daily frequency near SPOT (A, B), and at a monthly frequency at HOT (C–E) and BATS (F–H). HOT and BATS 
samples collected at different depths were grouped into three depth ranges, 0-60 m, 61–125 m and 126–180 m. The mean read percentages and 
standard deviations were summarized for sequence types (B), depth ranges (D, G) and month ranges (E, H). Prokaryote includes reads recruited by 
prokaryotes and plasmids. Red dots in boxplots indicate the average read percentages for each sequence type. Lines connecting read percentages of 
same sequence types were drawn for visualization purposes (D, E, G, H). 
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mplications of increased cellular viruses in marine 

ellular metagenomes 

he abundance of marine viruses varies spatiotemporally,
verall showing a nonlinear, power-law relationship with mi-
robial cell abundance ( 68 ). Changes in host abundance have
 fundamental, disproportionate impact on viral abundance,
hus altering the virus-host dynamics and microbial com-
unity structure. Studies at SPOT over 5 years of monthly

ampling showed a long-term stability of viral communities,
ith strong seasonal variations imposed ( 69 ). On a daily
 

scale, ‘boom-and-bust’ patterns were also not observed over
40 more days of observation ( 70 ), suggesting a community-
level resilience dominated by highly abundant viruses, such as
cyanophages and pelagiphages ( 69 ,71 ). In this study, the in-
creased relative abundance of viruses in cellular metagenomes
at the end of the daily time-series (Figure 7 A) may suggest
the recovery of dominant bacterial and viral communities af-
ter the phytoplankton bloom ( 54 ). 

Across the depth gradient, viral abundance decreased from
the epipelagic layer to meso- and bathypelagic layers ( 19 ,72–
74 ). Viral abundance was also correlated with the chlorophyll
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concentration or phytoplankton abundance in the ocean ( 75 ),
which is subjected to fluctuations of physical processes such
as vertical mixing. This is particularly evident for well-studied
oceanic regions such as the northwestern Sargasso Sea of the
BATS program, where seasonal alternation of winter convec-
tive mixing and summer stratification shaped the dynamics
of Prochlorococcus abundance, resulting in recurring annual
maxima in 60-100 m in September ( 76 ). Viral abundance was
shown to be tightly coupled to Prochlorococcus abundance in
this layer, and the annual maxima of viral abundance could
be well explained by Prochlorococcus infecting cyanophages
( 76 ,77 ). Using shotgun metagenomics, we showed that the
peaked viral abundance in September 2004 recruited 50%
of the mapped cellular metagenomic reads (Figure 7 F-H)
and detected close relatives of Prochlorococcus phage P-SSM2
were particularly enriched in later summer in the DCM layer
( Supplementary Figure S15 b). Similarly, previous studies at
HOT showed that viral contigs recruited 8% of the cellu-
lar metagenomic reads on average across 12 depths, with the
maximum being 15% at 100 m depth ( 78 ). The high viral
contribution to total cellular DNA in the DCM layer is consis-
tent with what we observed here (Figure 7 C-E). In addition,
we also detected the seasonal pattern of viral abundance in the
DCM layer at HOT, which could be partially explained by en-
riched relative cyanophages including cyanophage P-RSM6,
Prochlorococcus phage P-SSM2 and Prochlorococcus phage
P-SSM7 ( Supplementary Figure S15 A). These cyanophages
were originally isolated from Prochlorococcus NATL2A (P-
RSM6) and NATL1A (P-SSM2 and P-SSM7), which were
members of low-light adapted clade I (LLI) Prochlorococcus ,
the dominant clade at both HOT and BATS in the lower eu-
photic zone ( 79 ). At both stations, the eNATL ecotype of LLI
displayed reversed annual sinusoidal patterns in 0–60 m and
60–120 m ( 79 ), the superimposed effect might further aug-
ment the seasonal dynamics of cyanophages infecting eNATL
when assessed using read percentages (Figure 7 C–E). Besides,
viruses are susceptible to high ultraviolet radiation in surface
waters ( 80 ,81 ), which might also contribute to the lower con-
tribution of viral reads to total mapped metagenomic reads.
The congruence of these analyses demonstrates that DeepMi-
croClass can be used to detect robust ecological patterns in
natural microbial communities. 

Conclusions 

DeepMicroClass as a versatile multi-class classifier enables
the accurate classification of five different metagenomic se-
quence types in one shot, meanwhile, it avoids the time-
consuming and error-prone preprocessing steps that could po-
tentially propagate errors to the final classification. The inclu-
sive modeling of all common sequence types in metagenomes
also makes DeepMicroClass attain better or comparable per-
formance than the other state-of-the-art individual predic-
tors on different benchmark datasets, with faster running
speed. Based on DeepMicroClass’s classification, we detected
a high relative abundance of marine eukaryotes and prokary-
otic viruses in a coastal metagenomic dataset. Using two open-
ocean metagenomic datasets, monthly dynamic variations of
prokaryotic viral abundance in the subsurface layer could
be observed, which is consistent with long-term observations
at these stations. Our case studies indicate that both host
and viral sequences are essential components in the cellular
metagenomes, and robust ecological patterns can be obtained 

with DeepMicroClass, even for coarse sequence types. We ar- 
gue that by using DeepMicroClass as a preliminary classifica- 
tion step on metagenomic / viromic assemblies, one can further 
focus on the interested sequence types for the following analy- 
sis, such as metagenomic binning of prokaryotic or eukaryotic 
contigs, comparative genomic analysis of viral or plasmid se- 
quences, etc. We conclude DeepMicroClass is a useful addition 

to the metagenomic toolbox, and its application can facilitate 
studies of under-appreciated sequence types, such as microbial 
eukaryotic or viral sequences. 

Data availability 

The source code used in this study can be found at https://doi. 
org/ 10.5281/ zenodo.10989619 , and the developing branch 

can be found at https:// github.com/ chengsly/ DeepMicroClass .
Benchmark datasets have been deposited at figshare (available 
at https:// dx.doi.org/ 10.6084/ m9.figshare.14576193 ). Raw 

reads for the case study were deposited at NCBI under the um- 
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upon request. 
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