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Chronic kidney disease (CKD) is a progressive damage of kidneys that can no

longer serve the blood-filtering function, and is a life-threatening condition.

Skeletal muscle wasting is a common complication of CKD. Yet the relationship

between kidney and skeletal muscle in CKD remains unclear. Exosomes, a type

of small membrane-bound vesicles released from cells to the extracellular

environment, have increasingly received attention due to their potential as

mediators of crosstalk between kidneys and different organs, including skeletal

muscle. This mini-review summarizes the recent findings that point to the role

of exosomes in the cross-talk between kidney and skeletal muscle in CKD.

Understanding of the contents and the mechanism of exosome release may

prone exosomes be the potential therapeutic targets for CKD.
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Introduction

Extracellular vesicles (EVs) are small membrane-bound vesicles released from cells

into extracellular environments (Sahoo et al., 2021) such as plasma, cerebrospinal fluid,

urine, saliva, amniotic fluid, colostrum, breast milk, synovial fluid, semen, and pleural

ascites (Song et al., 2020). Recently, EVs have been recognized as important players in cell-

to-cell and inter-tissue communication and in maintaining homeostasis (Qin and Dallas,

2019; Díaz-Garrido et al., 2021). The three major types of EVs are exosomes (<100 nm),

microvesicles (<1,000 nm), and apoptotic bodies (>1,000 nm), which are distinguishable

by their size, biogenesis, release pathways, content, function, and expressed biomarkers

(Akers et al., 2013; Doyle andWang, 2019). Accumulating evidence suggests that cells can

communicate with neighboring or distant cells, tissues, and organs through the exosomes

(Kalluri and LeBleu, 2020).

Exosomes are released not only by healthy cells or organs but also by injured, stressed,

and diseased cells or organs (Yuana et al., 2013). In recent years, the role of exosomes in

organ crosstalk has been extensively studied in various disease models, including chronic
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kidney disease (CKD) models (Zhang et al., 2018; Wang et al.,

2019a; Wang et al., 2020). CKD is a global public health concern

and is prevalent in 10–15% of the adult population worldwide

(Levin et al., 2017). CKD can eventually progress to kidney

failure, also known as end-stage renal disease (ESRD). Patients

with end-stage renal failure must receive dialysis or kidney

transplantation for survival. In addition to progressive decline

in renal function, CKD is commonly associated with multiple

complications which contribute to high morbidity, adverse

medical outcomes, and poor quality of life (Bello et al., 2011).

One of the most frequent complications of CKD is skeletal

muscle wasting, which is characterized by the loss of muscle

mass, strength, and function (Tsai et al., 2017) and an increase in

morbidity and mortality (Roshanravan et al., 2013). Other

complications of CKD directly or indirectly associated with

skeletal muscle wasting are an increased risk of insulin

resistance (Carré and Affourtit, 2019), cardiometabolic disease

(Harada et al., 2017), and mineral and bone disorders (Karava

et al., 2020). Roshanravan et al. demonstrated that exercise

ameliorates muscle impairment and improves physical

function and performance, leading to clinically important

benefits for kidneys with CKD (Roshanravan et al., 2017).

Increasing muscle mass protects against the progression of

several kidney diseases (Peng et al., 2017; Zhang et al., 2018;

Wang et al., 2020), and ameliorating skeletal muscle atrophy has

been shown to improve kidney recovery after injury by reducing

renal fibrosis (Hanatani et al., 2014; Rondon-Berrios et al., 2014).

There is potential crosstalk between skeletal muscle and kidney,

and recent research suggests that exosomes are one of the

mediators in such crosstalk. Understanding the features and

roles of exosomes may shed light on the development of

novel therapeutic strategies for CKD with muscle wasting.

In this review, we survey exosome biogenesis and summarize

the current literature with regard to the functions of exosomes in

muscles and kidneys and their role in mediating crosstalk

between these two tissues. We also review the roles of

exosomes in pathogenesis and discuss therapies for people

with CKD-associated muscle wasting.

Biogenesis, release, and uptake of
exosomes

Exosomes contain almost 10,000 different proteins, over

1,000 different types of lipids, and approximately 3,000 each

of coding and non-coding nucleic acids (Jeppesen et al., 2019;

Skotland et al., 2019; Wang et al., 2021). Exosomal proteins

include membrane transport and fusion-related proteins (e.g.

annexin, Rab-GTPase, and HSPs) for exosome trafficking (Dai

et al., 2020), tetraspanins (e.g. CD9, CD63, CD81, CD82, CD106,

and Tspan8) for facilitating the entry of exosomal contents into

exosomes (Dai et al., 2020), proteins related to multivesicular

bodies (MVBs) (e.g. ALG-2-interacting protein X and tumor

suppressor gene 101) for sorting cargo into exosomes (Willms

et al., 2016), and cytoskeletal proteins (e.g. actin, tubulin, and

myosin) (Dai et al., 2020). Exosomal lipids essential for

maintaining exosome morphology and exosome biogenesis

and regulating homeostasis in recipient cells include

cholesterol, sphingomyelin, glycosphingolipids,

phosphatidylserine, and ceramides (Skotland et al., 2017).

Exosomal nucleic acids consist of mRNAs, microRNAs,

lncRNAs, circRNAs, rRNAs, tRNAs, snoRNAs, snRNA, and

piRNAs. Exosomes transfer the RNAs from parent cells to

target cells or tissues and exert specific cellular functions (van

den Boorn et al., 2013). Among various contents within

exosomes, miRNA has been receiving extensive focuses due to

the number of candidates and diverse functions (Table 1).

Exosomes originate from inward budding and invagination

of the plasma membrane that forms early endosomes. Early

endosomes mature into late endosomes, which then undergo

invagination to form intraluminal vesicles (ILV) within large

MVBs (McAndrews and Kalluri, 2019). WhenMVBs mature and

eventually merge with the plasma membrane, exosomes are

released into the extracellular space (Williams and Urbé,

2007) (Figure 1A).

The release of exosomes depends on the activity of and

interaction between cytoskeleton (microtubule and

microfilament), Rab-GTPase, molecular motors (dynein and

kinesin), and fusion apparatus SNARE (soluble

N-ethylmaleimide-sensitive factor attachment protein receptors)

complex (Hessvik and Llorente, 2018). Once secreted, exosomes

are taken up by recipient cells through at least three different

mechanisms: endocytosis, direct fusion with plasma membrane,

or receptor-ligand interaction (Yue et al., 2020).

Skeletal muscle exosomes in cell–cell
communication

Skeletal muscle exosomes were first discovered in early

2010 by Guescini et al. using western blotting and

transmission electron microscopy (Guescini et al., 2010).

These exosomes contain special markers such as TSG101 and

ALIX, which were visualized by immunogold labeling. Proteomic

analysis of exosomes revealed that some signal transduction

proteins, including guanine nucleotide-binding proteins, small

GTP-binding proteins, and 14-3-3 proteins, are part of the

exosome-associated proteins in skeletal muscle (Guescini

et al., 2010). Several miRNAs that are only or preferentially

expressed in skeletal muscle are called myomiRs (myo =muscle +

miR =miRNA) (McCarthy, 2008). Studies have shown that when

muscle cells are subjected to damage, the levels of miRNAs within

muscle are reduced, and instead of being downregulated or

passively leaked as previously believed, they are packaged into

exosomes and transferred into circulation during specific periods

of muscle regeneration (Coenen-Stass et al., 2016; Siracusa et al.,
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2016). These findings indicate that exosomal miRNAs are

actively participating in muscle regeneration; in fact,

myomiRs, including miR-1, miR-133a, miR-133b, miR-206,

miR-208b, miR-486, and miR-499, have been shown to play

significant roles in different stages of skeletal muscle

development (Zilahi et al., 2019).

Exosomes can mediate cell–cell communication via transfer

proteins, mRNAs, lncRNAs, circRNAs, or miRNAs directly to

recipient cells. Muscle-derived exosomes play an important role

in crosstalk between myoblasts and myotubes. Exosomes

secreted from myotubes in well-differentiated C2C12 culture

suppressed myoblast proliferation of myoblasts via

downregulation of cyclin D1 and induced differentiation via

upregulation of myogenin (Forterre et al., 2014). In well-

differentiated C2C12 culture subjected to treatment of tumor

necrosis factor-α and interferon-γ, the myotubes exhibited stress

responses by upregulating adenosine monophosphate-activated

protein kinase signaling pathways, which in turn triggered the

release of exosomes containing atrophic signals such as

myostatin and MAFbx and thus inhibited expression of

myogenic regulatory factor MyoD and myogenin (Kim et al.,

2018).

Muscle-derived exosomes can also travel along the

circulation and deliver cargo to other cells and organs,

FIGURE 1
Exosome biogenesis, release, and as mediators for organ crosstalk. (A) Exosomes are formed by the endosomal system, including invagination
of the endocytic membrane, early endosomes, late-endosomes, and multivesicular bodies (MVBs). Subsequently, large MVBs fuse with the cellular
plasma membrane and release exosomes into the extracellular space; (B) skeletal muscle-derived exosomes can travel along the circulation and
deliver miRNAs to kidney and exert specific functions.
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where they exert particular functions on the target organs.

Fluorescent-labeled muscle-derived exosomes injected

through the tail vein of mice were found to be taken up

into the lung, liver, spleen, brain, heart, pancreas, and GI

tract within one day (Aswad et al., 2014). Skeletal-muscle-

derived exosomes induces angiogenesis via ROS-activated

nuclear factor-κB (NF-κB) signaling in cultured human umbilical

vein endothelial cells (HUVECs) (Nie et al., 2019).

TABLE 1 Exosomal miRNAs in Muscle and/or Kidney

miRNAs Model/Disease Function Reference

miR-145-5p Bu-Cy treated mice Maintain skeletal muscle mass Cho et al. (2021)

miR-133b, miR-181a-5p Acute excercise in
humans

Muscle communication Guescini et al. (2015)

miR-486-5p, miR-215-5p miR-941 Regular excercise in
humans

Biomakers for excercise Nair et al. (2020)

miR-151b Regular excercise in
humans

Biomakers for excercise Nair et al. (2020)

miR-133a HIIT in mice Biomakers for excercise Castaño et al. (2020)

miR-133b HIIT in mice Improving glucose tolerance and insulin sensitivity Castaño et al. (2020)

miR-29c-3p Ambulant DMD
Patients

Novel noninvasive biomaker for Ambulant DMD Catapano et al. (2018)

miR-23b-3p, miR-21-5p Nonambulant DMD
Patients

Novel noninvasive biomaker for Nonambulant DMD Catapano et al. (2018)

miR-199a-5p Max-mice Including phenotypic conversion of normal fibroblasts to
myofibroblasts

Zanotti et al. (2018)

MiR-1, miR-133a, miR-206 Max mice Including phenotypic conversion of normal fibroblasts to
myofibroblasts

Matsuzaka et al. (2016)

miR-182 STZ mice Attenuating muscle atrophy by targeting FoxO3 Hudson et al. (2014)

miR-21 UUO mice Accelerating the devleopment of renal fibrosis by activatiing
fibroblasts

Zhao et al. (2021)

miR-25-3p High Glucose induced
podocytes

Enhancing podocyte survival by suppressing DUSP1 Huang et al. (2020)

miR-145, miR-130 Type 1 diabetic patients Biomakers for microalbuminuric diabetic patients Barutta et al. (2013)

miR-320c, miR-6068, miR-1234-5p, miR-6133, miR-
4270, miR-4739, miR-371b-5p, miR-638, miR-572,
miR-1227-5p, miR-6162, miR-1915-5p, miR-4778-5p,
miR-2861

Type 2 diabetic
nephropathy patients

Biomakers for Type 2 diabetic nephropathy patients Delić et al. (2016)

miR-30d, miR-30e-5p Type 2 diabetic
netropathy patients

Biomakers for Type 2 diabetic nephropathy patients Delić et al. (2016)

miR-374a-5p UUO mice Inhibiting the Progression of renal fibrosis by regulating
MAPK6/MK5/YAP axis

Liang et al. (2022)

miR-186-5p STZ rats Attenuating renal fibrosis by downregulation of smad5 Yang et al. (2022)

miR-125a STZ rats Inhibiting Diabetic Nephropathy progression via inhibition
of HDAC1 and ET-1

Hao et al. (2021)

miR-23a, miR-27a STZ mice Preventing diabetes-included muscle cachexia and
attenuates renal fibrosis via regulating Akt, PTEN, and
FoxO1

Zhang et al. (2018)

miR-23a, miR-27a 5/6 nephrectomy mice Attenuating muscle loss, improving grip strength, increasing
the phosphorylation of Akt and FoxO1, decreasing the
activation of phosphat

Wang et al. (2017)

miR-26a 5/6 nephrectomy mice Increasing the skeletal muscle cross-sectional area,
decreasing the upregulation of the FBXO32/atrogin-1 and
TRIM63/MuRF1 and Depressing cardiac fibrosis lesions

Wang et al. (2019b)

miR-26a UUO mice Preventing muscle atrophy by inhibiting the transcription
factor FoxO1, Limiting renal fibrosis by suppressing CTGF

Zhang et al. (2019)

miR-26a UUO mice Ameliorating skeletal muscle atrophy and attenuating kidney
fibrosis by downregulating YY1, TGF-B pathway and some
fibrotic-related proteins

Wang et al. (2019a),
Wang et al. (2020)

Abbrivation: Bu, busulfan; Cy, cyclophosphamide; HIIT, high-intensity interval training; DMD, duchenne muscular dystrophy; FoxO3, forkhead box protrin O3; DUSP1, dual specificity

protein phosphatase 1; MAPK6, Mitogen-activated protein kinase 6; YAP, yes-associated protein; ET-1, endothelin-1; HDAC1, histone deacetylation 1; PTEN, phosphatase and tensin

homolog; MuRF-1, muscle ring-finger protein-1; FoxO1, forkhead box protein O1; TRIM63, Tripartite Motif Containing 63; CTGF, connective tissue growth factor; YY1, Yin Yang 1.
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Skeletal muscle cells not only release exosomes but also

uptake exosomes from other cells. Intramuscular injection of

bone marrow stromal cell (BMSC) exosomes into mice after

muscle contusion alleviated the inflammatory response,

reduced fibrosis size, promoted muscle regeneration, and

improved biomechanical properties through macrophage

polarization (Luo et al., 2021). In another study, the

authors showed that activin A induced Smad2/3 and

FoxO1 nuclear translocation and transcriptional

upregulation of Atrogin-1 and MuRF-1 genes, which

resulted in muscle atrophy. Exosomal miR-145-5p released

from tonsil-derived mesenchymal stem cells has been shown

to maintain or improve skeletal muscle mass in various

activin-A-elevated pathologic conditions (Cho et al., 2021).

Muscle exosomes induced by exercise

Exercise imparts well-known benefits to multiple organs,

including the muscles, kidneys, heart, lungs, and immune

system (Landi et al., 2014; Brellenthin et al., 2019; Abd El-

Kader and Al-Jiffri, 2020; Sanz-Santiago et al., 2020; Duan

et al., 2021). A recent study showed that exercise can induce

exosome production and miRNA processing in muscle

(Garner et al., 2020). When released into the circulation,

exercise-mediated skeletal-muscle exosomes (i.e.

exersomes) containing exerkines (peptides, nucleic acids,

lipids, and miRNA species) play an important role in

crosstalk between skeletal muscle and distal organs (e.g.

pancreas, liver, heart, brain, kidney, adipose tissue, and

skin) (Safdar et al., 2016). The expression of circulating

miRNA is altered in response to exercise (Banzet et al., 1985;

Aoi et al., 2013; Sawada et al., 2013). Guescini et al. reported

that the expression level of miR-181a-5p and miR-133b in muscle-

derived circulating exosomes was elevated after acute exercise, and

they found a positive correlation between aerobic fitness and

muscle-specific miRNAs (Guescini et al., 2015). Nair et al. found

that regular exercise significantly increased the baseline expression

of exosomal miR-486-5p, miR-215-5p, and miR-941 and decreased

expression of exosomalmiR-151b (Nair et al., 2020). Interestingly, it

was reported that miR-133a expression in skeletal muscle increased

upon acute exercise but decreased after prolonged exercise training

(Nielsen et al., 2010). On the other hand, Castaño et al. showed that

high-intensity interval training (HIIT) significantly increased

muscle-derived exosomal miR-133a and miR-133b in circulation

(Castaño et al., 2020). Moreover, muscle-derived exosomal miR-

133b improved glucose tolerance and insulin sensitivity and

decreased plasma levels of triglycerides via suppressing

FoxO1 expression and hepatocyte glucose production (Castaño

et al., 2020).

Overall, accumulating evidence supports that exercise not

only changes muscle-derived exosomes but also mediates the

beneficial effects on other tissues via exosomal microRNAs.

Exosomal miRNAs in muscular diseases

Emerging evidence suggests that muscular diseases can alter

the cargo of muscle-derived exosomes. Catapano et al. reported

that the level of exosomal miR-29c-3p in urine was significantly

reduced in ambulant (A) Duchenne muscular dystrophy

(DMD) patients, while the levels of exosomal miR-23b-3p

and miR-21-5p in urine were significantly downregulated in

nonambulant (NA) DMD patients compared with controls

(Catapano et al., 2018). The study indicated that urinary

exosomes miR-29c-3p, miR-23b-3p, and miR-21-5p were

potential noninvasive diagnostic biomarkers for DMD.

Zanotti et al. reported that exosomes released by muscle-

derived fibroblasts of DMD patients had significantly higher

levels of miR-199a-5p than control exosomes. Injecting DMD

fibroblast-derived exosomes that contain elevated levels of miR-

199a-5p can lead to excessive skeletal muscle fibrosis (Zanotti

et al., 2018), and this study demonstrated that exosomes could

mediate pathogenic effects in muscular diseases. In contrast,

other studies demonstrated the protective roles of exosomes in

muscular diseases. Matsuzaka et al. showed that

C2C12 myoblast-derived exosomes are engineered to

overexpress myomiR-1, myomiR-133a, and myomiR-206 that

can improve survival of C2C12 myoblasts (Matsuzaka et al.,

2016). Hudson et al. reported that dexamethasone increases the

level of C2C12 myotube-derived exosomal miR-182, which can

attenuate atrophy-related gene expression by targeting

FoxO3 in skeletal muscle (Hudson et al., 2014). This

research provides the basis for future applications of

exosomes and exosomal miRNAs as a novel biological

therapeutic approach for treating muscular diseases.

Function of exosomal miRNAs in chronic
kidney disease

Numerous recent studies have demonstrated that exosomal

miRNAs participate in the pathogenesis of CKD. The roles of

exosomal miRNAs in CKD have been widely studied, especially

in renal fibrosis induced by unilateral ureteral obstruction

(UUO) and in models of diabetic nephropathy (DN). For

example, in TGF-β1-treated NRK-52E renal epithelial cells,

fibrotic progression was associated with exosomal secretion

(Zhao et al., 2021). These TGF-β1-induced exosomes were

found to contain high levels of miR-21, and when isolated

and injected into the obstructed kidneys, they activated

fibroblasts and triggered renal fibrosis via the PTEN/Akt

pathway (Zhao et al., 2021). Inhibition of miR-21 expression

abolished the fibrotic progression, suggesting that miR-21

mediated the TGF-β1-induced renal fibrosis. In diabetic

nephropathy, which is one of the common causes of CKD,

podocyte injury is crucial for disease progression. Using a

hyperglycemia-induced podocyte injury model in vitro, Huang
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et al. showed that podocyte injury was promoted when co-

cultured with M1 macrophages but was ameliorated when co-

cultured with M2 macrophages. Subsequently, the authors found

that M2 macrophages expressed high levels of exosomal miR-25-

3p, and it was this particularly exosomal miRNA that enhanced

podocyte survival by suppressing expression of DUSP1, a known

cell autophagy inhibitor (Huang et al., 2020). These studies

demonstrate that exosomal miRNAs could be therapeutic

targets for CKD.

Barutta et al. reported that miR-145 and miR-130a were

enriched in urinary exosomes from type 1 diabetic patients with

incipient diabetic nephropathy compared with type 1 diabetic

patients without kidney damage. Moreover, the high glucose level

induced a marked increase in the level of mesangial-cell-derived

exosomal miR-145 levels (Barutta et al., 2013). Delić et al. showed

increased levels of urinary exosomal miRNA, including miR-

320c, miR-6068, miR-1234-5p, miR-6133, miR-4270, miR-4739,

miR-371b-5p, miR-638, miR-572, miR-1227-5p, miR-6126,

miR-1915-5p, miR-4778-5p, and miR-2861, but they found

decreased miR-30d-5p and miR-30e-5p in type 2 diabetic

nephropathy patients compared with healthy donors and type

2 diabetic patients without kidney damage (Delić et al., 2016).

Regardless, the functions of individual exosomal miRNA, such as

dynamic and differential expression, reflected the potential use of

exosomal miRNAs as biomarkers for diagnostic purposes.

Several studies have shown that exosomal miRNAs derived

from mesenchymal stem cells (MSCs) exhibit therapeutic

benefits by suppressing kidney damage in CKD models. Liang

et al. showed that exosomal miR-374a-5p derived from MSCs

prevents the progression of renal fibrosis by regulating the

MAPK6/MK5/YAP axis in renal fibrotic mice (Liang et al.,

2022). Yang et al. reported that exosomal miR-186-5p derived

from MSCs attenuated renal fibrosis in vitro and in vivo by

downregulation of Smad5 (Yang et al., 2022). Hao et al. suggested

that MSC-derived exosomal miR-125a inhibits DN progression

and alleviates the symptoms via inhibition of histone deacetylase

1 and endothelin-1 in streptozotocin-treated rats and high-

glucose-treated glomerular mesangial cells (Hao et al., 2021).

Taken together, these findings indicate the potential roles of

exosomal miRNAs for therapeutic intervention in CKD models.

Role of exosomal miRNAs in
muscle–kidney crosstalk

Skeletal muscle wasting is one of the most common

complications of CKD. It is believed that catabolic/anabolic

imbalance is a major contributive factor to skeletal muscle

wasting (Robinson et al., 2020). The IGF-1-Akt-mTOR

pathway is a key promotor to muscle growth. In CKD,

metabolic acidosis, chronic inflammatory responses,

increased elevated glucocorticoid production and

dysregulated IGF-1 signaling altogether create an catabolic

environment that accelerates activation of protein

degradation, suppress protein synthesis, and impaired

muscle regeneration (Wang et al., 2022). The role of

exosomal miRNA derived from kidney in CKD on skeletal

muscle disorders are far from clear. Nevertheless, an early

study identified 12 miRNAs that are differentially expressed in

skeletal muscle between normal and CKD mice (Wang et al.,

2011), and among the differentially expressed miRNAs, miR-

29 was significantly downregulated in skeletal muscle of CKD.

The study showed that the inflammatory microenvironment

activated NF-κB signaling that suppressed the level of miR29,

and in turn inhibited the genes that promoted myogenic

differentiation. By overexpressing miR29 in myoblasts from

CKD muscle, myogenic differentiation was improved.

Overexpression of miR-486, which was also reported

downregulated in CKD muscle, exhibited protective effects

by inhibiting muscle degradation in CKD mice. The above

data suggested that downregulation of certain miRs accounted

for the muscle wasting phenotypes in CKD.

Recent research shows that the crosstalk between skeletal

muscle and the kidneys may retard the progression of CKD

(Figure 1B). Evidence has showed that expressions of some

exosomal miRNAs in CKD are sensitive to (and also response

to) exercises. For examples, miR-1 and miR-206 were responsive to

low frequency electrical stimulation that promoted myogenesis in

CKD muscle (Chen et al., 2010; Hu et al., 2015). Several muscle-

enriched miRNAs are secreted into general circulation. It is not

surprising that muscular disorders showing altered levels of muscle-

enriched or even muscle-specific miRNAs can exert their effects on

distal target tissues. For the 5/6 nephrectomy model, the

nephrectomized mice showed reduced expression of miR-23a in

muscle compared with controls, whereas exercise increased the

levels of miR-23a and miR-27a in the nephrectomy mice (Wang

et al., 2017). Overexpression of precursor miR-23a and miR-27a

may elevate the levels of maturemiR-23a andmiR-27a in circulating

serum exosomes and attenuate muscle loss, reduce myostatin, and

increase expression of markers of muscle regeneration (Wang et al.,

2017). The same research group has reported in later study that

miRNA-26a levels were reduced in both cardiac and skeletal muscles

of 5/6 nephrectomy mice as compared with control mice (Wang

et al., 2019b). An injection of Exo/miR-26a can prevent CKD-

induced skeletal muscle wasting and attenuate cardiomyopathy in 5/

6 nephrectomy mice via exosome-mediated miR-26a-regulated

insulin resistance and FoxO1 (Wang et al., 2019b).

For the UUO model, Wang et al. reported that the miR-29a

level was downregulated in both kidney and skeletal muscle of

UUO mice (Wang et al., 2020). Injection of AAV-miR-29a into

the tibialis anterior muscles not only inhibited YY1 and

myostatin in skeletal muscles, but also suppressed fibrosis-

related proteins (TGF-β1, TGF-β3, and collagen 1A1) in the

kidney. After an injection of AAV-GFP into tibialis anterior

muscles, the fluorescence levels of AAV-GFP were increased in

the kidney and non-injected muscle observed under an in vivo
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Xtreme camera system. Interestingly, the kidneys showed the

strongest fluorescence compared with other organs in UUO

mice. The level of miR-29a was significantly higher in the

obstructed kidney than in the unobstructed kidney of the

UUO mice after injecting them with AAV-miR-29a, which

means that injured organs may have a higher capacity to

recruit exosomal miRNAs than uninjured organs (Wang et al.,

2020). The investigators have created a gene-activated engineered

exosome that specifically target organs expressing the

acetylcholine receptor, such as the kidney (Wang et al.,

2019a). The intervention of Exo/miR-29 increased the

muscle’s cross-sectional area and ameliorated renal fibrosis in

UUO mice. The authors confirmed that the decreased renal

fibrosis after muscular injection of Exo/miR-29 was due to the

increased circulation of exosome-encapsulated miR-29 (Wang

et al., 2019a). In another study, intramuscular injection of

exosomes with high miR-26 content prevented muscle atrophy

by inhibiting FoxO1 and ameliorated renal fibrosis by

suppressing connective tissue growth factor; they also

demonstrated that exosomes originating at the muscle can

target the kidney (Zhang et al., 2019).

For the diabetic nephropathy model, researchers also

demonstrated the role of miRNAs in mediating crosstalk

between skeletal muscle and the kidneys. Zhang et al. found

that miR-23a/27a in muscle prevents diabetes-induced reduction

of the muscle’s cross-sectional area and function and attenuates

renal fibrosis lesions via muscle–kidney crosstalk (Zhang et al.,

2018). This study supports the potential therapeutic applications

of exosome delivery of miRNAs to prevent or treat sarcopenia

and kidney injury in people with CKD.

Summary and conclusion

In this review, we discussed the roles of exosomes and

exosomal miRNAs in the skeletal muscle–kidney crosstalk in

people with CKD. Accumulated evidence demonstrates that

skeletal-muscle-derived exosomal miRNAs prevent the

progression of CKD in different animal models. This

phenomenon holds great potential for the development of

strategies to treat complications arising from kidney diseases.

Exosomes and exosomal miRNAs derived from the kidney may

also interfere with skeletal muscle physiology and skeletal muscle

disorders. Further studies are required to fully illustrate the

signaling cascades of the two-way skeletal muscle–kidney

crosstalk.
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