Published online 22 May 2009

Nucleic Acids Research, 2009, Vol. 37, Web Server issue

W575-W580
doi:10.1093/nar/gkp418

RHYTHM—a server to predict the orientation
of transmembrane helices in channels and

membrane-coils

Alexander Rose', Stephan Lorenzen?, Andrean Goede®, Bjérn Gruening* and

Peter W. Hildebrand™*

TInstitute for Medical Physics and Biophysics, Charité, University Medicine Berlin, Ziegelstrasse 5-9, 10098
Berlin, 2Institute for Theoretical Biology, Humboldt University, InvalidenstraBe 43, 10115 Berlin, 3Institute for
Biochemistry, Charité, University Medicine Berlin, Monbijoustrasse 2, 10117 Berlin and “Institute of
Physiology, Charité, University Medicine Berlin, Arnimallee 22, 14195 Berlin, Germany

Received February 22, 2009; Revised April 18, 2009; Accepted May 6, 2009

ABSTRACT

RHYTHM is a web server that predicts buried versus
exposed residues of helical membrane proteins.
Starting from a given protein sequence, secondary
and tertiary structure information is calculated by
RHYTHM within only a few seconds. The prediction
applies structural information from a growing data
base of precalculated packing files and evolutionary
information from sequence patterns conserved
in a representative dataset of membrane proteins
(‘Pfam-domains’). The program uses two types
of position specific matrices to account for the dif-
ferent geometries of packing in channels and trans-
porters (‘channels’) or other membrane proteins
(‘membrane-coils’). The output provides information
on the secondary structure and topology of the
protein and specifically on the contact type of
each residue and its conservation. This information
can be downloaded as a graphical file for illustra-
tion, a text file for analysis and statistics and a
PyMOL file for modeling purposes. The server can
be freely accessed at: URL: http://proteinformatics.
de/rhythm

INTRODUCTION

About one third of the presently mapped gene sequences
encode for membrane proteins, which are also major
targets for pharmaceutical products (1,2). In contrast,
only a minor fraction (February 2009, 1.8%) of the pro-
tein structures deposited in the protein data bank (PDB)
belongs to this structural class (3,4). Due to difficulties in
over expression and crystallization, their tertiary structure
is often evaluated using computational methods (5-8).

Homology modeling may be applied when an appropri-
ate template structure is available (9). In other cases,
ab initio or knowledge-based tertiary structure modeling
comes into play. There is a high level of predictability
regarding secondary structure elements (10-12). New
approaches deal with the prediction of the exact lengths
of the transmembrane helices (13). Finally, transmem-
brane topology prediction was optimized applying consen-
sus predictions also identifying signal peptides (14).
However, tools that perform or assist in low resolution
tertiary structure modeling of helical membrane proteins
are still rare (15-19).

The growing data on high-resolution structures of
helical membrane proteins provide an appropriate base
for structural analysis, statistics and the development of
knowledge-based prediction methods (12,15-32). The type
of packing of a-helices is fundamental for the stabilization
and function of all helical membrane proteins (33-36).
Residues involved in helix—helix interactions are therefore
regularly more conserved than others and are often
arranged in specific sequence motifs that reflect the type
of packing (23,25,35,37). Right-handed parallel and anti-
parallel interactions are typically found in channels (mem-
brane proteins with a functional pore). These interactions
are mainly accomplished by weakly polar amino acids
(G>S>T=>F) that preferably create contacts every
fourth residue (23,37,38). Left-handed anti-parallel inter-
actions are predominantly found in membrane-coils.
There, large and polar residues (D >S>M > Q) create
characteristic contacts every 3.5th residues (23,37,39).

The higher conservation of residues involved in helix—
helix contacts was applied in methods predicting tertiary
structure contacts (40,41). Such applications can be fur-
ther improved combining conservation criteria with amino
acid propensity scales (18,24,32,42). The combination of
statistical potentials with fragment-based modeling and
energy minimizations were applied for de novo modeling
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Figure 1. Workflow of RHYTHM: the prediction is performed in three steps including (1) matrix prediction of helix—helix contacts; (2) matrix
prediction of helix-membrane contacts and (3) prediction of helix—helix contacts by conservation criteria (Pfam domains) (52).

approaches (28,43-45). There are some tools available to
predict buried versus exposed regions of transmembrane
helices. ProperTM (18), LIPS (16), RANTS (15) and
TMX (19) depend on multiple sequence alignments to pro-
duce predictions about transmembrane helix orientations
or solvent accessibility. However, the quality of prediction
by these tools largely depends on the quality of the mul-
tiple sequence alignment provided by the user. Due to the
small size of several transmembrane protein families, such
alignments are not always at hand. Moreover, the output
is not always presented in a user-friendly format and thus
cannot be directly used for modeling purposes.

RHYTHM is the first server that predicts the exposure
or burial of transmembrane residues incorporating the
structural specificities of channels. The quality of predic-
tion (expressed by AUC-values) of helix—helix contacts
rises by 16% to an average value of 76% when the
sequence motifs typical for channels are applied, com-
pared to the same approach when a non-specific matrix
is taken (23). For our web service, the position-specific
matrices were updated using an enlarged data set of
input structures. To optimize the sensitivity of helix—
helix contact predictions at high specificity thresholds,
the matrix prediction method is now combined with a pre-
diction directly applying evolutionary information from
‘Pfam-domains’ (46,47). RHYTHM also integrates the
secondary structure prediction tool HMMTOP (48).
Thus, after the upload of a single sequence file and the
specification of the position specific matrix type (‘channel’
or ‘membrane-coil’) the prediction for tertiary structure
contacts is started.

METHODS
Matrix prediction method

The prediction of buried versus exposed residues is based
on two different sets of propensity matrices derived
from representative and non-redundant datasets of 21
channels and 14 membrane-coils containing 310 and 179

transmembrane helices, respectively (see website for
details). The data were analyzed as described in detail in
earlier analyses (23.49). Shortly, helical sections were
defined by the Kabsch and Sander algorithm (50). Only
those residues were defined as transmembrane helixes with
their Ca-atoms lying between the two membrane planes.
The membrane planes were calculated applying the output
of the TMDET algorithm (51). The type of contact of a
specified residue was determined counting the atomic con-
tacts to residues of another helix, to the virtual membrane
or to virtual water (23). Structures with helix pairs too far
apart were removed after visual inspection.

The matrices (which will be regularly updated due to the
growing data set of high resolution membrane protein
structures) store the propensities of residues to contact
another helix or the membrane. To account for sequence
motifs, propensities of all neighboring amino acids are
stored in the same matrix [see website for details or
ref. (23)]. Scores are calculated by summation of the resid-
ual propensities at positions 0 to =4 (channels) or 0 to+7
(membrane-coils). These windows account for the differ-
ent RHYTHM of contacts in channels and membrane-
coils (23,25,38). An amino acid is predicted to be buried
(step 1, see Figure 1) or exposed (step 2, see Figure 1),
when this score is above a certain threshold specified by
the user. The advantage of this approach is that the pre-
diction is thus much less affected by variations of single
amino acid propensities. However, amino acids at the
helix termini are not recorded by our method.

Conservation criteria

The Pfam database is an extensive set of protein domains
and families currently covering 72% of known protein
sequences (46). The families consist of multiple align-
ments of functionally or evolutionary-related protein
sequences (47). These alignments also reproduce evo-
lutionary relationships that would otherwise not be
detected (9). To search the Pfam database, HMMER (ver-
sion 2.3.2) is applied (52). HMMER allows for sensitive



searching in a database of the consensus sequences of
various protein families using Hidden Markov Models.
To speed up the search the Pfam database was restricted
to the 691 membrane protein families provided in
February 2009. A bonus is added to the helix—helix
score of fully conserved residues, according to the finding
that conserved residues are often involved in helix—helix
contacts (37,53). The value of the bonus depends on the
selected specificity and is optimized for highest accuracy.

Three step prediction

A three-step approach was applied to predict buried
versus exposed residues (Figure 1):

(1) Matrix prediction of helix—helix contacts: Amino
acids predicted by HMMTOP (48) or specified by
the user to be part of a transmembrane helix are
scored. The prediction matrix has to be chosen by
the user. In order to do this, the user must know
whether the protein of the uploaded sequence has a
functional pore (channels) or not (membrane-coil).
The residues above the selected specificity threshold
for helix—helix contacts (medium, high, very high and
highest) are predicted as helix-helix contacts. The
specificities for a single contact type range from
about 75% for medium to 90% for very high
thresholds.

(2) Matrix prediction of helix-membrane contacts: The
remaining residues are predicted analogously as
helix-membrane contacts using the threshold speci-
fied by the user at the beginning of the procedure.
The specificities for that prediction also range from
about 75-90%, respectively. In conjunction, a maxi-
mum of 70% (medium specificity) of the residues are
recorded at the moment by the matrix prediction
method.

(3) Pfam prediction: To optimize the sensitivity of helix—
helix contact predictions at high specificity thresh-
olds, residues not recorded by the matrix prediction
method may be verified using conservation criteria.
This means that a bonus optimized for the positive
predictive value at a selected specificity threshold is
added to the helix—helix score from matrix predic-
tion. A residue is predicted as buried when the com-
bined score is above the defined threshold. As a
result a plus of 10-20% residues are additionally
assigned to be part of a helix-helix contact. The
specificity of prediction is not significantly affected
by the Pfam prediction.

RESULTS AND DISCUSSION
Performance of the combined prediction

The prediction quality of RHYTHM improved compared
to our previous analysis (23). This is due to the enlarged
data set of helical membrane proteins and the combina-
tion of the matrix prediction method with the prediction
from evolutionary conservation. The average AUC-values
(from a leave-one-out cross validation) for the prediction
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of helix—helix contacts are 0.72 for channels [as in our
previous analysis (23)] and 0.68 for membrane—coils,
respectively. The corresponding values for the prediction
of helix-membrane contacts are 0.75 and 0.73. Best pre-
dictions were obtained for helix—helix contacts of the
translocon channel (PDB-entry: Irh5, AUC-value: 0.78)
and for helix-membrane contacts of the ABC-transporter
protein (PDB-entry: 2qi9, AUC-value: 0.86). To receive
high quality predictions with RHYTHM, we suggest
selecting the default specificity threshold ‘very high’.
This threshold may then be reduced if too few contacts
are predicted. Besides tertiary structure contact types,
the output assigns the secondary structure and topology
of the protein (51). This information is provided as a gra-
phical file for illustration (Figure 2), a text file for analysis
and statistics and a PyMOL file for modeling purposes
(Figure 3).

Complexity of tertiary contact predictions

The quality of prediction will further improve as the data
set of non-homologous high resolution membrane protein
structures grows. At the moment the prediction is limited
for several reasons: A significant number of buried resi-
dues is close to internal cavities (37,54). Such residues
are not judged in our analysis to be part of a helix—helix
contact due to insufficient contacts to other residues and
are thus often evaluated as false positives in our predic-
tion. Large packing defects regularly account for struc-
tural flexibilities (36,55-57). The separate prediction of
residues involved in packing defects could therefore
enhance the prediction of tertiary structure contacts.
Moreover, about one quarter of the residues is in contact
with both another helix and the membrane. These residues
are frequently not recorded at high specificity thresholds
but will be predicted as buried or exposed at lower thresh-
olds. This ambiguity clearly complicates the prediction, as
well as the fact that many channels are highly flexible.
Residues that are buried in one functional state may
become exposed in another (45,58). Finally, residues
that appear to be exposed to lipid may become (and
may also be predicted to be) buried in quaternary com-
plexes (59). With more structural data of channels a pre-
diction of residues that are exposed or buried depending
on their functional state will be possible.

Technical details

All computations are done on our server including
optional prediction of membrane helix sections and
searches for Pfam domains. Modern web technologies
(AJAX, JavaScript, PHP, CSS) were used to create a
fast and intuitively usable web application.
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Figure 2. Example graphical output of RHYTHM: topology of the ammonium transporter predicted with HMMTOP (51). Tertiary structure
contacts predicted as helix—helix contacts (red) or helix-membrane contacts (green). Highly conserved residues are denoted with blue dots.

Figure 3. Two high-resolution crystal structures of (A) rhodopsin, PDB-entry: 1ul9 and (B) the ammonium transporter, PDB-entry: 1xqf, were
colored according to the predicted contact types (green = helix-membrane, red = helix-helix) using the downloadable PyMOL script from
RHYTHM. Helical sections that are predicted by HMMTOP to protrude from the lipid bilayer are coloured yellow. The two structures represent
two different architectures (23). Rhodopsin belongs to ‘membrane-coils’, where helix pairs are regularly arranged in small left-handed packing angles.
The ammonium transporter belongs to ‘channels’ that compose of helix pairs packed at large right-handed angles. Different matrices are applied for
the prediction of contact types of these two distinct packing modes.
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