
Analysis of the dynamics of a complex,
multipathway reaction: Insulin dimer dissociation

Kwanghoon Jeong,† Spencer C. Guo,† Sammy Allaw,†,§ and Aaron R.
Dinner∗,†,‡,¶

†Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
‡James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA

¶Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637,
USA

§Current address: Indiana University School of Medicine, Indianapolis, Indiana 46202,
USA

E-mail: dinner@uchicago.edu

Abstract

The protein hormone insulin forms a homod-
imer that must dissociate to bind to its re-
ceptor. Understanding the kinetics and mech-
anism of dissociation is essential for rational
design of therapeutic analogs. In addition
to its physiological importance, this dissocia-
tion process serves as a paradigm for coupled
(un)folding and (un)binding. Based on previ-
ous free energy simulations, insulin dissociation
is thought to involve multiple pathways with
comparable free energy barriers. Here, we an-
alyze the mechanism of insulin dimer dissocia-
tion using a recently developed computational
framework for estimating kinetic statistics from
short-trajectory data. These statistics indicate
that the likelihood of dissociation (the commit-
tor) closely tracks the decrease in the number of
(native and nonnative) intermonomer contacts
and the increase in the number of water con-
tacts at the dimer interface; the transition state
with equal likelihood of association and dissoci-
ation corresponds to an encounter complex with
relatively few native contacts and many nonna-
tive contacts. We identify four pathways out of
the dimer state and quantify their contributions
to the rate, as well as their exchange, by com-
puting reactive fluxes. We show that both the

pathways and their extents of exchange can be
understood in terms of rotations around three
axes of the dimer structure. Our results pro-
vide insights into the kinetics of insulin ana-
logues and, more generally, how to characterize
complex, multipathway processes.

Introduction

The kinetics of molecular association and disso-
ciation govern many processes in chemistry and
biology ranging from reactions of a few atoms
to changes in cell state. The most basic theories
of association treat molecules as spheres under-
going Brownian motion;1 these theories remain
relevant today because they can be extended to
account for molecular structure by factoring the
rate into terms for reaching an encounter com-
plex and for dynamics within that complex.1–4

Despite the success of this approach, it remains
difficult to apply when the dynamics in the en-
counter complex involve significant intramolec-
ular rearrangement, as is often the case for
macromolecules such as proteins. In this case,
simulations generally cannot directly bridge the
separation of timescales between the fastest mo-
tions of the molecules (typically bond fluctua-
tions) and the dynamics of interest. A common
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approach to estimating kinetics when such a
separation in timescales exists is to identify a
low-dimensional representation and apply tran-
sition state theory (TST) and its elaborations
that account implicitly for dynamics in the re-
maining degrees of freedom,5,6 but whether the
assumptions underlying this approach are valid
generally remains unclear (e.g., see Ref. 7 for
discussion). Even if they are, this strategy pro-
vides limited microscopic insight into the dy-
namics of the degrees of freedom beyond the
reaction coordinates.
These issues are exemplified by studies of the

association and dissociation of the monomers in
the insulin homodimer. Each monomer consists
of two polypeptide chains that are linked by
disulfide bridges: a 21-amino acid A-chain and
a 30-amino acid B-chain. In the dimer (Fig-
ure 1), the secondary structure of the A-chain
consists of two α-helices (A1–A9 and A13–
A20); that of the B-chain consists of an α-helix
(B9–B19), followed by a β-turn (B20–B23), and
a β-strand (B24–B26). At the dimer interface,
the B-chain α-helices from the two monomers
pack against each other, and the B24–B26 seg-
ments form an anti-parallel β-sheet. Both ex-
periments8,9 and simulations10–12 indicate that
the A-chain N-terminal helix (A1–A9), the B-
chain N-terminal strand (B1–B7), and the B-
chain C-terminal residues (B24–B30) become
disordered when mutations and/or low pH are
used to stabilize the monomer relative to the
dimer.
Dinner and co-workers previously showed

that the potential of mean force (PMF) as
a function of collective variables (CVs) char-
acterizing the contacts between the interfa-
cial α-helices and β-strands supports a diver-
sity of dissociation pathways ranging from ones
in which the α-helices separate first to ones
in which the β-strands separate first.15 Along
the limiting path in which the α-helices sep-
arate first, the α-helices twist apart, and wa-
ter penetrates the hydrophobic core before the
β-strands slide apart, detach from the core,
and become disordered. Along the alterna-
tive limiting path, the β-strands twist apart
first while remaining attached to the core, and
the monomers separate largely in their dimeric

structures. The paths were estimated to have
comparable free energy barriers of around 14
kcal/mol in the dissociation direction and 1–
2 kcal/mol in the association direction. These
simulations provide a unified perspective of di-
verse dynamics in earlier simulations.11,16–19

In particular, Bagchi and co-workers inferred
a path in which the interfacial α-helices sepa-
rate first from the PMF as a function of the
distance between the centers of mass of the
monomers and the number of contacts between
them.17 Based on this two-dimensional PMF
and its minimum free-energy path, they sub-
sequently estimated the dissociation rate us-
ing a variety of theories; with corrections to
the TST rate, they obtained a value of 0.4
µs−1.7 They identified the transition to the first
metastable intermediate with twisted interfa-
cial α-helices and a largely intact interfacial β-
sheet19 to be the rate limiting step in TST.
The existence of this intermediate is consis-
tent with a twisted dimeric state found in a
Markov state model (MSM), though the MSM
predicts longer timescales of transition to and
from it (∼20 µs).20 These timescales estimated
for the initial events in dissociation are on the
order of those detected by temperature-jump
two-dimensional infrared (2D IR) spectroscopy
of the amide I vibrational modes, which sug-
gestst that monomer disordering is in the 5–250
µs time range and dissociation is in the 250–
1000 µs time range.21 On the other hand, time-
resolved X-ray scattering measurements suggest
dissociation intermediates appear within 1 µs
but cannot resolve their structural features.22

Given the heterogeneity of possible paths dis-
sociation can take, it is interesting that the rate
theory estimate is in reasonable agreement with
the experimental data. Bagchi and co-workers
report that their rate estimates are quite sensi-
tive to their chosen coordinates,7 making it im-
portant to be able to evaluate coordinates with
respect to their ability to describe the dynamics
objectively. A principled way of doing so is to
compare coordinates to the committor,23 which
is the probability that from a given microscopic
state a trajectory goes to a product state before
a reactant state.6,24

Here, we use a generalization of MSMs termed
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Figure 1: Experimental insulin dimer structure (PDB ID 3W7Y13) from three different points of view. The A-
chains are translucent, while the B-chains are opaque. The interfacial β-strand and B-chain C-terminal residues
(B24–30) are red, and the interfacial α-helices (B9–19) are black. Cysteine disulfide bonds are shown in yellow. We
use VMD14 to visualize molecular structures throughout the paper.fig:system

dynamical Galerkin approximation (DGA)25,26

to estimate the committor for insulin dimer dis-
sociation. We show that the committor cor-
relates with the number of interfacial contacts
(consistent with the choices of CVs in Refs. 15
and 17) and the total number of interfacial wa-
ter molecules. We use the committor, together
with the equilbrium probability, to compute the
reactive current, which enables us to quantify
the importance of competing pathways and esti-
mate the rate of dissociation. We show that the
heterogeneous paths out of the dimer state and
the fluxes between them can be understood in
terms of three axes around which the monomers
rotate, providing a simple perspective on this
complex reaction.

Methods

Here we describe the statistics that we use in
our analysis and how we compute them. In
brief, we run many short, unbiased simula-
tions and use them to define a set of Markov
states and the probabilities of transition be-
tween them. Because we draw the initial struc-
tures for these simulations from previous equi-
librium simulations, we can use the earlier re-
sults to estimate the equilibrium probability
(π) over the states, which provides information
about relative stabilities of the Markov states.
From the matrix of transition probabilities, we
can compute the committor (q), which, as de-
fined above, is the probability of reaching a
product state before a reactant state from a
given Markov state. Because it provides in-
formation about the likelihood of completing a

stochastic reaction, the committor serves as a
measure of reaction progress, and we define the
transition state as the ensemble of states with
equal likelihood of next going to the reactant
(A) and product (B) states (qA = qB = 0.5).
From the equilibrium probability and the com-
mittor, we can compute the reactive current,
which tracks how probability flows within the
ensemble of reactive trajectories; in turn, we in-
tegrate over the reactive current along the com-
mittor to obtain the reactive flux (RAB; we de-
note the fractional contribution to the flux of
state i by Fi). The reactive flux divided by the
fraction of time the system spends having last
come from state A is the rate constant (kAB).
Figure 2 summarizes our computational work-
flow.

Simulation data

In principle, both π and q can be obtained
from DGA using an arbitrary sample distribu-
tion.25–28 We initially generated a sample distri-
bution by running unbiased dynamics from con-
formations sampled by adiabatic-bias molec-
ular dynamics (ABMD),29 following previous
studies.26,30 However, we found that the re-
sulting PMF was inconsistent with that ob-
tained from earlier replica-exchange umbrella
sampling simulations (REUS),15 which were
converged with the aid of an error estimator.31

Therefore, we instead selected conformations
from the umbrella sampling simulations as the
starting points for unbiased dynamics simula-
tions, as we describe below.
The system setup was the same as in the
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Umbrella Sampling
Draw initial structures for unbiased simulation 

from converged stationary distribution (𝜋)

Unbiased Simulation
Generate short, unbiased trajectories

Dynamical Galerkin Approximation
1. Estimate the (stopped) transition matrix (𝕋!" ): Eq. (1)
2. Compute committor (𝑞#): Eq. (2)

Transition Path Theory
Estimate further dynamical statistics:
1. Rate constant (𝑘$#) : Eq. (3) – (6)
2. Relative flux (𝐹%) : Eq. (7)
3. Transition flux matrix (𝕋&) : Eq. (8)

Markov State Construction
Approximate the process by 

a discrete state Markov process

Figure 2: Schematic of the workflow. Gray box shows
calculations performed in Ref. 15, and yellow boxes
show calculations in the present study. fig:method

REUS simulations, and we refer the reader to
Ref. 15 for details. To summarize, the system
was constructed from a crystal structure of hu-
man insulin (PDB ID 3W7Y13) and modeled in
aqueous solution with cubic periodic boundary
conditions. The protein, 48 K+ ions, and 44 Cl−

ions were represented by the CHARMM36m32

force field, and 15,532 water molecules were rep-
resented by the TIP3P model;33 the total num-
ber of atoms was 48,260. After equilibration,
the simulation box size was fixed at (7.82 nm)3.
From each of the 748 REUS simulations, we

sampled 24 structures equally distributed along
the 5 ns trajectory, resulting in 24 × 784 =
18,816 initial structures. From each sampled
structure, we initialized a 5 ns trajectory using
OpenMM 7.7,34 yielding an aggregate simula-
tion time of 94.08 µs. Simulations were per-
formed in the canonical (isothermal-isochoric)
ensemble at 303.15 K using the LFMiddle in-
tegrator35 with a time step of 2 fs and a fric-
tion constant of 0.083 ps−1. The particle-
mesh Ewald method was used to calculate non-

bonded forces with a cutoff distance of 1.2 nm;
the non-bonded interactions were smoothly
switched off from 1.0 to 1.2 nm through the
built-in OpenMM force-switch function. The
lengths of bonds to hydrogens were constrained
using the SHAKE algorithm.36 Structures were
saved every 5 ps.

Markov state model (MSM)

We used the simulation data described above to
define discrete states and estimate the probabil-
ities of transition between them. In this section,
we describe variables that we use to character-
ize the system and states that we define in terms
of them.

Definition of the dimer and monomer
states

We used the following variables to define the
dimer and (separated) monomer states based
on previous studies:

1. RMSDint measures the root mean square
deviation (RMSD) of interfacial Cα atoms
from their positions in the crystal struc-
ture. We define the interfacial Cα atoms
to be those within 10 Å of any Cα atom
of the other monomer in the crystal struc-
ture.18

2. Φα is a pseudodihedral angle that mea-
sures twist of the interfacial α-helices.15,20

It is defined by the geometric centers
of SerB9–LeuB11, ValB12–TyrB16, ValB

′12–
TyrB

′16, and SerB
′9–LeuB′11 (the primes

distinguish one monomer from the other).

3. ᾱ measures the separation of the interfa-
cial α-helices.15 It is the average distance
between Cα atoms of the following pairs
of residues: SerB9-TyrB

′16, SerB9-GluB′13,
ValB12-TyrB

′16, GluB13-GluB′13, GluB13-
SerB

′9, TyrB16-ValB
′12, and TyrB16-SerB

′9.

4. β̄ measures the separation of the interfa-
cial β-strands.15 It is the average distance
between Cα atoms of the following pairs of
residues: PheB24-TyrB

′26, PheB25-PheB
′25,

and TyrB26-PheB
′24.
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5. Nc measures the number of pairs of non-
hydrogen atoms from separate monomers
that are within 4.5 Å of each other.

6. Nsw measures the number of shared wa-
ters. The shared waters are ones with
oxygen atoms that are simultaneously
within 4 Å of at least one interfacial
non-hydrogen atom from each monomer.
Here, we define the interfacial atoms to
be those within 4 Å of a non-hydrogen
atom from the other monomer in the crys-
tal structure.

Given these features, we define the dimer state
(A) as structures with RMSDint < 2 Å, 120◦ <
Φα < 135◦, ᾱ < 0.8 nm, and β̄ < 0.55 nm.
We define the monomer state (B) as structures
with RMSDint > 10 Å, Nc = 0, and Nsw = 0.

Features used to define states

We divide the remainder of the conformation
space into k−2 states so that there are k states
with the dimer and monomer states. Unless
otherwise indicated, we use k = 600. We dis-
cuss the choice of the number of states in the
Supporting Information (text and Figure S2).
We cluster the data with k-means using 45 fea-
tures: 26 local features and 19 global features.
The local features correspond to contacts be-

tween 26 residue pairs (Table S1 and Figure S1).
These are based on the residues used to define ᾱ
and β̄, as well as residues in the β-turn and close
to the C-terminus. We consider more residues
in B21–B29 than in the α-helices because this
segment is more heterogeneous as dissociation
proceeds. For each residue pair, we compute the
distance between the Cα atoms, xi, and then
take as the feature tanh((xi − µi)/2σi), where
µi and σi are the mean and standard deviation
of xi over the entire dataset.
We found that the local features were insuf-

ficient to characterize conformations at later
stages of dissociation, when most contacts are
broken. Consequently, we also include global
features. The global features consist of half the
distance between the monomer centers of mass,
Rcom/2, and the sine and cosine of nine angles:

1. Two pseudodihedral angles, Φα and Φβ,
measuring twist of the interfacial α-
helices and β-strands, respectively; Φα is
defined above, and Φβ is defined by the
Cα atoms of TyrB26, PheB25, PheB

′25, and
TyrB

′26;

2. Two angles, γ and γ′, which measure
splaying of the interfacial α-helices (see
Figure 7 below); γ is the angle defined by
the geometric centers of ValB12–TyrB16,
PheB25, and PheB

′25, and γ′ is the cor-
responding angle for the other monomer;

3. Five Euler angles characterizing the rel-
ative orientations and rotations of the
monomers.37

As defined above (Table S1), the different types
of features have comparable magnitudes, and
we use them in the k-means algorithm with-
out further scaling. Because trajectories tend
toward the stable states, we used only the 50
frames from 255 ps–500 ps of the 5 ns trajecto-
ries when defining the cluster centers to ensure
sufficient resolution outside the stable states.
We used MDAnalysis38,39 to compute all col-
lective variables.

Estimation of equilibrium statis-
tics

As a consequence of the fact that we initial-
ize the unbiased simulations from previous um-
brella sampling simulations, the equilibrium
probabilities of the conformations sampled by
the unbiased simulations are proportional to
the weights, w(x), of their associated initial
conformations. After normalizing these weights
so they sum to one, we compute the PMF over
Markov states as

G(Si) = −kBT log

(∑
x∈Si

w(x)

)
∆G(Si) = G(Si)−G(A)

where Si denotes Markov state i, x is a struc-
ture in Si, kB is Boltzmann’s constant, and T
is temperature.
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Estimation of dynamical statistics

From the MSM, we compute the committor, re-
active current, and rate. The central quantity
in an MSM is the matrix of state-to-state tran-
sition probabilities (T). A key aspect of DGA
that distinguishes it from a traditional MSM
is that the transition transition matrix is con-
structed with statistic-specific boundary condi-
tions. That is,

(Tτ
D)ij = P[X(min(τ, TDc)) ∈ Sj | X(0) ∈ Si],

(1)
eq:st_mateq:st_mat

where X(t) is the structure at time t, Si and Sj

are Markov states, TDc = min{t ≥ 0 | X(t) ∈
Dc} is the time of first exit from the domain
D (here, D = (A ∪ B)c, but we consider other
choices below), and τ is a lag time that must be
chosen to be sufficiently long that the dynam-
ics are approximately Markovian in the vari-
ables used to define the states. The minimum
in (1) effectively stops trajectories when they
enter states A and B. We do not symmetrize
Tτ

D to enforce microscopic reversibility.
We denote the committor that is the proba-

bility of next going to state B rather than state
A from structure x by qB(x). By definition,
qA = 1 − qB, and by microscopic reversibility,
qA is also the probability of last coming from
state A rather than state B. The committor
satisfies the equation

qB(x) =

{
Tτ

DqB(x) x ∈ D

1B(x) x ∈ Dc,
(2)

eq:fk_qeq:fk_q

where 1B(x) is an indicator function that is one
if x is in state B and zero otherwise. We solve
for qB with a modified algorithm that treats
non-Markovian effects through the addition of
memory terms.40 Here, we show committors es-
timated using a lag time of 2 ns and 1 memory
term, which we choose to balance expressivity
and statistical error (see discussion in Support-
ing Information and Figures 4, S2, and S3).
Given π, qA, and qB, we use transition path

theory (TPT)41 to compute the reactive current
projected onto a vector of CVs, θ:

Jθ
AB(s) =

∫
JAB · ∇θ(x)δ(θ(x)− s)dx, (3)

JABthetaJABtheta

where

JAB · ∇θ(x) = lim
∆t→0+

π(x)qA(x)qB(x)

× E[(θ(X(∆t))− θ(X(−∆t)) | X(0) = x]

2∆t
.

(4)
eq:JABtheta_esteq:JABtheta_est

Integrating the reactive current along the com-
mittor (i.e., setting θ = qB in (3) and (4)) gives
an estimate of the number of reactive trajec-
tories per unit time, RAB, or the net reactive
flux:

RAB =

∫ 1

0

JqB
AB(s) ds. (5)

eq:rateeq:rate

Dividing RAB by the fraction of time the system
spends having last come from state A gives the
TPT rate constant:

kAB =
RAB∫

π(x)qA(x) dx
. (6)

eq:rateceq:ratec

In practice, we use finite-lag time estimators for
Jθ
AB(s), RAB, and kAB

26,42—we translate these
estimators to our notation and provide further
details concerning their use in the Supporting
Information.
To estimate the contribution of a state to the

net reactive flux, we compute the dynamical
statistics with an extra state excluded from the
domain,43 D := (A ∪ B ∪ Ci)

c where Ci is any
(coarse-grained) state of interest. The interpre-
tation of the committor qCi

B then becomes the
probability to next go to state B rather than
A∪Ci, and qCi

A becomes the probability to last
come from state A rather than B ∪ Ci. We
can solve for the committor qBCi

using (2) with
D := (A ∪ B ∪ Ci)

c. Similarly, we can solve
for qCi

A using the same equation but with A and
B switched. We then compute the number of
reactive trajectories from A to B without en-
tering Ci per unit time, which we label RAB\Ci

,

by inserting qCi
A and qCi

B into (4) and (5). We
then define the fractional contribution of each
coarse-grained state to the net flux as

Fi = 1−
RAB\Ci

RAB

. (7)
eq:rel_fluxeq:rel_flux

The procedure above can be viewed as a sim-
plified version of the approach for computing
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history-dependent TPT statistics in Ref. 44.
In the Results, we aggregate Markov states

into eight coarse-grained states. To system-
atically evaluate how the coarse-grained states
evolve, we compute a coarse-grained transition
flux matrix, T̃, where T̃ij is the probability for
a structure starting in state Ci to go to Cj with-
out visiting any other states. More specifically,
the elements of T̃ are

T̃ij = P
[
TCj

= TC\Ci
| X(0) ∈ Ci

]
(8)

where

C =
10⋃
i=1

Ci (9)

and Ci represents the dimer, monomer, and
coarse-grained states.

Results

Our analysis of insulin dimer dissociation is or-
ganized as follows. We first present the PMFs,
committor, and reactive currents as functions of
the CVs used to control the sampling. While we
project these quantities to two dimensions for
visualization, we compute them for 600 Markov
states defined in 45 dimensions, as described in
Methods, and we use them without projection
to estimate the rate of dissociation. To dis-
sect the mechanism, we identify CVs that corre-
late with the committor and relate them to the
dimer structure. Then, we consider CVs that
do not correlate with the committor to charac-
terize the diversity of reaction paths and their
associated fluxes.

The inverse rate is approximately
100 ms

As described in Methods, we draw the ini-
tial conformations for our unbiased molecular
dynamics simulations from umbrella sampling
simulations with restraints in two CVs: the av-
erage occupancies of seven contacts between the
interfacial α-helices (ᾱc) and three contacts be-
tween the interfacial β-strands (β̄c).

15 We show
the PMF, committor, and reactive currents as
functions of these CVs in Figure S4 and on the

average distances for the atom pairs defining
these CVs (ᾱ and β̄) in Figure 3.
The DGA/MSM PMFs closely resemble those

from umbrella sampling,15 indicating that the
initial conformations are indeed consistent with
the equilibrium distribution. Focusing on Fig-
ure 3, the committor increases smoothly from
the dimer state in the lower left corner to the
monomer state in the upper right corner. The
lines of constant committor values (isocommit-
tors) are diagonal, and the arrows representing
the reactive currents fan out from the dimer
state. Both of these features support the idea
that the reaction can follow diverse paths, with
the interfacial α-helices or β-strands separating
in either order or concomitantly.
We integrate the flux along the committor to

estimate the rate, as described in Methods. As
we vary the lag time, the estimate appears to
converge to the order of 10 s−1 for the rate,
or 100ms for its inverse (Figure 4), markedly
slower than both experimental temperature-
jump studies performed in ethanol21,22 and
previous computational estimates.7 We discuss
these studies further in the Discussion.
As a first step toward understanding the fac-

tors that contribute to the rate, we plot the po-
tential of mean force as a function of the com-
mittor in Figure 6a (top left). There is a barrier
of about 13 kcal/mol at qB ≈ 0.14 (blue shad-
ing), and the potential of mean force is rela-
tively flat between qB ≈ 0.14 and qB ≈ 0.9. We
relate these features to CVs in the following sec-
tion, where we also describe how information is
represented within the plots in Figure 6a.

The committor correlates with the
total number of interfacial con-
tacts

With a view toward structurally interpreting
the committor, we computed its correlation
with a large number of CVs (Figure 5).23,27,45

We found that the CVs used to control sam-
pling in previous studies ᾱc and β̄c in Ref.
15 and the center-of-mass distance, Rcom, and
number of Cα intermonomer contacts, Q, in
Ref. 17 are highly correlated with the com-
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mittor. In addition to those CVs (and the
closely related CVs ᾱ and β̄), the CVs with
the highest correlation include the total number
of intermonomer contacts, Nc, the total num-
ber of water molecules at the dimer interface,
Nw, which increases as the dimer interface be-
comes exposed, and the number of shared water
molecules at the dimer interface, Nsw, which de-
creases as the monomers separate.
Although the correlation coefficient is useful

for identifying CVs that track monotonically
with the committor, it can obscure nonmono-
tonic relationships, as well as more subtle rela-
tionships (e.g., how quickly a variable changes
as the reaction progresses). Consequently, we
also show plots in which we plot the average
value of a variable for each Markov state as a
function of its committor value; we term these
evolution profiles. To highlight Markov states
with the highest fluxes, we make the symbol
sizes proportional to the fluxes, and we also in-
dicate the flux-weighted quantile of the variable
for the Markov states at each value of the com-
mittor (using bins of 0.1; see Figures 6 and S5).
Figure 6a shows the evolution profile for Nc,

which is strongly correlated with the commit-
tor. There are two phases: there is a rela-
tively rapid drop in Nc from the dimer state to
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ᾱ

ᾱc
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cients, respectively. fig:q_corr

qB ≈ 0.14, followed by a slow, steady decrease
to zero at qB = 1. The trends in the Nc profile
are mirrored in the Nw profile (Figure S5); the
two CVs track each other almost perfectly be-
cause water molecules fill the space vacated by
protein (Figure S6). The initial rapid phase in
the Nc profile coincides with the rise in free en-
ergy, while the subsequent slow phase coincides
with the plateau in free energy.
To dissect this behavior, we separate the in-

termonomer contacts into native and nonnative
ones. To determine the native contacts, we ex-
amine the percentage of structures in the dimer
state that each (atom-atom) contact is occu-
pied. Because we find there is no natural cutoff
for these occupations, we take the native con-
tacts to be those occupied in at least 1% of
the structures in the dimer state (Figures 6b
and S7; other cutoffs gave qualitatively simi-
lar results). We see that the drop in Nc from
the dimer state to qB ≈ 0.14 results from an
even more rapid drop in native contacts offset
by a rise in nonnative contacts. While most of
the rise in nonnative contacts is in this initial
phase, the number of nonnative contacts peaks
around qB ≈ 0.5, which we define as the transi-

tion state since states with this committor value
have an equal probability of next going to the
dimer and monomer states. Thus, the transi-
tion state is an encounter complex with about
20 native contacts and 50 nonnative contacts.
However, this simple description masks struc-
tural diversity that we elaborate in the next
section.

The diversity of pathways can be
understood in terms of three axes
of rotation based on the dimer
structure

Given that the CVs that track closely with
the committor are compatible with a diversity
of structures at each stage of the reaction15

(Figures 3, S4, and S5), we wanted to deter-
mine whether insulin dissociates by distinguish-
able pathways, or the reactive path ensemble
is better viewed as a continuum. Answering
this question and, more generally, developing
a structural understanding of the mechanism
can aid in interpreting the effects of mutations
and designing new insulin analogues, as well as
connecting our results to structural ideas about
molecular recognition.15,30,46 To this end, we
sought to identify structural CVs that are or-
thogonal to the committor and to use them to
characterize the reactive path ensemble.
Based on the results of previous studies,15,17,20

we considered CVs that track twisting of the
interfacial secondary structure elements. The
twisting of the α-helices relative to each other
can be quantified by a pseudodihedral an-
gle, Φα, defined by the geometric centers
of the backbone atoms of segments SerB9–
LeuB11, ValB12–TyrB16, ValB

′12–TyrB
′16, and

SerB
′9–LeuB′11. Similarly, the twisting of the

β-strands relative to each other can be quan-
tified by a pseudodihedral angle, Φβ, defined
by the Cα atoms of TyrB26, PheB25, PheB

′25,
and TyrB

′26. Note that these definitions dif-
fer slightly from those in Ref. 15, so that the
dimer state corresponds to the trans state of
the pseudodihedral angle in each case. These
CVs are correlated (ρ(Φα,Φβ) = 0.65; Figure
S8) and characterize rotations around axes that
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are orthogonal to the dimer interface, parallel
to the line connecting the centers-of-mass of the
monomers (labeled the y-axis in Figure 7).
Motivated by this observation, we defined two

other axes based on the dimer structure. We
defined the x-axis as the C2 rotation axis of
the dimer and the z-axis as the cross product
of the x- and y-axes, which is parallel to the
β-strands. We then defined CVs that charac-
terize rotations around the x- and z-axes. Be-
cause the monomers are not rigid bodies, one
might expect more than one variable to be re-
quired to define the dynamics around each axis
(as is the case for the y-axis, where we track
both Φα and Φβ). Nevertheless, we found that
only one additional CV for each axis was suf-
ficient. To describe the rotation around the z-
axis, we define three angles: γ is the angle of
the geometric centers of the segments ValB12–
TyrB16, PheB25, and PheB

′25; γ′ is the corre-
sponding angle for the other monomer; and
γ̄ = γ+γ′. To describe the rotation around the
x-axis, we combine four Cα-Cα distances: dzip =
(dB21−B′29+ dB16−B′26)− (dB29−B′21+ dB26−B′16).
Figure 7 illustrates the axes and the CVs that
characterize rotation around them.
We clustered the Markov states into coarse-

grained states based on Φα, Φβ, γ̄, and |dzip|.
By varying the number of clusters, we found
that four coarse-grained states were sufficient
to capture the qualitative features of the path-
ways. Each is distinguished from the others by
a shift in one of the CVs relative to its value
in the dimer state: the twisted state has low
Φα, the splayed state has high γ̄, the unzipped
state has high |dzip|, and the rev-twisted state
has high Φβ (Figure S8). However, we empha-
size that each such shift can be accompanied by
others owing to correlations between the CVs.
Figures 7, S9, and S10 show structures of the

coarse-grained states at different stages of the
reaction, Figures 8 and S7 show their contact
maps, and Figure S11 shows their solvation.
At qB ≈ 0.14, both the twisted and splayed
states exhibit a rotation in the positive direc-
tion around the y-axis and in turn relatively
low Φα and Φβ (Figure S8; see Figure S9 for
an alternative view of the splayed state that
makes clear the +y-rotation). This rotation

shifts contacts of the C-terminal residues (B26–
B30) of each monomer from the β-turn (B′21)
to the C-terminal end of the α-helix (B′16) of
the other monomer in a symmetric fashion. By
contrast, the unzipped and rev-twisted states
show detachment of the B′26–B′30 residues of
one monomer (in Figures 7 and 8 we show data
only for states with dzip > 0 to make this asym-
metry apparent; states with dzip < 0 are similar
but the monomers are switched).
The twisted and splayed states are differen-

tiated by whether they exhibit further rota-
tion around the y-axis or rotation around the
z-axis. In the twisted state, further rotation
around the y-axis leads to contacts between
B26–B30 and B′12–B′13 in the interfacial α-
helix of the other monomer, and it brings the
N-termini of the interfacial α-helices together to
make a B9–B′9 contact. In the splayed state,
rotation around the z-axis results in a loss of
contacts between the interfacial α-helices. Sim-
ilarly, the unzipped state and rev-twisted states
(which again occupy the same region of the
ΦαΦβ-plane; Figure S8) are differentiated by
the rotation around the x-axis. In the unzipped
state, this rotation results in a complete loss of
contacts for the detached B′26–B′30 residues at
qB ≈ 0.14.
At qB ≈ 0.5, the coarse-grained states are

more heterogeneous. In the twisted state, only
contacts between the β-turn region (B16 and
B21) and the C-terminus (B′26–B′30) or the
N-terminus of the α-helix (B′9) of the other
monomer persist. In the splayed state, the
contacts between the interfacial α-helices are
completely lost, and one of the two groups of
contacts between the C-terminal residues (B26–
B30) and the β-turn (B21) is broken while the
other remains intact, mirroring the effects of
the x-rotation discussed above for the unzipped
state at qB ≈ 0.14. Notably, both the twisted
and splayed states show asymmetric contact
maps.
In the unzipped state at qB ≈ 0.5, the C-

terminus (B26–B30) of one monomer (left in
Figure 7) inserts between the β-trun side of
α-helix (B′16) and that of β-strand residues
(B′24) of the other monomer, bringing B28–B30
in contact with the β-turn (B′21–B′23) as well.
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Figure 7: Coarse-grained states. (top row) Collective variables used to define the states and their associated
rotations. (bottom two rows) Representative structures at qB ≈ 0.14 and qB ≈ 0.5 as indicated. To obtain the
structures shown, we randomly sampled ten structures (translucent) from each of the Markov states associated with
each coarse-grained state and then iteratively aligned the structures to their average structure until the backbone
RMSDs to the average structure (opaque) converged. See Figures S9 and S10 for alternative views of the coarse-
grained states. fig:Diversity

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.08.617297doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.08.617297
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 12 16 21 242628

9

12

16

21

24

26

28

q
B
º

0
.1
4

C
h
a
in

B
’
re
si
d
u
e
in
d
e
x

Twisted

9 12 16 21 242628

9

12

16

21

24

26

28

Splayed

9 12 16 21 242628

9

12

16

21

24

26

28

Unzipped

9 12 16 21 242628

9

12

16

21

24

26

28

Rev-twisted

9 12 16 21 242628

Chain B residue index

9

12

16

21

24

26

28

q
B
º

0
.5

C
h
a
in

B
’
re
si
d
u
e
in
d
e
x

9 12 16 21 242628

Chain B residue index

9

12

16

21

24

26

28

9 12 16 21 242628

Chain B residue index

9

12

16

21

24

26

28

9 12 16 21 242628

Chain B residue index

9

12

16

21

24

26

28

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Nc
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The other monomer’s C-terminus (B′24–B′28)
is heterogeneous in conformation but samples
contacts with B25 of the former. The rev-
twisted state rotates the opposite way around
the y-axis as the twisted state, and this results
in a nonnative contact between the C-termini
of the interfacial α-helices at B16–B′16 (in con-
trast to the B9–B′9 contact for the twisted
state at qB ≈ 0.14) as well as nonnative con-
tacts that arise from the β-turn (B21) of one
monomer inserting between the C-terminal part
of the β-strand (B′26-B′28) and the N-terminal
part of the α-helix (B′9 and B′12) of the other
monomer. Notably, the contact map of the rev-
twisted state at qB ≈ 0.5 is symmetric.

There is extensive mixing between
selected pathways

To quantify the contributions of the pathways,
we computed the fractional fluxes through the
coarse-grained states as described in Methods
(Figure 9a). At qB ≈ 0.14, the coarse-grained

states that involve +y rotation (splayed and
twisted) make larger contributions to the net
flux than the coarse-grained states that involve
−y rotation (unzipped and rev-twisted). This
reflects the fact that the former’s free energies
are lower (compare the red and orange symbols
with the blue and green ones at qB ≈ 0.14 in
Figure 6a). At qB ≈ 0.5, the ordering is re-
versed, presumably owing to mixing between
pathways.
To characterize the mixing, we computed

the coarse-grained transition flux matrix as de-
scribed in Methods (Figure 9c). One can con-
sider both mixing within each committor value
(qB ≈ 0.14 and qB ≈ 0.5) and from each to the
other. We focus first on the transitions from
qB ≈ 0.14 to qB ≈ 0.5 (Figure 9b and red box
in Figure 9c). The coarse-grained states that in-
volve only rotations around the y-axis (twisted
and rev-twisted states) flow from qB ≈ 0.14
to qB ≈ 0.5 without branching. By contrast,
the states that involve multiple rotation axes
(splayed state with +y and +z rotation and un-

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.08.617297doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.08.617297
http://creativecommons.org/licenses/by-nc-nd/4.0/


from state 𝑖

twisted

splayed

unzipped

rev-twisted

twisted
splayed

unzipped

rev-twisted

a.

b.

c.

to state 𝑗

0 50

Relative flux, Fi (%)

rev-twisted

unzipped

splayed

twisted

qB º 0.14

0 50

Relative flux, Fi (%)

qB º 0.5

D
im

e
r

tw
is
te
d

sp
la
ye
d

u
n
zi
p
p
e
d

re
v-
tw

is
te
d

tw
is
te
d

sp
la
ye
d

u
n
zi
p
p
e
d

re
v-
tw

is
te
d

M
o
n
o
m
e
r

Dimer

twisted

splayed

unzipped

rev-twisted

twisted

splayed

unzipped

rev-twisted

Monomer

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

T̃i j

0 50

Relative flux, Fi (%)

rev-twisted

unzipped

splayed

twisted

qB º 0.14

0 50

Relative flux, Fi (%)

qB º 0.5

0 50

Relative flux, Fi (%)

rev-twisted

unzipped

splayed

twisted

qB º 0.14

0 50

Relative flux, Fi (%)

qB º 0.5

0
5
0

R
e
la
ti
ve

fl
u
x,

F
i
(%

)

re
v-
tw

is
te
d

u
n
zi
p
p
e
d

sp
la
ye
d

tw
is
te
d

q
B
º

0
.1
4

0
5
0

R
e
la
ti
ve

fl
u
x,

F
i
(%

)

q
B
º

0
.5

0
5
0

R
e
la
ti
ve

fl
u
x,

F
i
(%

)

re
v-
tw

is
te
d

u
n
zi
p
p
e
d

sp
la
ye
d

tw
is
te
d

q
B
º

0
.1
4

0
5
0

R
e
la
ti
ve

fl
u
x,

F
i
(%

)

q
B
º

0
.5

0 50

Relative flux, Fi (%)

rev-twisted

unzipped

splayed

twisted

qB º 0.14

0 50

Relative flux, Fi (%)

qB º 0.5

0 50

Relative flux, Fi (%)

rev-twisted

unzipped

splayed

twisted

qB º 0.14

0 50

Relative flux, Fi (%)

qB º 0.5

Figure 9: Quantifying the contributions of pathways
and their mixing. a. Fractional contribution of the
coarse-grained states to the net flux. b. Sankey diagram
of mixing between coarse-grained states. The width of
each bar is proportional to the corresponding element in
the transition flux matrix T̃ij . c. Transition flux matrix
between the coarse-grained states. Red box indicates
the entries used to plot the Sankey diagram in b.fig:CG_flux

zipped state with −y and +x rotation) branch
to other states. Furthermore, there is flow from
the +y-rotation states to the −y-rotation states
but not vice versa, consistent with the reorder-
ing in Figure 9a.
Within qB ≈ 0.14 (lower left block of Fig-

ure 9), states with the same direction of y ro-
tation exchange more readily with each other
than with states with the opposite direction of y
rotation. Interestingly, the twisted and splayed
states with +y rotation at qB ≈ 0.14 are more
likely to proceed to qB ≈ 0.5 (red box) than
to exchange with the unzipped and rev-twisted
states with −y rotation at qB ≈ 0.14. On the
other hand, the states with −y rotation show
comparable flux to qB ≈ 0.5 and exchange with
the states with +y rotation at qB ≈ 0.14. At
qB ≈ 0.5 (upper right block of Figure 9), the
twisted state appears relatively isolated, while
the remaining three states are connected via the
unzipped state, which shares structural features
with both the splayed state (+x rotation) and
the rev-twisted state (−y rotation).
Put together, our analysis of the structures

and fluxes shows that pathways can be distin-
guished but there is extensive mixing between
them, both within each committor value and
from one committor value to another. This
mixing can be rationalized in terms of the ro-
tation axes that we define based on the dimer
structure.

Discussion

Here, we construct an MSM to characterize
insulin dimer dissociation statistically. The
heterogeneity of pathways that we document
makes this a challenging reaction to study. One
key aspect of our approach was initializing the
unbiased dynamics simulations used to con-
struct the MSM from structures drawn from
converged umbrella sampling simulations.15,31

Using a framework that generalizes MSM to
solve operator equations with statistic-specific
boundary conditions,25,26 we computed the
equilibrium probabilities and committor values
of Markov states and the fluxes through them.
From these we obtained a rate and a compre-
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hensive view of the dissociation mechanism.
The estimated timescale of dissociation (ap-

proximately 100ms) is two orders of magni-
tude slower than the 250–1000 µs timescale as-
cribed to monomer separation in T-jump stud-
ies, which use both elevated temperature and
ethanol to accelerate dissociation,21,22 in con-
trast to the simulations. Accordingly, the dis-
sociation constant was shown to decrease by
two orders of magnitude in 20% EtOD,47 which
would be sufficient to account for the difference
in kAB (under the assumption that kBA does
not change). The 2DIR experiments, more-
over, measure relaxation of a spectral feature
assigned to interfacial β-sheet disruption, which
would be considered an intermediate state in
the simulations.
Our estimated rate is also markedly slower

than estimates from Bagchi and co-workers us-
ing TST-based theories. The higher barrier
that we obtain (compared with their reported
values of 7.6–9.3 kcal/mol7,17) likely accounts
for much of the difference. At the same time,
the corrections to TST that they employ to ac-
count for dynamics orthogonal to the reaction
coordinate are also unlikely to be able to fully
capture the dynamics that we describe. In-
deed, as the resolution of the model (number of
Markov states) becomes lower in Figure 4, we
estimate the rate to be faster. TST-based the-
ories applied to a two-dimensional potential of
mean force resolve far fewer details than even
our coarsest MSM (200 states) and are corre-
spondingly faster still.
We found that the committor correlates

closely with CVs that quantify the total num-
ber of intermonomer contacts and the total sol-
vent exposure of the dimer interface. Struc-
tures in the transition state ensemble, despite
their diversity, generally have a relatively small
percentage (<20%) of native contacts and a
highly hydrated interface, consistent with gen-
eral trends obtained from long, unbiased sim-
ulations18 and earlier experimental measure-
ments.1,48,49 The loss of native contacts at qB ≈
0.14 frees the participating residues to make
new contacts, and this accounts for the con-
commitant gain of nonnative contacts (Fig-
ure 6a and 8). The fact that we do not see

contacts involving residues that are far from
the dimer interface supports the idea that en-
counter complexes can successfully associate
only if they first make contact near the native
interface,4,18,50 but our sampling of states that
are very different from the dimer may also be
incomplete.
We can quantitatively compare the likelihood

of association for different encounter complexes
based on their contacts. For example, as their
committor values indicate, the rev-twisted state
at qB ≈ 0.5 is more likely to dissociate (or less
likely to associate) than the twisted state at
qB ≈ 0.14 even though their numbers of native
and nonnative contacts are comparable (Figure
6a). This makes clear that details beyond the
numbers of native and nonnative contacts are
important.
Consistent with this idea, we identified four

coarse-grained states that define dissociation
pathways. We showed that these pathways
can be understood in terms of three orthogo-
nal axes of rotation based on the dimer struc-
ture. Along all pathways, the initial event
is a rotation around the y-axis (Figure 7),
consistent with twisted states previously re-
ported.15,17,19,20 Subsequently, +z-rotations can
lead to splaying of the interfacial α-helices and
x-rotations can lead to unzipping of the interfa-
cial β-strands. These dynamics are consistent
with low-frequency normal modes.19

Despite the diversity of pathways that we
observe, overall, less disorder in the sepa-
rated monomers than an earlier study of the
insulin monomer10 and as suggested by ex-
periments.21,47,51 However, these studies em-
ployed mutations and/or low pH to limit self-
association. The only significant disorder that
we observe over the course of the reaction is the
detachment of the C-terminal β-strand (as mea-
sured by Ψ′

d, following Ref. 15, and ΨB′25B′30d,
following Ref. 10; shown in Figures S5 and S12,
respectively). In Ref. 15, the detachment angle
was averaged over the monomers and appeared
to vary more over the α-path when projected
on ᾱ and β̄. In our case, we resolve the contri-
butions from the monomers. While we see evi-
dence of detachment in both Ψd and Ψ′

d along
the pathways involving +y-rotation (i.e., the
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twisted and splayed states; Figure S5), which
we associate with the α-path, we observe that
Ψ′

d (Figure S5) and ΨB′25B′30d (Figure S12) ex-
hibit extreme values at qB ≈ 0.14 along the
pathways involving −y-rotation (i.e., the un-
zipped and rev-twisted states), which we asso-
ciate with the β-path; the latter feature may be
obscured when averaged. Interestingly, consis-
tent with Ref. 15, the detachment is more pro-
nounced at intermediate stages of the reaction
than in the monomer state.
As the total number of contacts decreases over

the course of the reaction, the number of wa-
ter molecules in contact with the monomers in-
creases. At no point do we see any evidence
of a dewetting transition (Figure S6), as ob-
served for some systems,52,53 including the in-
sulin dimer.54 In the case of the twisted and
splayed states, the initial +y-rotation brings
LysB29 close to the hydrophobic core (ValB12,
TyrB16, PheB24, and TyrB26, and the corre-
sponding residues from the other monomer);
in the case of the unzipped and rev-twisted
states, −y rotation promotes β-strand detach-
ment. Both the presence of charged residues
and the absence of an extended hydrophobic
surface are expected to suppress dewetting.55–57

That said, dewetting may be very sensitive to
details of the simulation conditions, and our
choice of features may bias our analysis towards
solute rather than solvent dynamics;58 further
analysis of the solvent in our simulations is war-
ranted in the future.
The dynamics of B28-B29 are also im-

portant for understanding fast-acting ther-
apeutic insulin analogues. Insulin lispro59

(ProB28→Lys and LysB29→Pro) and insulin as-
part60 (ProB28→Asp) are thought to accelerate
dimer dissociation by destabilizing C-terminal
native contacts.61–63 In our simulations, we ob-
serve that these residues make many nonnative
contacts as the reaction progresses, suggest-
ing that a full understanding of the effects of
these mutations on the kinetics requires con-
sideration of nonnative interactions as well. A
further complication is that mutations can shift
the importance of competing pathways, as pre-
viously shown for dissociation of phenol from
the insulin hexamer.30 We expect such a shift

to be possible in the case of dimer dissocia-
tion given the extensive mixing that we observe
between pathways in the present study.
The discussion above points to the impor-

tance of being able not only to estimate the
rate accurately but also the fluxes associated
with pathways. In the present work, we quan-
tify the flux through and exchange between
pathways by redefining the boundary condi-
tions when constructing the transition matrix,
but history-dependent committors and reactive
currents can be defined formally.44 It would be
interesting to analyze insulin dimer dissocia-
tion within that framework. Nevertheless, the
present study, along with others,26,27,30,40,64,65

shows that the theoretical frameworks and com-
putational tools needed to treat complex reac-
tions with many competing pathways quantita-
tively are now taking shape.
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