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Abstract

The mechanism and significance of epigenetic variability in the same cell type between healthy 

individuals are not clear. Here, we purify human CD34+ hematopoietic stem and progenitor cells 

(HSPCs) from different individuals and find that there is increased variability of DNA methylation 

at loci with properties of promoters and enhancers. The variability is especially enriched at 

candidate enhancers near genes transitioning between silent and expressed states, and encoding 

proteins with leukocyte differentiation properties. Our findings of increased variability at loci with 

intermediate DNA methylation values, at candidate “poised” enhancers, and at genes involved in 

HSPC lineage commitment suggest that CD34+ cell subtype heterogeneity between individuals is 

a major mechanism for the variability observed. Epigenomic studies performed on cell 

populations, even when purified, are testing collections of epigenomes, or meta-epigenomes. Our 

findings show that meta-epigenomic approaches to data analysis can provide insights into cell 

subpopulation structure.

Variation in epigenetic marks defines specific cell types in an organism1, 2. Epigenome-wide 

association studies (EWAS) examine epigenetic variability within the same cell type or 

tissue in different individuals to assess the role of the epigenome in those individuals with a 

specific disease or other phenotype3, 4, 5, 6. In addition to epigenomic variability studied 

among different cell types in an individual or that in the same cell type among 
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phenotypically different individuals, epigenomic variability occurring in the same cell type 

among healthy individuals is also now being studied7, 8, 9, 10, 11, 12, 13. The mechanism and 

functional consequences of this type of epigenetic variability remain unclear. Such 

variability has been found in plants14, 15 and has been described as “inter-individual” 

differential methylation12 occurring at “epipolymorphic” loci that characteristically have 

intermediate DNA methylation levels16. The potential for stochasticity to drive at least part 

of this epipolymorphism of DNA methylation has been proposed16, and finds support from 

studies of allelic exclusion in the central nervous system of mouse17, monoallelic expression 

in neural stem cells18, and studies of heritability of DNA methylation in cloned ovarian 

carcinoma cells19. However, the proportions of genes at which these stochastic events are 

implicated is low (1–2%)17, 18, indicating that other processes are likely to be involved.

Underlying genetic polymorphism has been demonstrated to be a contributor to DNA 

methylation variability10, 12, 13, 20. Such genetic effects are unlikely to be the only influence, 

as monozygotic human twins12, 20 and inbred mice8, 21 also manifest epigenetic variability 

that cannot be attributed to DNA sequence differences. Some studies have linked DNA 

methylation variation with transcriptional consequences at nearby genes8, 10, 12, 13. Some of 

the variability observed in a study of peripheral blood leukocytes has been explained in 

terms of cell subtype effects9, although that study's quantification of neutrophil, lymphocyte 

and monocyte percentages lacked the finer resolution cell subtype discrimination 

demonstrated in a later study to have effects on DNA methylation22. It has been shown that 

clinically normal cervical epithelial samples from women who proceed to develop cervical 

neoplasia within 3 years have increased variability of DNA methylation11. While this 

specific example reflects an underlying pathological process, epigenetic variability has also 

been proposed to be stochastic in origin and to influence normal phenotypic variability8. 

Supplementation of methyl donors in the diet of isogenic mice has been observed to increase 

the variability of DNA methylation in liver samples, suggesting to the authors a mechanism 

for disease or evolutionary selection21. The epigenetic variability observed in human CD14+ 

monocytes has been found to remain over the course of years, despite the short lifespan of 

these cells, indicating that the variability is encoded in leukocyte stem or progenitor cells12. 

Here we focus on using DNA methylation assays to define the loci with epigenetic 

variability in CD34+ hematopoietic stem and progenitor cells (HSPCs) purified from 

neonatal cord blood. We used the results of chromatin immunoprecipitation (ChIP-seq) 

studies of the same cell type by the Roadmap Epigenomics program to annotate the CD34+ 

HSPC genome empirically, so that we could define where epigenetic variability occurs in 

these cells, gaining insights into why the variability is occurring in seemingly-identical cell 

types from different healthy individuals.

RESULTS

Identifying variably DNA methylated loci in CD34+ HSPCs

We used two sources of DNA methylation data, one from the Roadmap Epigenomics 

program, publicly available reduced representation bisulphite sequencing (RRBS)23 data on 

mobilized CD34+ HSPCs from 7 adults, and the second generated by our group, using 

CD34+ HSPCs isolated from cord blood from 29 phenotypically normal neonates assayed 
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using the HELP-tagging assay24. Despite the differences in how each of these assays 

measures DNA methylation, both showed increased variability at loci with intermediate 

methylation values (Fig. 1), consistent with previous observations16.

We continued our analyses based on the HELP-tagging data, which are derived from a 

greater number of samples and from neonates, who have less potential for manifesting age-

associated variability than adults25. As HELP-tagging is based on the use of methylation-

sensitive restriction enzymes24, we were able to use the results from the methylation-

insensitive MspI control enzyme to estimate the degree of technical variability, and a 

permutation analysis of the HpaII-derived data also showed enrichment of the observed 

variability over expected background levels (Supplementary Fig. 2a). A number of loci with 

differing degrees of variability were chosen for bisulphite PCR, using 7 of the samples that 

had been tested using HELP-tagging as well as 8 independent samples. These amplicons 

were combined for each individual and used to generate Illumina libraries, allowing targeted 

massively-parallel sequencing of the bisulphite-converted DNA. The results confirm that 

DNA methylation variability is enriched at loci with variability measures above the 

threshold attributable to technical variability or chance (Fig. 2b).

Inferring the effects of DNA sequence variability

To test whether the variability we observed could be accounted for by genomic sequence 

polymorphism, we segregated the variability at loci overlapping common single nucleotide 

polymorphisms (SNPs, minor allele frequencies ≥1%, 7.6% of sites tested) from the 

remaining majority of the genome. A Kolmogorov-Smirnov test (K-S test) showed 

significantly increased levels of variability of DNA methylation at these polymorphic loci 

(p<2×10−16), indicating that genetic influences are contributing to the variability observed 

(Supplementary Fig. 3). There are two ways that local sequence variability can influence 

DNA methylation variability. The site being tested in the DNA methylation assay can itself 

be a sequence variant, as cytosine to thymine transitions at CG dinucleotides represent a 

frequent source of SNPs due to the increased mutability of methylcytosine26, leading to the 

failure of methylation-sensitive restriction enzymes to cut or the misleading appearance of 

bisulphite-mediated conversion at these sites. The second mechanism is for SNPs in cis to 

the tested site influencing DNA methylation, as has previously been shown27. We find that 

the K-S test is no longer significant (p=0.1563) at sites tested even within the immediate 

flanking 10 bp of the common SNPs (Supplementary Fig. 3). We infer that while genetic 

variability is influential at the tested loci themselves, there exists a substantial amount of 

epigenetic variability in the remaining majority of loci in the genome, and that local genetic 

polymorphism is not likely to be the sole cause of the epigenetic variability observed, 

consistent with the conclusions of prior studies8, 12, 20, 21.

Mapping functional elements in CD34+ HSPCs

To determine whether epigenetic variability was occurring at regulatory sites with possible 

functional consequences, we took advantage of public chromatin mapping data for CD34+ 

HSPCs generated by the Roadmap Epigenomics program. The DNase hypersensitivity and 

ChIP-seq data create combinatorial patterns that have previously been exploited to define 

functional elements in the genome28. We processed the Roadmap data using an adaptation 
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of an imaging signal processing algorithm29 to define the locations of chromatin constituents 

with minimal data transformation (Supplementary Fig. 4). These chromatin constituent 

locations were then used to generate a self-organizing map (SOM)30, and to map candidate 

regulatory elements using the Segway algorithm28 (Supplementary Fig. 5). The individual 

Segway features were then overlaid as contour plots onto the SOM, which clusters in two 

dimensional space loci with similar genomic characteristics, allowing intuitive visualization 

of the major contributors to each feature (Fig. 2a and Supplementary Fig. 6). Of the multiple 

chromatin states for which each feature is enriched, feature 6 has the H3K4me3 enrichment 

indicating promoter function, features 4 and 5 both have marks indicative of enhancer 

function (H3K4me1 and H3K27ac, respectively), features 1-3 have the H3K36me3 

enrichment typical of transcribed sequences while feature 0 in enriched for heterochromatic 

marks (H3K9me9 and H3K27me3). We also created a metaplot of these new annotations 

relative to all RefSeq genes in the genome, showing that Segway feature 6 is strikingly 

enriched at transcription start sites (TSSs), flanked by enrichment for feature 4 and, to a 

lesser degree, feature 5 (Fig. 2b). Features 1-3 are enriched in gene bodies and feature 0 at 

intergenic sequences. Statistical testing of the enrichment of features 4 and 6 in their 

windows of peak frequencies compared with their distributions over all RefSeq genes and 

flanking regions showed significance (p<0.001 for each). CpG islands and their immediate 

flanking sequences have previously been related to “stochastic” DNA methylation 

variability8 and gene expression regulation31. The Segway annotations demonstrate that 

while the bodies of CpG islands are enriched for the candidate promoter (feature 6) 

sequences, the ±2 kb flanking region, generally described as its “shore”, is strikingly 

enriched for feature 4 (Fig. 2c). Both achieve statistical significance (p<0.001) when 

compared with their distributions over all CpG islands (feature 6) or flanking regions 

(feature 4). Finally, stratifying the RefSeq genes by expression quartile in CD34+ HSPCs 

reveals the transcriptional dependencies of the Segway annotations (Fig. 3). We conclude 

that the Segway annotations define candidate promoters (feature 6), enhancers (features 4 

and 5), transcribed regions (features 1-3) and repressed chromatin (feature 0) for CD34+ 

HSPCs.

Variable DNA methylation is enriched at functional elements

With the genome annotated for functional elements in a cell type-specific manner, we then 

tested the associations between genomic annotations and the loci with increased variability 

in DNA methylation. In Fig. 4a, we show the strongest associations for highly variable loci 

within clustered SOM space to be with H3K27ac, H3K27me3 and H3K4me1. Fig. 4b also 

shows enrichment of variability at the TSS of RefSeq genes for feature 6 and immediately 

upstream at feature 4, both significant at p<0.001. Fig. 4c shows enrichment in variability at 

the proximal part of CpG island shores for feature 6 and more extensively into the CpG 

island shore for feature 4, both also significant at p<0.001. A complementary SOM analysis 

using the published ChromHMM annotations of the human genome32 reveals consistent 

results (Supplementary Fig. 9). DNA methylation variability is therefore enhanced at 

candidate cis-regulatory sequences (promoters and enhancers) and the epigenetic variability 

previously observed for CpG island shores8, 31 is reflective of this general characteristic of 

enhancers. Common SNPs are not enriched in density in any of the features (Supplementary 

Fig. 10) and therefore are unlikely to be the major reason for selective enrichment of 
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epigenetic variability in these specific genomic contexts. If the variability of DNA 

methylation occurs at loci with potential transcriptional regulatory properties, it raises the 

question of whether variability occurs selectively near genes with specific transcriptional 

activities. We find that all levels of expression have comparable levels of epigenetic 

variability at promoter sequences. Genes expressed at the lowest levels in the genome are 

those with selective enrichment of epigenetic variability at nearby candidate enhancers (Fig. 

5), a significant inverse relationship (p=10−8) using the Jonckheere trend test.

Variable DNA methylation is enriched at hematopoietic genes

The finding of increased variability at loci with intermediate values of DNA methylation 

(Fig. 1) cannot be explained by individual cells having intermediate methylation values, as 

DNA methylation is either present or absent on an allele, so a cell can only have 0, 50 or 

100% methylation at a locus with two parental alleles in a diploid cell. For one individual to 

have an intermediate value such as 30% and another 60% methylation at the same locus, 

there has to be, within the pool of cells tested, differing subpopulations of methylated alleles 

present. The parsimonious explanation for such allelic subpopulation differences is that 

different proportions of cell subtypes are present in the individuals tested. The CD34+ 

HSPC is a well-studied cell type, recognized to have ~15 cellular subtypes bearing the 

surface marker in different lineages and stages of early hematopoietic differentiation33. If 

these subtypes differ in proportion between the 29 subjects tested, the loci where DNA 

methylation patterns are associated with specific CD34+ cell subtypes would be expected to 

be the most variable, whereas genes expressed in all cell types (housekeeping genes) should 

be invariant in terms of DNA methylation. We show in Supplementary Table 6 and 

Supplementary Fig. 11 that DNA methylation variability at candidate enhancers is enriched 

for leukocyte-specific networks but not housekeeping genes, consistent with a CD34+ cell 

subtype model. Candidate promoters, which have comparable levels of DNA methylation 

variability at all expression levels (Fig. 5), have, as expected, equivalent levels of variability 

for housekeeping and hematopoietic genes.

Using variability information to quantify cell subtypes

Variability of gene transcription levels in cell samples from multiple individuals has allowed 

patterns to be identified that predict the numbers of cell subtypes present. We adapted one of 

the approaches used for these transcriptional variability studies, Nonnegative Matrix 

Factorization (NMF)34, 35, to our DNA methylation variability data to estimate the number 

of cell subtypes in our purified CD34+ HSPCs. In Fig. 6 we show the NMF output to predict 

~13–20 cell subtypes, consistent with the ~15 distinct types of cells that have previously 

been described to express the CD34 cell surface marker33.

DISCUSSION

This study explored the epigenomic variability between normal healthy individuals 

occurring in a purified cell type, homogenous for the same cell surface marker. In common 

with prior studies, we found DNA methylation to vary between individuals, especially for 

those loci with intermediate DNA methylation values16, and increased variability at 

regulatory regions near the genes expressed at the lowest levels in the genome12. Our 
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empirically-based annotation of regulatory elements in the CD34+ HSPC genome allowed 

us to define candidate promoter and enhancer sites, revealing the latter in particular to have 

DNA methylation variability associated with the lowest levels of gene expression. The genes 

at which this enhancer-associated variability is enriched are those encoding proteins with 

properties associated with leukocyte function. Because of the necessity for intermediate 

DNA methylation values to require allelic subpopulations with distinct methylation states, 

we interpret the epigenomic variability to be due to DNA methylation-sensitive enhancers 

changing their epigenetic states as nearby genes switch their transcription on or off in 

different CD34+ HSPC cell subtypes. The presence of differing proportions of these cell 

subtypes in the different individuals studied, and the consequent differences in allelic 

proportions of methylated DNA at these cis-regulatory sites, together drive the variability 

observed.

In keeping with this model of allelic and cell subtype heterogeneity, the chromatin signature 

of feature 4, that of “poised” enhancers36, 37, is defined by the co-occurrence in the genome 

of activating H3K4me1 and repressive H3K27me3 marks. As cells commit to the use of the 

enhancer, the locus is activated and marked by H3K27ac accumulation38 and the loss of 

H3K27me336. Implicit in the idea of a poised regulatory element is its capability to commit 

to an active or inactive state by choosing one of two pre-existing states encoded in the 

nucleosome, as demonstrated by sequential ChIP experiments defining bivalent chromatin 

domains in pluripotent mouse cells39. Poised enhancers have not been reported to have been 

tested by sequential ChIP, making it possible that the activating and repressive marks are not 

encoded within the same nucleosome, but occur on different alleles in the cell population 

studied. This would be consistent with the presence of distinct subtypes of cells within the 

population tested by ChIP-seq when defining these poised enhancers. Our finding of 

variability and intermediate levels of DNA methylation at these loci with the features of 

poised enhancers is suggestive of epigenetic heterogeneity among the alleles in the cell 

population. The presence of the activating and repressive marks of these enhancers on 

different alleles would be consistent with a mosaic model for epigenetic regulatory marks in 

the population, rather than a poised state encoded by different marks within the same 

nucleosome.

Such a model also suggests that there is a relationship between DNA methylation and 

histone states at the candidate enhancers. One of our findings is that the mosaic candidate 

enhancers are enriched at what have been generally described as CpG island shores, the ±2 

kb flanking CpG islands31. One such shore at the GLT1 gene has previously been found to 

encode an enhancer that is, when silenced, enriched in DNA methylation and H3K27me3 

but depleted in H4ac40. For this individual example it appears that the DNA methylation and 

histone modifications are associated with enhancer function, potentially representing 

enhancers more generally. The GLT1 CpG island shore demonstrates co-localization of 

DNA methylation and H3K27me3, an association which has been shown to occur outside 

but not within CpG islands41, 42 using ChIP for H3K27me3 followed by bisulphite 

sequencing to detect the DNA methylation state on the alleles bearing the H3K27me3 

nucleosomes. The more general finding that increased DNA methylation at CpG island 

shores correlates with decreased gene expression31 supports a model of these sites 
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representing DNA methylation-sensitive enhancers where Polycomb-mediated H3K27me3 

modification adds to the silencing of these regulatory elements.

We conclude that the epigenome of a cell population is, in fact, a collection of epigenomes, 

or a meta-epigenome, reflecting the presence of subpopulations of cell subtypes even in 

highly purified cell samples. This study's use of CD34+ HSPCs was fortuitous, as this cell 

type is extremely well studied, and already recognized to be composed of multiple cell 

subtypes expressing the CD34 surface marker33. It is possible that the multipotent nature of 

the CD34+ HSPC cells is associated with greater epigenetic variability than more lineage-

committed cell types, as suggested previously43. The prediction based on the observation of 

epigenetic variability in monocytes that HSPCs should be epigenetically variable between 

individuals12 is supported by our findings, although their findings could also be re-

interpreted to be due to the long-term persistence of varying subtypes of monocytes in their 

studied populations. We propose that purified CD34+ HSPCs are not likely to be unique in 

being composed of multiple cell subtypes, and that detailed study of any presumed uniform 

cell population will reveal subpopulation heterogeneity. The results indicate that reference 

epigenomes based on the analysis of single or limited numbers of samples will contain 

epigenetically-variable loci at which marks are unstable, and the co-localisation of 

chromatin states at the same genomic position cannot reliably be taken to infer the presence 

of the epigenetic marks on the same alleles.

We show that the meta-epigenomic structure in the cell population can be exploited to 

estimate the number of cell subtypes present (using an approach like NMF34, 35) and their 

functional characteristics (by studying the properties of the genes located in proximity to the 

epigenetically variable cis-regulatory elements). Such meta-epigenomic analytical 

approaches could find an early application in cancer research. There are now consistent 

observations that epigenetic variability exists within cancer cells that have been extensively 

purified from contaminating cell types44 and even in non-neoplastic cervical epithelial cells 

in women who later develop cervical neoplasms11. These observations have been described 

to involve “stochastic variation” of epigenetic regulation44, but the CD34+ HSPC 

observations add a further layer of complexity, requiring that we understand cell subtype 

structure within the tested cell population before we can define any additional epigenetic 

variability as stochastic or disease-associated. This is a far-reaching issue, because while 

there now exist approaches that attempt to account for cell subtype heterogeneity within 

mixed cell populations tested using epigenome-wide assays, implicit in those approaches is 

that the subtypes of cells contributing to the variability can be distinguished histologically or 

by the use of cell sorting approaches22, 45, 46, 47, 48. What we show here is that even in 

histologically-identical, sorted cells, there exist subpopulation structures that continue to 

influence the results of epigenome-wide assays, and that the current approaches that rely on 

the use of sorted subpopulations of cells potentially do not go far enough to capture these 

influences.

The current study also has significant implications relevant to the interpretation of EWAS 

results. If a locus is found to change DNA methylation to the moderate extent typical of the 

results of non-cancer disease studies5, a distinction needs to be made between changes at 

loci that are normally invariant between individuals (those at the extremes of DNA 

Wijetunga et al. Page 7

Nat Commun. Author manuscript; available in PMC 2015 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methylation) and loci normally variable between individuals (intermediate methylation 

levels). In the former case, epigenetic changes must be occurring in some cells within the 

population studied. Changes at loci that are normally epigenetically variable may, however, 

be due to changes in cell subtype proportions between the individuals tested and not involve 

epigenetic changes occurring in any of the cells in the population tested. We increasingly 

recognize the influence of cell subtypes to be an issue in epigenomic studies of mixed cell 

types like peripheral blood leukocytes22 but the same concern arises even in purified cell 

populations, which are likely to have unrecognized cell subtype structure. The development 

of meta-epigenomics as a field of study is an essential early step towards improvement of 

our design and interpretation of the results of epigenome-wide assays.

METHODS

Sample collection

The Supplementary Data section provides greater detail about the samples and methods used 

in this study. The sample collection component to the study was approved by our 

institutional review board (IRB) and was in accordance with Health Insurance Portability 

and Accountability Act (HIPAA) regulations. Cord blood samples were obtained at the time 

of delivery of healthy, non-anomalous neonates with normal growth based on birth weight 

and ponderal index nomograms. CD34+ HSPCs were purified from the cord blood using 

magnetic immunosorting, with purity confirmed by flow cytometry.

Molecular assays

DNA from the purified cells was used for DNA methylation assays, the HELP-tagging 

assay24 for genome-wide analysis and bisulphite PCR amplicon sequencing for verification 

and validation studies. HELP-tagging was performed on genomic DNA from the frozen 

CD34+ HSPCs, digested to completion by either HpaII or MspI, following which the 

digested DNA was ligated to two custom adapters containing Illumina adapter sequences, an 

EcoP15I recognition site and the T7 promoter sequence. Using EcoP15I, we isolated 

sequence tags flanking the sites digested by each enzyme, methylation-sensitive HpaII or 

methylation-insensitive MspI, followed by massively-parallel sequencing of the resulting 

libraries (Illumina technology). HpaII profiles were obtained for each sample (n=29), 

calculating methylation scores using a previously generated MspI human reference, which 

was also used to determine the degree of technical variability in the assay, using three 

replicates. For targeted bisulphite sequencing, we bisulphite-converted 200 ng of DNA using 

the Zymo EZ-96 Methylation-Lightning Kit. After separate PCR amplification of 10 target 

regions (primers listed in Supplementary Table 2), we pooled the amplicons in equal ratios 

and generated Illumina libraries using robotic automation (Tecan). In total, 15 libraries were 

multiplexed on the Illumina Miseq for 250 bp paired end sequencing. Bisulphite conversion 

efficiency was calculated as the percent conversion of cytosines in a non-CG context. 

Massively-parallel sequencing was performed using the Illumina HiSeq 2000 for HELP-

tagging, and the Illumina MiSeq for bisulphite PCR amplicon studies.
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Measurement of DNA methylation variability

Variability of DNA methylation was calculated using the Median Absolute Deviation 

(MAD) value, previously used to define variably-methylated regions49. The MAD 

calculation is less sensitive to outlying values, giving a more robust and conservative 

variance estimate. MAD values were calculated from our HELP-tagging data (29 neonates) 

and from reduced representation bisulphite sequencing (RRBS) data generated on the same 

cell type by the Roadmap in Epigenomics (7 adults).

Verification and validation assays

We performed verification studies at 10 separate loci on 7 of the 29 samples tested using 

HELP-tagging, and for validation we added 8 new CD34+ HSPC samples from similarly 

healthy infants with normal growth. Using the DNA methylation value for each assayed 

HpaII locus, we calculated the MAD of DNA methylation for both validation and 

verification data sets, and observed an increase in variability when background technical 

variation (defined by control MspI HELP-tagging representations) was exceeded 

(Supplementary Fig. 2). The MAD distribution was calculated genome-wide, at HpaII sites 

overlapping common SNPs (minor allele frequencies ≥1%) and at the 10 bp immediately 

flanking these common SNPs (Supplementary Fig. 3). Kolmogorov–Smirnov testing was 

performed to measure the significance of differences of distributions of MAD values.

Chromatin state data analysis

The youngest individual studied by the Roadmap in Epigenomics from whom RRBS, 

chromatin and transcriptional studies had been performed was chosen for further analysis. 

Wiggle track data representing DNase hypersensitivity and ChIP-seq for H3K4me3, 

H3K4me1, H3K9me3, H3K27me3, H3K27ac and H3K36me3 were collected from the 

Roadmap in Epigenomics web resource (http://www.roadmapepigenomics.org/data). All 

wiggle tracks were converted to bigwig format using the UCSC Genome Browser utility 

wigToBigWig version 4 (http://hgdownload.cse.ucsc.edu/downloads.html). Subsequently, 

the utility available through the UCSC Genome Browser bigWigAverageOverBed (http://

hgdownload.cse.ucsc.edu/downloads.html) was used to calculate the sum of the ChIP-seq 

signals over 100 bp genomic intervals spanning the 22 autosomal and 2 sex chromosomes, a 

resolution which we believe is sufficient to characterize chromatin states, being smaller than 

an individual nucleosome while usually including no more than 0–1 HpaII sites per window. 

ChIP-seq signals summed over 30,956,785 intervals were generated and formatted in 

bedGraph format.

The Roadmap in Epigenomics data are provided as raw signals and not as defined peaks. To 

avoid imposing excessive processing on these data, we used as simple and intuitive an 

approach as possible. The ChIP-seq bedGraph files were log-transformed to exaggerate 

highly-positively skewed signal density, a prerequisite for the recursive kernel density 

learning framework for robust foreground object segmentation approach29. This image 

processing technique relies on removing background until the remaining signal is bimodal 

and approximately Poisson distributed. Gaussian kernel density was estimated using the 

density function in R resulting in multiple modes of signal density that are increasingly 

smaller. Because signal intensity was derived from a ChIP-seq read count, the measure 
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should be an approximate Poisson distribution, and we aimed to eliminate low signal 

intensity signal modes iteratively. Using the turnpoints function within the pastecs library in 

R, we recursively identified the modes of signal intensity and set signal thresholds based on 

the maximum mode, which was also generally the leftmost mode. The algorithm ran until at 

most 2 signal modes remained and the resulting distributions were approximately Poisson 

distributed. The results are shown in Supplementary Figure 4, with the stepwise approach 

for the H3K4me1 signal illustrated as an example of the process.

Annotation of functional elements in CD34+ HSPCs

100 bp windows were then classified as having the chromatin state or not. Windows of 

chromosome 1 were used to train the Segway algorithm28, which then annotated 7 features 

genome-wide. A subset of 100 bp windows containing HpaII sites tested using HELP-

tagging was chosen for self-organising map (SOM) construction30. All SOM analysis was 

completed using the Java SOMToolbox from Institute of Software Technology and 

Interactive Systems at the Vienna University of Technology (http://

www.ifs.tuwien.ac.at/dm/somtoolbox/). Out of 30,956,785 100 bp genomic intervals, 

1,520,684 intervals overlapping 1,696,696 HpaII sites were chosen to reduce the 

dimensionality of the dataset and greatly reduce the required computation. An input data 

matrix was created, where rows represent the 1,520,684 vectors defined by genomic 

intervals and the columns represent the observations for the investigated tracks (i.e. 

processed ChIP-seq signal). In total, two SOMs were constructed, one representing the 

chromatin states from the Roadmap in Epigenomics, the other the ChromHMM 

annotation32, choosing a map size to yield 100–200 interval-vectors per map unit to reduce 

the required computation while generating maps of sufficient resolution to aid in further 

analysis. For all SOMs the standard SOM algorithm by Kohonen was employed, using the 

default SOMToolbox settings of learnrate=0.7 and randomSeed=11. Java code was 

implemented over approximately 120 hours using a high performance computing (HPC) 

cluster and 100 GB of virtual memory.

We performed an analysis to define CD34+ HSPC genomic annotations using the Segway 

genomic segmentation approach28. Using the segway package, annotations were generated 

from the 7 processed chromatin state signal bedGraph files. A Segway segmentation of the 

genome was created by training on chromosome 1, using the results to annotate the whole 

genome by requesting 7 labels, allowing each chromatin state signal to vary independently 

from the others. Furthermore, we required at least 1,000 bp segments, a 500 bp ruler and a 

500 bp ruler scale, which had the effect of smoothing across the segmentation, which we 

found to be excessively sensitive to varied signal at the default settings. Segway was 

completed requesting 10 simultaneous runs, over which maximum likelihood estimations 

regarding chromatin state were performed. Segway code was implemented using the HPC 

cluster with the training step taking approximately 72 hours and the identify step taking 

approximately 2 hours using 40GB of virtual memory.

Mapping epigenetic variability to functional annotations

To interpret our genomic annotations (Segway features) and epigenomic variability (DNA 

methylation MAD values), we created contour plots plotting enrichment within map units 
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within the SOMs. The enrichment within SOMs was determined by a proportion test, 

specifically asking whether the observed proportion of a feature within a map unit was 

significantly greater than the expected proportion given the distribution of Segway features 

overall. A cutoff of 23.09, the 98.5th centile of overall MAD, was used in order to 

dichotomize MAD into high and low variable states (for reference, note that ln(23.09) = 

3.14, the cutoff shown in Supplementary Fig. 2). From calculated proportions of highly 

variable 100 bp intervals within the SOM units, we performed a proportion test, specifically 

testing whether the observed proportion of a highly variable interval within a map unit was 

significantly (alpha=0.05) greater than the expected proportion, given the overall proportion 

of highly variable intervals. The MASS library in R along with the kde2d and contour 

functions were used to represent the density of variability-enriched map units with a contour 

plot over SOMs.

We analyzed as metaplots RefSeq gene and CpG island annotations and the 10 kb regions 

flanking these annotations, allowing us to study the relationship between MAD values and 

these genomic elements. The bodies of RefSeq genes and CpG islands were split into deciles 

in order to be able to compare genes of varying lengths, and the 10 kb flanking region was 

separated into 100 bp windows. Gene coordinates were rounded to the nearest 100 bp to 

ensure that sequences were not represented twice. Segway features were divided into 100 bp 

intervals and matched with 100 bp windows or matched with RefSeq gene deciles, allowing 

more than one Segway feature to match a particular window or decile. For each 100 bp 

window or decile, the frequency of each Segway feature was calculated and plotted.

Testing relationship of DNA methylation variability with gene expression levels

To test the relationship of the Segway-derived functional annotations and DNA methylation 

variability with transcription, we used the CD34+ HSPC RNA-seq data from the same 

individual from whom chromatin data were obtained (RO_01549, Supplementary Table 4, 

GEO accession number SRA010036). Of the 17 available RNA-seq runs, we used 

SRR453391, corresponding to 16,000,000 reads and 2.4 gigabasepairs of sequence. Reads 

were quality controlled using FASTX-Toolkit v0.0.13, with fastq_quality_trimmer trimming 

nucleotides with quality lower than 3 and removing sequences shorter than 17 bp. Reads 

were aligned to the human genome using GSNAP version 2012-07-20 requesting at most 10 

alignments for multiple aligned reads. SAMtools v0.1.8 was used to convert the alignment to 

BAM format. The Cufflinks v2.02 program Cuffdiff v2.0.2 was used to calculate fragments 

per kilobase per million reads (FPKM) values for RefSeq genes, employing normalization 

by the upper quartile of the number of fragments mapping to individual loci and default 

weighting of multiply aligned reads based on the number of alignments. FPKM values were 

used to separate genes into those that were not expressed (8,963 genes) and those that were 

expressed by quartile of expression (7,872 genes per quartile). Expression information was 

then linked to the annotated RefSeq gene body deciles and 10 kb flanking regions, thus 

allowing the stratification of Segway features overlapping 100 bp windows and gene body 

deciles by gene expression.

DNA methylation variability (MAD values), Segway features and gene expression levels 

were studied relative to RefSeq genes, dividing the bodies of the genes into deciles to allow 
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comparisons for genes of different sizes, and extending the analysis using the 100 bp 

windows to flank the gene body 10 kb upstream and downstream. A similar approach to 

study the margins and flanking regions of CpG islands was also performed.

Testing significance of enrichment of DNA methylation variability at functional annotations

We tested whether the peak loci for enrichment of 100 bp windows for features 4 and 6 

reached statistical significance. The peak window for feature 4 is at −1,500 bp upstream 

from RefSeq transcription start sites, where it comprises 31.50% of the features (compared 

with 15.28% genome-wide), while feature 6 is at peak enrichment at −100 bp, comprising 

56.60% of annotated features (compared with 9.27% genome-wide). A one way proportion 

test for each feature at the peak locations shows significance for enrichment for both 

features (p<0.001). We then tested whether the variability of DNA methylation at these 

windows of peak feature enrichment was also significantly increased. We compared the 

MAD values for each feature at these peak enrichment sites with those values at the same 

number of windows randomly selected from either RefSeq genes, showing with a one way 

Wilcoxon rank sum test that variability for DNA methylation at these loci was also 

significantly increased for features 4 and 6 (p<0.001). Using the same analytical approach, 

feature 6 was found to be significantly enriched within CpG islands and feature 4 in the ±2 

kb CpG island shores (p<0.001). We also tested whether the observed trend of increased 

DNA methylation variability at feature 4 associated with decreased gene expression levels 

was significant using the non-parametric Jonckheere trend test. The trend was significant at 

p=10−8.

Testing properties of genes with different local DNA methylation variability profiles

To interpret DNA methylation variability observations, we asked the question whether the 

increased variability we observed at candidate promoters and enhancer sequences (Segway 

features 6 and 4 respectively) was occurring non-randomly at genes with known functions. 

For each RefSeq gene, Segway feature 6 (promoters) overlapping the TSS and Segway 

feature 4 (enhancers) occurring within 5 kb flanking the TSS were isolated. We calculated 

the median MAD over these features. The MAD over promoters and enhancers was 

dichotomized using the 23.09 value (98.5th percentile) allowing genes to be characterized as 

having high and low variability over both promoters and enhancers. The Broad Institute's 

Gene Set Enrichment Analysis web applet (http://www.broadinstitute.org/gsea/) performs a 

hypergeometric/Fisher's exact test on gene list supplied from the Molecular Signatures 

Database v3.1 (http://www.broadinstitute.org/gsea/msigdb/), to identify pathways 

differentially enriched for high and low variability enhancers using an False Discovery Rate 

(FDR) q value of less than 0.05 (Supplementary Table 6). We further demonstrate this 

association using Reactome pathways isolated through the Pathway Commons (http://

www.reactome.org/static_wordpress/about/ and http://www.pathwaycommons.org). Gene 

pathways were visualized in Cytoscape v2.8.3 with edges representing the physical 

interactions between nodes stored in the GeneMANIA v3.2 plugin. DNA methylation 

variability was high for promoters for both housekeeping (KEGG Ribosome) and leukocyte-

specific (Leukocyte Transendothelial Migration) genes at candidate promoters (Segway 

feature 6), but substantially decreased or absent at housekeeping and not leukocyte-specific 

genes at candidate enhancer loci (Segway feature 4, Supplementary Figure 11).
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Prediction of CD34+ HSPC subpopulation number using non-negative matrix factorization

To infer the number of cell subtypes present in the CD34+ HSPC population, we used the 

non-negative matrix factorization (NMF) approach that has previously been applied to 

transcriptomic data34, 35. NMF has been employed successfully in deconvolving gene 

expression data35, but it has not previously been applied to DNA methylation datasets. The 

goal of an NMF algorithm is to deconvolve a matrix V, a (n × p) matrix, in order to find an 

approximation the matrices W and H such that:

(1)

where W and H are (n × r) and (r × p) non-negative matrices. The rank of the matrix (r) 

should be greater than 0 and at least 2 to represent 2 subpopulations. Because the 

methylation outcome is binary, and the existing NMF algorithms allow DNA methylation to 

vary without this constraint the estimated matrix, W' may not be interpretable directly, and 

improvement of the technique may allow the methylation pattern of the individual 

subpopulations to be estimated. We applied an existing NMF algorithm to understand the 

presence of subpopulations within our dataset but did not interpret the specific values within 

W', rather we focused on the difference between the actual and simulated datasets.

Utilizing the R package deconf, we varied the matrix rank and estimated the matrices W' and 

H' such that:

(2)

The distance between the original dataset V and V' was calculated as the Frobenius norm:

(3)

The process was repeated 100 times per value of r, subsetting the data to 10,000 HpaII sites 

in order to make the algorithm computationally tractable. A plot of the distribution of F as a 

function of increasing r (cell subpopulations) is shown (Figure 6). In addition, the 

distribution of Frobenius norms for each cell subpopulation was compared to the preceding 

cell subpopulation with a two sample t-test, testing for a difference in distribution of 

Frobenius norms between successive simulation levels. Because estimating additional 

subpopulations will always explain additional variability, a smooth spline was fit to the data 

to look for inflection points indicating a local minimum in the Frobenius norm when related 

to cell subpopulations.

Further detailed descriptions of all of the analyses performed are provided in the 

Supplementary Data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
DNA methylation variability is increased at loci of intermediate methylation. The median 

absolute deviation (MAD) for DNA methylation values in CD34+ hematopoietic stem and 

progenitor cells (HSPCs) measured by HELP-tagging (top, 29 individuals) or reduced 

representation bisulphite sequencing (RRBS, bottom, 7 individuals) are shown as a function 

of mean DNA methylation across all of the samples tested. While HELP-tagging usually 

plots DNA methylation with a zero value to indicate complete methylation, we inverted the 

scale on this occasion to make the two plots comparable. The number of loci is reflected by 

the gray shading. The line shown indicates the mean MAD value, and reveals for both data 

sets increased variability of DNA methylation at loci with intermediate values.
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Fig. 2. 
Empirical annotation of the CD34+ HSPC genome based on chromatin features reveals 

candidate cis-regulatory element locations. Panel (a) shows a contour plot of the regions 

within the self-organizing map (SOM) where Segway features 4 (above) and 6 (below) 

enrich, showing feature 4 to be composed of loci where H3K4me1 and H3K27me3 occur, 

while the loci composing feature 6 contain the H3K4me3 and H3K27ac modifications. 

Consistent with these findings, panel (b) shows feature 6 (red) to be enriched at the 

transcription start site for a metaplot (top) and a heat map (below) of all RefSeq genes, 

indicating promoter characteristics, while feature 4 (yellow) flanks this region and is 

consistent with enhancers in a poised state. In panel (c), similar metaplot (top) and heat map 

(below) representations of the 2 kb flanking CpG islands demonstrate strong enrichment in 

feature 4, indicating that these “CpG island shores” in fact represent candidate enhancers in 

this cell type.
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Fig. 3. 
Transcriptional relationships of Segway features. A RefSeq metaplot for the Segway 

features divided by expression quantile shows that features 1–3 enrich in the bodies of genes 

as transcription increases, at the expense of feature 0, which appears to represent repressed 

chromatin. Feature 6 is strongly enriched at canonical transcription start sites, flanked by an 

enrichment of feature 4 and, to a lesser extent, feature 5, which have chromatin signatures 

indicative of enhancer function.

Wijetunga et al. Page 19

Nat Commun. Author manuscript; available in PMC 2015 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
DNA methylation variability is enriched at candidate enhancers and promoters at 

transcription start sites of RefSeq genes and at CpG islands and shores. Panel (a) shows that 

enrichment of variability of DNA methylation is marked at loci with H3K4me1, H3K27ac 

and H3K27me3 marks in particular. Panel (b) shows a RefSeq metaplot with feature density 

indicated by the gray shading above and within the graph, and mean variability for features 

4 (yellow, top) and 6 (red, bottom) depicted, with increased variability distributing where 

each mark is maximally located. The significance of the enrichment is shown at the depicted 

peak p value location. Analysis of CpG islands (c) shows variability in flanking regions 

(shores) associated with the presence of feature 4.

Wijetunga et al. Page 20

Nat Commun. Author manuscript; available in PMC 2015 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Variability of DNA methylation at candidate enhancer sequences discriminates genes 

expressed at lower levels. Panel (a) shows the overall pattern of DNA methylation 

variability at RefSeq genes broken down by expression quantile, showing differences at 

silent compared with expressed genes at transcription start sites. (b) No such differences are 

measurable when testing candidate promoters (Segway feature 6, top), whereas candidate 

enhancers (Segway feature 4, bottom) show increased variability for DNA methylation for 

genes that are either silent or expressed at the lowest quartile.
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Fig. 6. 
Non-negative matrix factorization (NMF) of DNA methylation profiles shows evidence for 

13–20 subpopulations within the CD34+ HSPC population. The upper plot shows a smooth 

spline (orange) and value distribution (blue) for the Frobenius norm as a function of 

increasing cell subpopulation number, with the lower plot representing the p value testing 

(two sample t-test) whether the difference between the successive simulations is significant. 

We observe two points at which the subsequent change is insignificant, at values 13 and 20, 

suggesting that the number of subpopulations differing in DNA methylation profiles within 

the CD34+ HSPC population is within this range.
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