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Abstract

Despite the successful introduction of potent anti-cancer therapeutics, most of these drugs lead to only modest tumor-
shrinkage or transient responses, followed by re-growth of tumors. Combining different compounds has resulted in
enhanced tumor control and prolonged survival. However, methods querying the efficacy of such combinations have been
hampered by limited scalability, analytical resolution, statistical feasibility, or a combination thereof. We have developed a
theoretical framework modeling cellular viability as a stochastic lifetime process to determine synergistic compound
combinations from high-throughput cellular screens. We apply our method to data derived from chemical perturbations of
65 cancer cell lines with two inhibitors. Our analysis revealed synergy for the combination of both compounds in subsets of
cell lines. By contrast, in cell lines in which inhibition of one of both targets was sufficient to induce cell death, no synergy
was detected, compatible with the topology of the oncogenically activated signaling network. In summary, we provide a
tool for the measurement of synergy strength for combination perturbation experiments that might help define pathway
topologies and direct clinical trials.
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Introduction

The vision of personalized cancer medicine has recently become

an achievable goal through the development of novel cancer

therapeutics and the link of their efficacy to somatic genetic

aberrations (or, ‘‘lesions’’). Prominent examples are ERBB2-

amplified breast cancers [1] that respond to ERBB2 inhibition,

BCR-ABL-translocated chronic myeloid leukemia patients that

can be successfully treated with the ABL kinase inhibitor imatinib

[2,3], or EGFR-mutant non-small cell lung cancers (NSCLC) that

are sensitive to treatment with the EGFR inhibitors erlotinib and

gefitinib [4]. However, the enthusiasm about this success has been

dampened by limited tumor shrinkage in most patients and the

occurrence of relapse after an initial response [5,6,7,8,9,10].

The concept of simultaneous targeting of more than one signaling

pathway or pathway component has been pursued for many years as

a promising strategy to increase treatment efficacy or prevent the

emergence of drug resistance [11,12,13]. In the area of conventional

cytotoxic chemotherapy, only the combination of multiple drugs has

enabled actual cures for leukemia and lymphoma patients [14].

Additional examples include the successful combination of thera-

peutic antibodies and chemotherapy for treatment of lymphomas, as

well as breast and colorectal cancer [15,16]. Finally, combining

specific inhibitors of oncogenic signaling pathways has resulted in

highly synergistic treatment responses in clinically relevant tumor

models [17,18,19]. Thus, systematic approaches to interrogate

synergistic compound combinations and to link these to individual

genetic lesions are required to move these combinations into clinical

trials more rapidly. Another notion supporting the systematic study

of such combination therapies comes from the careful biochemical

dissection of oncogenic signaling pathways: it was shown that most of

these pathways are interconnected by feedback loops [20,21,22].

Thus, simultaneously blocking two or more of such pathways might

lead to activation of the alternate pathway by release of negative

feedback loops. Accordingly, beyond the obvious benefit for drug

discovery, such studies may help defining signaling pathway topology

connected with individual genetic lesions.

Unfortunately, establishing synergistic compound combinations

at greater scale is typically hampered by the necessity to screen

multiple compound concentrations of one compound against

different concentrations of another compound. Furthermore,

many analytical approaches do not consider continued prolifer-

ation of viable cells and do not afford establishing statistically

meaningful representations of screening data across a broad

experimental range.

Several methods for the detection of compound synergy have

been proposed [23,24,25,26]. In summary, the diverse definitions

of synergy and methods for its detection are based on two
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principles: Loewe additivity [27] and Bliss independence [28].

However, a precise methodological derivation of the analytical

procedure and the close adaptation to an experimentally tractable

setup amenable to high-throughput cellular screening have been

lacking so far. We therefore set out to develop both a novel

approach for high-throughput cell-based screening of multiple

compound concentrations and a statistical framework to define

synergy as a probabilistic lifetime process under single and

combined chemical perturbations. We applied this model to

screening data derived from a screen of a panel of genetically and

phenotypically characterized NSCLC cell lines and determined

global genetic settings in which synergy of the irreversible EGFR/

ERBB2 inhibitor BIBW-2992 and a dual PI3K/mTOR inhibitor

PI-103 is most pronounced.

Results

Population-Based Analysis of Cell Viability Measurements
We reasoned that cellular dose response that is commonly used

for cell viability measurements is based on a change of the cellular

growth rate when a given perturbation (in most cases, a chemical

compound) is added in comparison to untreated cells. This

description allows a probabilistic interpretation in terms of a

stochastic waiting-time process. For a given compound concen-

tration x, these ideas lead to the following relationship

v(x)~ exp {lt 1{
1

1z x=Kð Þm
� �� �

ð1Þ

where v is the modeled viability, t is the time at which the

measurement has been carried out, and l, K, m are the model

parameters. Equivalently, the model can be interpreted such that

each cell in the population has an exponentially distributed

lifetime after the treatment. As rate of the exponential distribution

we then obtain l 1{ 1z x=Kð Þmð Þ{1
� �

. In case of dual-specificity

inhibitors (i.e., inhibitors inhibiting more than one target),

sensitivity of both targets might be very distinct. It may happen

that one target is already completely inhibited with the lowest

concentration in the screen. To capture this effect, an offset loff ,

loff §0 can be added to the model, leading to the rate

l 1{ 1z x=Kð Þmð Þ{1
� �

zloff . Details of the mathematical model

and its derivation are presented in the Supplementary Note S1.

Figure 1A shows the simulated individual lifetime of 1000 cells,

which have been treated with two different compounds.

Compound concentrations increase from the left to the right

panels. Blue and red lines indicate the time of measurement and

data points which are located at the yellow and white area

represent cells which are still viable at the time of measurement

when treated with compound one. Data points falling into the blue

and white areas display viable cells after treatment with compound

two. In case of a non-synergistic and non-antagonistic compound

combinations the lifetime of the cells is given by the smallest

lifetime when treated with either compound (white area).

Translating the idea of ‘‘minimal lifetime’’ into a mathematical

model leads to a product of the two single compound dose

response curves modeled by Eq. (1) as non-synergistic combined

effect (Fig. 1b, blue curve); this concept is compatible with Bliss

independence. A simulation over a relatively small population on

1000 cells revealed that the simulated points closely correspond to

the theoretical curves (Fig. 1b).

With this mathematical model we next sought to distinguish

between synergy and antagonism of compound response curves

derived from high-throughput screening efforts (Fig. 1C). Start-

ing from the high-throughput screening platform dose response

curves from both single compounds as well as their combinations

were determined for a large panel of genetically annotated non-

small cell lung cancer cell lines. Equation (1) is then fitted to the

dose response curve of each single compound screen. This yields

the model parameters l, K, m, from which the curve separating

synergistic from antagonistic compound combinations can be

computed according to Eq. (S10) of the Supplementary Note
S1. For a given compound combination, the difference between

the computed curve and the measurement is then a measure for

synergy or antagonism, respectively. This measure is denoted by

synergy strength. Due to the presence of noise, several different

compound combinations are needed to filter out cell-lines, which

show significant enrichment of synergy strength over different

combinations. To this end, a rank sum approach is used. In order

to account for multiple hypothesis testing the false-discovery rate

(FDR) framework [29] was applied.

Applying the Model for Single Compound Screen of
PI-103 and BIBW-2992

In order to validate the proposed model, Eq. (1), we screened

65 of the 84 non-small cell lung cancer cell lines [9] against the

irreversible EGFR/ERBB2 inhibitor BIBW2992 and the PI3K/

mTOR inhibitor PI-103. We selected 4 out of the 65 cell lines and

fitted the dose response curves to the corresponding data points

(Fig. 2A). We next determined the difference between the

viability predicted by the model and the experimentally deter-

mined values (model residuals). To assess the quality of the model

we computed the median of the residuals over the concentrations

for each compound and cell line (Fig. 2B). For both compounds,

significant outliers are then identified under the assumption that

the medians of the residuals are normally distributed around zero.

Using a 5% level of significance and after correcting for multiple

testing we identified only one outlier: Calu6 screened with PI-103

(FDR q-value = 7.6 10212). However, this outlier can safely be

neglected since it did not distort the following analysis. In

summary, the proposed model fits well to the measured data

and is therefore a suitable basis for the identification of synergistic

compound combinations.

Computing half-maximal-inhibitory concentrations (Eq. (2),
Materials and Methods) for PI-103 and BIBW-2992

(Figure 2C) shows no clear association between the genomic

lesions and the single-agent activity of PI-103 with the used cell

proliferation assay [19]. As expected, in the case of the irreversible

EGFR/ERBB2 inhibitor BIBW-2992, cell lines dependent on

EGFR and ERBB2 signaling (due to the presence of drug-

sensitizing genetic alterations in these genes) are substantially

enriched in the highly sensitive cell lines [30,31].

Application of the Model for Combinational Compound
Screen of PI-103 with BIBW-2992

In order to test the accuracy of our model to detect synergy of

compound combinations we next sought to systematically assess

the viability of cells treated with a combination of the two

compounds. With the EGFR/PI3K signaling cascade being one of

the most frequently mutated pathways in lung cancer, we

speculated that combined inhibition of EGFR- and PI3K/

mTOR-signaling might be effective in our cell line panel of

NSCLC cells. The presence of considerable experimental noise

(Fig. 2B) makes it necessary to test different combinations for the

determination of synergy. Therefore, seven compound dose

combinations of PI-103 and BIBW-2992 were applied for the 65

Analysis of Compound Synergy
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cell lines already used in the single screens. The curve, which

separates synergistic from antagonistic combinations, is computed

from the previously determined fits, which serves as basis for the

synergy strength. We next computed this synergy score and

applied hierarchical clustering to the data matrix of the synergy

strength (Fig. 3A). This analysis revealed two distinct groups,

separating cell lines according to synergistic and antagonistic

behavior. To assess which cell lines in those clusters display a

significantly synergistic or antagonistic response to combined

EGFR-PI3K inhibition, we employed a rank sum-based statistical

test (Fig. 3A). Ranks of synergy strength were computed over all

cell lines but for each measured combination separately and

summed over the seven combinations. Next, a statistical test was

derived to test if high or low ranks were enriched. To correct for

multiple testing all p-values were corrected using the false-

discovery rate approach. Resulting q-values are shown in

Fig. 3A, where the horizontal green line indicates the chosen

5% false-discovery rate cutoff. We identified 11 cell lines, for

which combined PI-103/BIBW-2992 treatment was significantly

synergistic. Our analysis revealed that cell lines harboring either

amplification or a mutation in either EGFR or ERBB2 were not

enriched in the fraction of cell lines responding in synergistic

fashion to the combination of both compounds. These results

suggest that inhibition of ERBB-signaling in these cell lines is

already sufficient to effectively shut down survival signaling.

However, no other significant correlation between synergy

strength and genotype could be observed (Fig. 3A).

To further validate our methodological framework, we

compared our results with synergy predictions based on the

combination index method [12,32,33]. While the combination

index yielded a result in only 66% of the screening data analyzed,

our approach yielded robust synergy scores across the entire data

Figure 1. Overview of the model and method to detect synergistic compound combinations. (A) Model based simulation of the lifetime
of 1000 cells after treatment. The x-axis corresponds to the lifetime after treating cells with compound 1 and the y-axis shows the lifetime after
treatment with compound 2. Concentrations of both compounds are increased by a factor of 10 from left to right. Either the vertical blue line in case
of compound 1 or the horizontal red line for compound 2 indicates time of measurement. Thus, the number of viable cells at measurement is given
by the number of data points on the right side of the blue lines (after treatment with compound 1) or above the red line (in case of compound 2).
Distributions of viable and dead cells are displayed by bars at the upper and right side of each panel. Combining both compounds and assuming that
the combination of both compounds is neither synergistic nor antagonistic yields a certain number of viable cells that is represented by dots in the
white area. This notion reflects the fact that the minimal lifetime between the two compounds (x and y-axis) has to be taken for the combination. (B)
Theoretical dose response curves are shown for the previous example. Data points were computed from results of the simulation shown in (A). Even
for the relatively small population of 1000 cells, the simulated data points and the theoretical curve match. (C) Scheme of the procedure to detect
synergistic and antagonistic compound combinations. Starting from a high-throughput compound screen, the model is fitted to all single-agent
measurements. From the fitted model parameters, curves are computed for each combination separating synergy from antagonism. Measured data
of the combination screen are then compared to the computed curves and finally analyzed using a rank-based statistical test.
doi:10.1371/journal.pone.0008919.g001
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Figure 2. Results obtained from the single-compound screen of PI-103 and BIBW-2992. (A) Kill-curves are exemplarily shown for two
compounds (PI-103 and BIBW-2992) and 4 cell lines. Solid red lines display the fitted model to the measured data shown by black points. (B) Analysis
of the model residuals (i.e., difference between the measurements and the model prediction) for both compounds and each cell line. Shown are the
distributions of the residuals’ medians over the screened concentrations. A statistical test to detect significant outliers reveals that only the cell line
Calu3 when screened against PI-103 is not compatible with the distribution of the median of residuals (FDR q-value = 7.6 10212); highlighted by a red
bar. (C) Profiles of GI50-values for PI-103 and BIBW-2992. GI50-values were computed using the proposed model and sorted according to the
sensitivity of the cell line to the inhibitions: most sensitive cell lines are on the left side and most resistant cell lines are shown on the right side. Colors
symbolize most common genomic alterations in NSCLC. In case of EGFRmut/amp and ERBB2mut/amp a genomic alteration can either be a mutation or a
gene copy number amplification ($4 copies are considered as alteration), for METamp only amplifications are reported, the remaining alterations,
BRAFmut, NRASmut, KRASmut are mutations. For BIBW-2992, asterisks highlight those cell lines, which harbor lesions either in EGFR or ERBB2.
doi:10.1371/journal.pone.0008919.g002
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Figure 3. Exploring synergy and antagonism of the compound combination PI-103 with BIBW-2992. (A) Combinations of PI-103 and
BIBW-2992 were screened for all cell lines and the synergy strength score was computed as difference between measured data and the curve
separating synergy from antagonism. Hierarchical clustering clearly classifies the cell lines into two groups according to the algebraic sign of the
synergy strength score (positive: synergy; negative: antagonism). Results of a rank sum-based statistical test mainly reproduce the results from cluster
analysis. Setting the level of significance to a false discovery rate of 5% (horizontal green line) yields 11 cell lines showing synergy. Finally, the
annotation of 8 frequent genomic aberrations indicates that almost all cell lines harboring genomic alterations in ERBB2 family member do not
benefit from the combination. (B) Shown is the relationship between single-agent GI50-values and synergy. All cell lines showing significant synergy
are highlighted by red symbols. Annotating the cell lines with mutation and copy number status of EGFR and ERBB2 (distinguished by quadratic
symbols and triangles) confirms the previous finding that cell lines harboring alterations in EGFR/ERBB2 do not significantly benefit from the
combination in terms of synergy. (C) Shown are the main signaling network compounds downstream EGFR and ERBB2 as well as the targets of BIBW-
2992 and PI-103. Since the PI3K-mTOR pathway is downstream EGFR/ERBB2, cell lines which depend on EGFR/ERBB2-signaling do not benefit from
the combination.
doi:10.1371/journal.pone.0008919.g003
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set, thereby affording application to high-throughput screens.

However, in the fraction of data that could be analyzed by both

methods, synergistic cell lines determined with our method and the

combination index method largely overlapped (Fig. S1). This is

underscored by a regression analysis between the negative-log-

transformed combination index and the synergy strength score

(Fig. S2), which showed a significant positive correlation

(r2 = 0.45; p,1026). The enhanced robustness of our approach

is largely due to the fact that it takes into account the entire dose

response relationship and is not restricted to the behavior of a

single point (Supplementary Note S1).

The observation that combination treatment is not beneficial in

cell lines with oncogenic alterations in EGFR and ERBB2

indicates that there might be a relationship between activity of

the individual compounds and synergy. In order to demonstrate

such a relationship, we plotted the GI50-values of PI-103 against

those of BIBW-2992 and labeled all data points of cell lines with

genetic aberrations in the EGFR/ERBB2 receptor tyrosine kinases

(Fig. 3B). This analysis recapitulated the previous findings that

cell lines, which are primarily dependent on EGFR/ERBB2

signaling (GI50,0.1 mM), do not benefit from the combination of

ERBB/PI3K-pathway inhibition. Remarkably, our findings are in

line with the general topology of the signaling pathways

downstream of EGFR and ERBB2 (Fig. 3C). Since oncogenically

activated EGFR and ERBB2 receptors preferentially signal

through the PI3K pathway [19] combined blockade of those

pathways is not expected to be synergistic for cells depending on

EGFR or ERBB2. In other words, potent inhibition of strong

oncogenic signals upstream is already sufficient to induce apoptosis,

independent of the inhibition of further components downstream

(Fig. 3C). The same seems to be valid for three cell lines with the

lowest PI-103 GI50-values. However, dependency on PI3K-

mTOR signaling was generally less pronounced (expressed by

higher GI50-values) which might be a result of alternative

pathways upstream PI3K such as the mitogen-activated protein

kinase (MAPK) and feedback loops connecting the two pathways

[19]. However, synergistic combinations clustered around a GI50-

value of 1mM for PI-103. We therefore speculate that a supra-

threshold activity of PI3K inhibition is needed to obtain synergy.

In order to provide a deeper characterization of the genotypes,

we extended the previously used genetic annotation with

significant copy number aberrations computed by GISTIC [34].

A complete list of all identified copy number aberrations and the

mutation status of 7 genes is given for the cell lines showing

synergistic behavior in Table S1. Similar to the analysis done in

[9], we performed a k-nearest-neighbor prediction on this data set

and found no significant predictor of synergy (Table S2). The

inability to predict synergy from genetic lesions is probably

hampered by the necessity to restrict the analysis to recurring and

highly focal copy number lesions as identified by GISTIC and the

focus on the most frequent gene mutations in NSCLC.

Discussion

Starting from general considerations about cell viability

measurements, we derived a model for inferring cell survival

curves from high-throughput cell-based screening data [35]. This

model laid the basis for detection of synergy strength of compound

combinations. Here, the central assumption is that the median-

effect equation [12,32,33] is coupled linearly to a cell-killing rate

under treatment. Validation of the model in a panel of 65 lung

cancer cell lines perturbed using PI3K and EGFR/ERBB2

signaling pathway inhibitors revealed general rules of the signaling

pathway topology downstream of genetically altered EGFR and

ERBB2 kinases. Thus, our approach affords analysis of synergy of

compound combinations in high-throughput cell-based screens in

scalable fashion.

Other approaches involving the network structure of complex

biological systems have been proposed [24,35]. Our model has the

advantage of permitting systematic statistical analyses of synergy

employing generic laboratory cellular screening experiments

involving a vast array of genetic cellular backgrounds. Another

major advantage of our model is its stochastic nature describing

the lifetime of cells under treatment. This allows a rigorous

derivation of a synergy score when cells are treated with a

combination of compounds. In fact, we confirmed Bliss indepen-

dence [28] based on this computation but within a solid theoretical

framework.

As application of the proposed analytical framework, we applied

the method to single and combined screens of the PI3K inhibitor,

PI-103 and the EGFR/ERBB2 inhibitor, BIBW-2992. Our model

captured previous findings that genetic alterations in EGFR are

predicting sensitivity of EGFR inhibitors [4,36,37]. Analysis of

synergy between PI-103 and BIBW-2992 revealed that cell lines

dependent on EGFR/ERBB2-signaling do not benefit from the

combination (Fig. 3A, B), which is in line with the network

topology suggesting a preferential linear downstream engagement

of PI3K signaling downstream of oncogenically activated receptor

tyrosine kinases [7,19]. Previous work carried out in transgenic

EGFR and ERBB2-mutant mice showed substantial tumor

regression when mice were treated with a combination of

BIBW-2992 and rapamycin targeting mTOR (or more specifically

TORC1) [30,31]. However, both transgenic alleles in these studies

impair binding of quinazoline-based EGFR inhibitors, thus

resulting in inefficient target inhibition [38]. Thus, adding

downstream inhibition in the setting of incomplete upstream

target inhibition can result in synergy, even though the pathway

itself is linear (Fig. 3C). Here, crosstalk or an upstream branching

into other signaling components can mediate such an effect. In our

study, signaling through the MAPK pathway might substantially

contribute to synergy since there are numerous interconnections

between MAPK and PI3K signaling pathways.

In summary, we introduced a new methodological framework to

detect synergy of compound combinations across a large panel

of cancer cell lines. The analysis of a first combination screen

supported a view of a mostly linear signaling pathway topology

downstream of oncogenically activated EGFR/ERBB2 kinases

[19]. Thus, beyond enabling high-throughput analyses of com-

pound combinations, our approach affords general insights into

pathway functionality and pathway interrelations.

Materials and Methods

Cells
The used cell line collection was previously described in [9].

Cells were routinely controlled for infection with mycoplasm by

MycoAlert (www.cambrex.com) and were treated with antibiotics

according to a previously published protocol [39] in case of infection.

Cell-Based Screening
All compounds were purchased from commercial suppliers or

synthesized in house, dissolved in DMSO and stored at 280uC.

Cells were plated into sterile microtiter plates using a Multidrop

instrument (http://www.thermo.com) and cultured overnight.

Compounds were then added in serial dilutions. Cellular viability

was determined after 96h by measuring cellular ATP content using

the CellTiter-Glo assay (www.promega.com). Plates were measured

on a Mithras LB940 plate reader (www.bertholdtech.com).

Analysis of Compound Synergy
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Copy Number Analysis
Genomic DNA was extracted from cell lines using the

PureGene kit (www.gentra.com) and hybridized to high-density

oligonucleotide arrays (Affymetrix, Santa Clara, CA) interrogating

238,000 SNP loci on all chromosomes except Y, with a median

intermarker distance of 5.2 kb (mean 12.2 kb; http://www.

affymetrix.com). Array experiments were performed according to

manufacturer’s instructions. SNPs were genotyped by the

Affymetrix Genotyping Tools Version 2.0 software. We applied

GISTIC [34] to analyze the data set. The GISTIC algorithm was

run using a copy number threshold of 4 in case of amplifications

and 1 for deletons. To ensure compatibility of the copy number

data with mutation data we dichotomized copy numbers with the

following thresholds: 4 for amplifications and 1 for deletions.

Model Based Computation of GI50-Values
Applying the half-maximal-inhibitory concentration concept

(‘‘GI50-values’’) we set the viability to 50% in Eq. (1); followed by a

few algebraic rearrangements yields the model-based computation

of the GI50-values:

GI50~K
log (2)

lt{ log (2)

� �1

m
if ltw log (3): ð2Þ

Positivity of the GI50-values is guaranteed by the condition in

Eq. (2). If this condition is not satisfied, no GI50-value exists, i.e.,

the on-target inhibition is to weak to kill enough cells such that a

viability of 50% can be reached.

Data Analysis and Statistics
The model of single-agent kill curves, Eq. (1), are fitted to data.

To this end, a maximum likelihood approach is employed to

estimate the model parameters l, K, m. This requires non-linear

optimization; we chose the Levenberg-Marquardt method for this

optimization [40,41]. P-values where corrected for multiple testing

using the false-discovery-rate approach [29]. The p-value

adjustment as well as the cluster analysis was carried out in R

version 2.7.1 (http://www.R-project.org).

Rank Sum Rest
We decided to employ a rank sum based approach to provide a

statistical measure for synergy. This approach has the advantage that

it also takes prevalence across different cell lines into account and

does not purely rely on the synergy strength. This is an important

and therapeutically relevant property of the statistical test.

Let us consider the synergy strength measure: Sij~Vij{v0ij
,

where Vij is the measured viability for the combination i [ f1,ncg
and cell line j [ f1,nlg. The computed curve separating synergy

from antagonism, given by the product of both single compound

dose response curves (Eq. (S10), Supplementary Note S1), is

denoted by v0ij
. Ranks are computed over all cell lines j but for

each combination i separately; resulting in the rank matrix Rij .

Utilizing that the ranks are uniformly distributed leads to the

following variance of the ranks across the cell lines:

s2
i ~

n2
l {1

12
:

Moreover, under the null-hypothesis that there is no association

between the ranks of each combination, the variance of the rank

sum
Pnc

i~1

Rij is

s2~
Xnc

i~1

s2
i ~

nc(n2
l {1)

12
: ð3Þ

Relating the rank sum to the median is not useful in our case. If,

e.g., Sij is negative for all i and j (i.e., there is no sample showing

synergistic behavior), a median centered rank sum test would

assign a few samples as being synergistic. To derive the test

statistics, which corrects for such an effect, we relate the rank sum

to the rank where the synergy score Sij changes its sign. To this

end, we compute for each concentration i the rank that has the

lowest absolute synergy score

mi~Rik where k~ arg min
1ƒjƒnl

jSij j:

Finally, the rank sum statistics we propose to test for synergy is

given by

RSj~s{1
Xnc

i~1

Rij{mi

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

nc(n2
l {1)

s Xnc

i~1

Rij{mi

� �
: ð4Þ

Under the null-hypothesis that there is no association between

the ranks of different concentrations and that the synergy score

fluctuates around zero, the distribution of RSj can be approx-

imated by a standard normal distribution. This approximation is

asymptotically (j??) correct and used in our analysis.

Supporting Information

Supplementary Note S1 Analysis of compound synergy in

high-throughput cellular screens by population-based lifetime

modeling.

Found at: doi:10.1371/journal.pone.0008919.s001 (0.08 MB

PDF)

Figure S1 Comparison between the combination index method

and the method we propose. Shown is the clustered matrix of the

synergy strength measure, as in Fig. 3A, together with the

combination index. Significantly synergistic cell lines which where

detected with our method are highlighted by red bars. Missing

bars indicate that for those cell lines the computation of the

combination index was not possible.

Found at: doi:10.1371/journal.pone.0008919.s002 (0.69 MB

PDF)

Figure S2 Correlation analysis between both methods. To adapt

the scale of both measures, we performed a transformation of the

combination index using the negative logarithm. The regression

line is displayed by the straight red line. Moreover, we found a

significant positive correlation (r2 = 0.45; p,1026), which confirms

that both methods follow the same trend.

Found at: doi:10.1371/journal.pone.0008919.s003 (0.12 MB

PDF)

Table S1 Genomic annotation of all 11 cell lines showing

synergistic behavior. Significant copy number regions were

identified using GISTIC. To assure comparability with mutation

data, copy numbers were dichotomized with the following

thresholds: 4 in case of amplifications and 1 for deletions.

Found at: doi:10.1371/journal.pone.0008919.s004 (0.03 MB

PDF)
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Table S2 Multi-lesion predictor of synergy tested with the KNN

method, Fishers exact test and t-test are displayed; here, only p-

values smaller than 5% are shown. The Youden-Index (i.e.,

sensitivity+specificity-1) of zero indicates that the result has no

predictive power.

Found at: doi:10.1371/journal.pone.0008919.s005 (0.02 MB

PDF)
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