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Abstract

We analyzed protein expression data for Lupus patients, which have been obtained from

publicly available databases. A combination of systems biology and statistical thermody-

namics approaches was used to extract topological properties of the associated protein-pro-

tein interaction networks for each of the 291 patients whose samples were used to provide

the molecular data. We have concluded that among the many proteins that appear to play

critical roles in this pathology, most of them are either ribosomal proteins, ubiquitination

pathway proteins or heat shock proteins. We propose some of the proteins identified in this

study to be considered for drug targeting.

Introduction

Systemic lupus erythematosus (SLE) is a unique autoimmune disease with multiple patholo-

gies including organ damage to kidney, skin, lungs, brain and heart, among others. Women

of childbearing age and African-American persons are largely affected, with a ratio of 9:1

compared to general population. Its pathogenesis is not yet clearly defined but is generally

thought to be due to a complex interplay between genetics [1–4], environmental and female

sex hormone [5], and epigenetics [6]. Genome-wide association studies have identified 46

single nucleotide polymorphisms (SNPs) shown to predispose to SLE, 30 lie within noncod-

ing regions of the human genome [7]. The most common genetic predisposition is found at

the MHC locus and specially the HLA-DR2 and HLA-DR3, with a hazard ratio of 2. Geneti-

cally-predisposing variants involve some associated with innate immunity (IRF5, STAT4,

IRAK1, TNFAIP3, SPP1, and TLR7), most of which are associated with interferon alpha

pathways. Still other predisposing genes involve lymphocyte signaling (PTPN22, OX40L,

PD-1, BANK-1, LYN, BLK), each of which plays a role in the activation or suppression of T

cell or B cell activation or survival. In addition to genes, epigenetic modifications are impor-

tant in the pathogenesis of SLE. These include hypomethylation of DNA, which influences

transcription into protein. Genetic factors that confer the highest HR of 5 to 25, although
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rare, are deficiencies of the complement components C1q (required to clear apoptotic cells),

C4A and B, C2, or the presence of a mutated TREX1 gene. Genetic information accounts for

only 18 percent of susceptibility to SLE, suggesting a large component of environmental or

epigenetic influences [8]. Studies on the expression profiles of lncRNAs in T cells of SLE

patients revealed some lncRNAs whose expressions might correlate with disease activity of

SLE patients [9]. Histone H3 lysine 4 trimethylation (H3K4me3) is an important epigenetic

modification, which is associated with active transcription and it has been shown that there

are significant alterations of H3K4me3 in the peripheral blood mononuclear cells of SLE

patients [10]. Other studies examined H3K4me3 breadth at transcription start sites (TSS) in

primary monocytes and its association with differential gene transcription in SLE, providing

evidence that TSS might be a crucial regulator responsible for transcription changes in SLE

[11]. The data of individual T cell miRNA expression profiles in the literature for SLE risk or

pathogenesis are quite variable [12, 13, 9]. The study in ref. [14] concluded that a number of

elevated miRNAs could potentially become biomarkers for immunopathogenesis of SLE9.

These biomarkers include elevation of miR-17–92 cluster, miR-21, miR-296, miR-126, miR-

148a, miR-224, miR-524-5p, and suppression of miR-31, miR-125a, miR-125b, miR-142-3p,

miR-142-5p and miR-146a. In addition, these biomarkers are found intriguingly correlated

with T cell subset alteration, aberrant cytokine/chemokine release, altered gene transcrip-

tion and immune cell signaling abnormalities in SLE [15].

Moreover, urinary exosomal miRNA profiling was also investigated in connection with

biomarkers for lupus nephritis [16–17]. These include increased miR-125a, miR-146, miR-150

and miR-155, and decreased miR-141, miR-192 and miR-200a. When exploring the miRNA

expression profiles in the damaged target tissues, the authors of ref. [18] directly identified, con-

firmed and explicated miR-30c-5p, miR-1273e and miR-3201 in the renal tissue of patients with

lupus nephritis. This cause-effect relationship investigation of the damaged tissue is direct and

more reliable than the conventional correlation analysis [19–20]. Gene–environment interac-

tions add more complexity in explaining the etiology of autoimmune diseases. A recent study

[21], using new computational methods, demonstrated that transcription factors (TFs) occupy

multiple loci associated with individual complex genetic disorders. In particular, they showed

that nearly half of systemic lupus erythematosus risk loci are occupied by the Epstein–Barr virus

EBNA2 protein and many co-cluster human TFs, showing gene–environment interactions.

The following is a list of the other factors involved in SEL pathogenesis. Environmental

factors include viruses, which stimulate specific cells in the immune system. Antibodies to the

molecular mimicry molecules may contribute to the development of autoimmunity. In addi-

tion, trypanosomiasis or mycobacterial infections may induce anti-DNA antibodies or even

lupus-like symptoms, and lupus flares may follow bacterial infections. UV light may stimulate

keratinocytes to express more snRNPs and to secrete more IL-1, IL-3, IL-6, GM-CSF and

TNF-alpha, thereby stimulating B cells to make more antibodies. Regarding hormonal factors,

evidence of the immunoregulatory function of estradiol, testosterone, progesterone, dehydro-

epiandrosterone, and pituitary hormones, including prolactin, has supported the hypothesis

that they modulate the incidence and severity of SLE.

The use of estrogen-containing ocp is associated with a 50 percent increase in risk of devel-

oping SLE while either early onset of menarche (age�10 years) or administration of estrogen

to postmenopausal women doubles their risk. Breastfeeding may decrease risk of developing

SLE. Nulliparous women are at higher risk of SLE than are women who have given birth at

least once. Treatment of women with clinically stable SLE with ocp for one year does not

increase disease flares. However, treatment of postmenopausal women with hormone replace-

ment may increase flares, although evidence is mixed. Hyperprolactinemia and hyperproges-

teronemia are associated with flares of SLE.
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SLE is primarily a disease characterized by abnormalities in immune regulation. There are

numerous immune defects in patients with SLE. However, the etiology of these abnormalities

remains unclear. We do not know which defects are primary, and which are secondarily

induced. These abnormalities are thought to be secondary to a loss of self-tolerance. Thus,

affected patients consequently develop an autoimmune response. B cells/plasma cells that

make autoantibodies more persistently activated and driven to maturation by the B cell activat-

ing factor (BAFF, also known as B lymphocyte stimulator, blys) and by persistently activated T

helper cells making B-supporting cytokines such as IL-6 and IL-10. Blys is essential for matura-

tion and survival of post-bone marrow transitional and immature B cells into autoantibody-

secreting plasmablasts and memory B cells. Antibody-Antigen complexes, particularly those

containing DNA or RNA/proteins, activate the innate immune system via TLR9 or TLR7,

respectively. Thus, dendritic cells are activated and release type 1 interferons and TNF-alpha,

T cells release IFN-gamma, IL6, IL10, while natural killer (NK) and T cells fail to release ade-

quate quantities of transforming growth factor (TGF)-beta. These cytokine patterns favor con-

tinued autoantibody formation. Phagocytosis and clearing of immune complexes, of apoptotic

cells, and of necrotic cell-derived material are defective in SLE, allowing persistence of antigen

and immune complexes. Immune complex may be present for years before the first symptom

of disease appears. Blys production is promoted by increased TLR activation and increased

type 1 and 2 interferon production. In turn, blys promotes increased TLR activation. This

contributes to sustained autoantibody production. Blys increases survival of B2 cells after their

transitional T1 phase, which bypass several deleting and energizing tolerance mechanisms [8].

A search of GeneCards database (http://www.genecards.org/) shows there are 1474 proteins

associated with SLE. Comparing this list with a list of all the proteins in the 291 Gibbs-homol-

ogy networks captured, we find an overlap of 12 proteins, namely: UBC, RPS6, RPS18, RPS10,

RPLP2, RPL7, RPL6, RPL5, ISG15, IFS16, HSPA8, HSP90AA1. Interestingly and possibly

importantly, these are all ribosomal proteins or proteins related to ribosomal proteins. Various

reports have shown, that Anti-P-ribosomal are highly specific for SLE with a prevalence up to

~ 50%, while they are usually absent in other autoimmune disorders [22–23]. Anti-P-R target

P0, P1 and P2 proteins are located on the eukaryotic ribosomal subunit and can penetrate cells

and induce apoptotic changes, followed by an inhibition of specific cytokine [24–25]. It is

worth noting that efficient ribosome biogenesis consumes over 60% of cellular energy supply

in the form of ATP molecules and thus is strongly related to the energy status of the cell.

The “causal” factors result in T-, B-cell and dendritic cell dysfunctions of various types [26].

One of the important contributors to T cell dysfunction is the mitochondrial hyperpolariza-

tion, which results in ATP depletion, oxidative stress, and Ca+2 and actin cytoskeleton deple-

tion [27]. The T cells eventually rupture releasing pro-inflammatory nuclear materials [27].

This causes an imbalance in the T/B cell ratio, which promotes antibody production in the

peripheral blood. This whole process cascades producing excessive necrotic debris. Dendritic

cells sense the excess necrotic debris and soon inflammation is out of control. A typical therapy

is to target B cells to allow normal processes to remove the cellular debris [5]. A more detailed

description of this pathway is given by [2, 27–29]. Here, we focus on using molecular thermo-

dynamics methodology in conjunction with systems biology to identify key proteins in this

SLE inflammatory process. This may prove to be valuable for designing new treatments on a

personalized basis for this pathology and other types of diseases as has already been attempted

for cancer [30–32].

Finally, it should be mentioned that it would be very useful to correlate any thermodynamic

measures that will be introduced in this paper with disease severity scores. Unfortunately, this

is still very difficult. Measuring lupus disease activity accurately remains a challenging and

demanding task. Many researchers have attempted to define what disease activity means and
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how it should be measured, and several instruments were devised for a standardized assess-

ment of disease activity and outcome domains in clinical research (i.e. BILAG-2004, SLAM-R,

SLEDAI and SLEDAI-2 K, among others). Pitfalls involving lupus disease activity measures

have had a significant impact on the interpretation of study outcomes. Many of the clinical tri-

als were either overpowered or underpowered and had complex and multiple outcome mea-

sures. Devised in the 1990s, these metrics, however, were never intended for use in clinical

trials [33]. The data set we used in the present study appears to contain patient data in an acute

rheumatoid arthritis setting.

Theoretical background

The theoretical underpinnings for the thermodynamic approach to understand the molecular

biology of human diseases were developed over a several-year period and involved different

examples including several types of cancer [31–32,34–38]. Here, we give a brief summary of

this body of work. The transcriptome and other -omic (e.g., proteomic, genomic, etc.) mea-

sures can be viewed as representing the energetic state of a cell. By the use of the word “ener-

getic” we mean from a thermodynamics perspective. A living system is out of thermodynamic

equilibrium simply because of a constant need for metabolic energy production. It uses nutri-

ents such as glucose and transforms them into ATP as the universal biological energy currency

required for structure formation and biological function. One of the energetic demands of

every cell is the production of specific proteins, which are used for numerous structural and

functional need of a cell. Protein expression levels, therefore, represent a measure of the living

cell’s non-equilibrium energy level. Moreover, proteins interact with other proteins generating

very complex protein-protein interaction networks whose architecture is cell specific. There is

a chemical potential between interacting molecules in a cell, and the chemical potential of all

the proteins that interact with each other can be imagined to form a rugged landscape, not dis-

similar to Waddington’s epigenetic landscape [39–40]. The above formulates our conceptual

framework for the foregoing analysis.

The method we propose uses mRNA transcriptome data or RNA-seq data as a surrogate

for protein concentration. This assumption is largely valid. In fact, refs. [41–42] have shown

an 83% correlation between mass spectrometry proteomic information and transcriptomic

information for multiple tissue types. Further, ref. [43] found a Spearman correlation of 0.8

in comparing RNAseq and mRNA transcriptome from TCGA human cancer data (https://

cancergenome.nih.gov/).

Given the set of transcriptome data, a representative of protein concentration, we overlay

that on the human protein-protein interaction (PPI) network from BioGrid (https://

thebiogrid.org/). This means we assign to each protein on the network, the transcriptome

value (or RNAseq value) after rescaling. From that we then compute the Gibbs free energy of

each PPI using the standard statistical thermodynamic relationship:

Gi ¼ ciln
ciP
jcj

ð1Þ

where ci is the “concentration” of the protein i, normalized, or rescaled, to be between 0 and 1

corresponding to minimum and maximum values, respectively. The sum in the denominator

is taken over all protein neighbors of i, and including i. Therefore, the denominator can be

considered akin to degree-entropy as pointed out elsewhere [31–32,34–38]. Carrying out this

mathematical operation essentially transforms the “concentration” value assigned to each pro-

tein to a Gibbs free energy contribution. Thus, we replace the scalar value of transcriptome to

a scalar function—the Gibbs free energy.
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Due to the presence of a logarithm function of a fractional number, the Gibbs free energy is

a negative number, so associated with each protein on the network is a negative free energy

well (local energy minimum), which corresponds to a local stability area with respect to small

changes in protein concentrations. This results in a rugged free energy landscape represented

schematically in Fig 1. If we use what is called a topological filtration on this landscape, we

essentially move a filtration plane up from the deepest energy well. As the filtration plane is

moved up, larger-and-larger energetic subnetworks are captured. For convenience, we stop

the filtration at energy threshold 32 –meaning 32 nodes in the energetic subnetwork are

retained. We call these subnetworks Gibbs-homology networks.

We now compute the Betti centrality, which is a topological measure, of the 32-node ener-

getic networks as described in detail earlier in ref. [36]. The main concept is easily described

as follows. In networks such as PPI networks, there are holes, or rings, of various sizes. In these

energetic pathways within PPI networks, the proteins form interaction rings. In densely con-

nected, but not fully connected, networks the rings, or holes, may consist of triangles and

larger rings of interaction. To find the Betti centrality we ask ourselves the following questions:

which protein when removed from the network will change the overall total number of rings

the most? The total number of rings is called the Betti number and is denoted B. Given a net-

work G consisting of edges e and vertices v, the Betti centrality is given by the simple formula:

BðviÞ ¼ BðGÞ � BðG � fvigÞ ð2Þ

Hence, the difference from the total Betti number B(G) and the Betti number of the network

after removing node i, gives the Betti centrality for node i. We then compute this property for

all nodes in the threshold-32 energetic network. Often there will be two or more proteins in

the network that have equivalent Betti centrality making them equally important to the net-

work. We discuss this equivalence and the Betti centrality with respect to the patient data later

in this manuscript.

Data source and methods

We use the Betti centrality measure, described above, on the Gibbs-homology network. The

algorithm used for the calculation of Gibbs energy, Gibbs-homology and Betti centrality has

been briefly described above and in detail elsewhere [34–38]. The dataset for this SLE study is

from ref. [44], a study of lymphotoxin-Light pathway regulation by treatment of SLE and rheu-

matoid arthritis (RA) patients with baminercept [44]. The dataset is publicly available at GEO

(https://www.ncbi.nlm.nih.gov/geo/) with the accession number GSE45219. This dataset

Fig 1. As the “filtration plane” moves up from the bottom, more-and-more nodes are captured in larger-and-

larger energetic subnetworks.

https://doi.org/10.1371/journal.pone.0226883.g001
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comprises data on 291 SLE patients and it is the largest of the datasets on SLE in the available

literature. We believe it is highly representative. The dataset for the SLE study is available from

GEO as accession number GSE45219. As pointed out in [23] the data are from whole blood

samples not peripheral blood.

While the analysis we perform concerns protein, the data are derived from transciptional

analysis of RNA. However, mRNA codes for proteins and the quantitative correlation between

the two measures is very significant, see references [41–43]. We did not perform extensive sta-

tistical methodology in the paper, rather we focused on the markers of SLE [31–32,34–38]. In

fact, the importance of specific proteins that our approach reveals is based on the methodology

involving the Gibbs energy and topology of the protein subnetworks and not on statistics. This

can be applied to individual patients in the framework of personalized therapy and that is a

strength of this approach.

Results and discussion

As described above, we use the Gibbs-homology pathways, or small energetic networks, to

find which protein is contributing most to the energetic pathway complexity. We do this by

calculating the Betti number centrality. For some patients there will be one or more equivalent

Betti number centralities. A Pareto chart of these “centrality proteins” for the 291 SLE patients

in the GSE45291 dataset is shown in Fig 2.

The first thing to notice in this Pareto chart is that the number of proteins totals beyond

291 because of equivalent centralities. The second feature is that UBC, HUWE1 and RPS11

are present as centrality proteins in 100 or more patients, which is a very substantial number.

Notice also the vertical axis is on a logarithmic scale, hence the actual differences are much

larger than they appear.

A search of GeneCards database (http://www.genecards.org/) shows there are 1474 proteins

associated with SLE. Comparing this list with a list of all the proteins in the 291 Gibbs-homol-

ogy networks captured, we find an overlap of 12 proteins, namely: UBC, RPS6, RPS18, RPS10,

RPLP2, RPL7, RPL6, RPL5, ISG15, IFS16, HSPA8, HSP90AA1. Interestingly and possibly

importantly, these are all ribosomal proteins or proteins related to ribosomal proteins. It is

Fig 2. Pareto chart of highest Betti centralities for the Gibbs-homology energetic networks at threshold 32. In many networks there were one or

more equivalent Betti centralities, so the total number of proteins is greater than 291, which is the number of SLE patients in the dataset. Note, the

vertical axis is on a log scale.

https://doi.org/10.1371/journal.pone.0226883.g002
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worth noting that efficient ribosome biogenesis consumes over 60% of cellular energy supply

in the form of ATP molecules and thus is strongly related to the energy status of the cell. This

particular feature causes the nucleolar process to be highly sensitive to nutrient deprivation as

demonstrated in recent studies on the target of rapamycin (TOR) signaling pathway, which

plays a central role in linking the cellular nutrient status to ribosomal biogenesis [45]. In the

following paragraphs we discuss each of these proteins and their role in SLE.

UBC (ubiquitin C), as to be expected, has a high Betti centrality in this population of patients,

because it has high entropy. Entropy alone does not dictate high Betti centrality, but high entropy

does play a role in the Gibbs energy calculation. As stated above, degree-entropy is essentially

the denominator in Eq (1). The degree-entropy for UBC in the Human Biogrid protein-protein

interaction network version 3.4.139 (https://thebiogrid.org/) is 1432. This means it has 1432 pro-

tein neighbors with which it interacts. Here, entropy is specifically defined as the degree-entropy

or the number of interactions. Similarly, HUWE1 has 455 neighbors and RPS11 (ribosomal pro-

tein S11) has 198 neighbors. It should also be noted that UBC, HUWE1 and RPS11 are all in the

ubiquitination pathway. Fig 3, shows an example of one of the networks at energy threshold 32,

in which UBC is the highest Betti centrality node. In this graph the proteins in the outer ring

(HUWE1, RPL10, RPS20, HNRNPU, RPS11, NPM1, RPS3, RPL5, RPS8, HNRNPK) are all

neighbors. As clearly seen in this graph, UBC does not have the highest degree entropy (but

RPS8 does). Nonetheless, it has the highest Betti centrality for this patient.

RPS6 (ribosomal protein S6) was found in the GeneCards SLE list, and also found as having

a high Betti centrality for 11 SLE patients out of the 291 total (Fig 3). However, its importance

to SLE is indicated by the fact that it was found in 277 patients’ Gibbs-homology pathways at

energy threshold 32. So it does not necessarily have the highest Betti centrality but it is in the

“energy neighborhood” at threshold 32 for 95% of the patients. RPS6 can be phosphorylated

Fig 3. PPI network for patient 107, which is an example of UBC having the highest Betti centrality. The nodes in

the outer ring have direct connections to UBC. The nodes in the inner ring are secondary. RPS8 has the highest

number of connections.

https://doi.org/10.1371/journal.pone.0226883.g003
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and is associated with the functioning of mTOR in T-cell development [46]. It also plays an

important role in treatment of SLE with N-acetylcysteine, a target of which is mTOR [47]. Fig

4 shows a situation where RPS6 has a high Betti centrality and in fact has three other equivalent

Betti centralities (RPS20, RPSA, RPL23A). Within the nodes in the circle, CUL3 has the high-

est number of connections. The peripheral nodes, nodes of secondary energy importance are:

HUWE1 –associated with the ubiquitination pathway; HNRNPK—known as heterogeneous

nuclear ribonucleoprotein K and according to KEGG (http://www.genome.jp/kegg/pathway.

html) is involved in Herpes simplex infection and viral carcinogenesis; ACTB—known as

actin beta is associated with Rap1 signaling pathway and Hippo signaling pathway, platelet

activation, and according to OMIM (https://www.omim.org/) is associated with Baraitser-

Winter syndrome; IQGAP1 –IQ motif containing GTPase activating protein—is associated

with adherens junction and regulation of cytoskeleton, and is found 34 times at energy thresh-

old 32 in our SLE patient dataset; IFI16 –interferon gamma inducible protein number 16 –

found 9 times at energy threshold 32. IFI16 is often up-regulated in SLE patients and it is sug-

gested that it plays a key role in T-cell development. A low level of mRNA IFI16 expression has

been found in naïve CD8+ T-cells. However, CD8+ mature cells express a high level of IFI16

mRNA [48]. It has also been reported that IFN-induced expression may depend on race, and

the variation in coding regions of the polymorphs of the gene could account for differential

regulation among individuals [48]. This implies IFI16 may be a good target for treatment by

inhibition.

Many of the proteins and high-Gibbs energy nodes discussed above are commonly found

in our analysis. Consequently, we will not repeat these individual protein commentaries.

RPS10 (ribosomal protein S10) has a high Betti centrality in 15 SLE patients from our data-

base and at Gibbs energy threshold 32 is found in 277 of the 291 patients (Fig 4). RPS10 is

often dimethylated in SLE patients [49].

RPS18 (ribosomal protein S18) was found to have high Betti centrality in the Gibbs homol-

ogy networks for 6 SLE patients; and at energy threshold 32, it was found in 68 networks in the

291 SLE patients (Fig 5). Incidentally, RPS6 and RPS18 are both overexpressed in cancer [50].

In this connection it is worth mentioning that ribosomal proteins are known to control the

Fig 4. PPI network for patient number 277. RPS6 and three other proteins (RPS20, RPSA, RPL23A) have equivalent

high Betti centrality. The neighbors to these are the nodes in the circle.

https://doi.org/10.1371/journal.pone.0226883.g004
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expression and activity of key tumor suppressors including p53 [51] and a mutated in multiple

cancer predisposition disorders, which are known as ribosomopathies [52]. A Gibbs-homol-

ogy network graph showing both RPS10 and RPS18 as equivalent high Betti centralities is

shown in Fig 5. These two nodes have as nearest neighbors all the nodes in the ring. The sec-

ondary nodes are: ACTB, UBC, HNRNPA1, EEF1A1, and HSP90AA1. HNRNPA1 has a high

Betti centrality 7 times in our database and is present in 278 Gibbs homology networks at

threshold 32. According to KEGG it, like HNRNPK, is involved in splicesome. Further,

according to OMIM (omim.org) it contributes to Paget disease and amyotrophic lateral sclero-

sis. EEF1A1 (elongation factor 1 alpha promoter) is very commonly associated with prostate

cancer [53], among many other cancers. It is also associated with oncogenesis, apoptosis and

viral infections [54]. Of course it is not surprising to see HSP90AA1 in the energetic pathway.

Heat shock proteins are often over-expressed in stress situations ranging from simple lesions

to cancer. Its role in lupus is discussed in ref. [55].

In Fig 6 we see three, high Betti centrality nodes: RPL7, RPL7A and RPS19. All the proteins

in the ring are neighbors of these three. RPL7 (ribosomal protein L7) was found to have a high

Betti centrality in 10 patients and found to have high Gibbs energy 252 times in the database of

291 SLE patients. It is well- known that in SLE patients an autoimmune response to RPL7 is

related to T cell activity [56]. RPL7A has a high Betti centrality only once out of 291 SLE

patients. Furthermore, it has a high Gibbs energy (threshold 32) in 3 patients. RPS19 has a

high Betti centrality 3 times and a high Gibbs energy 37 times. Very little can be found in the

literature that describes RPS19 and SLE. According to OMIM it is associated with Diamond-

Blackfan anemia. The two secondary energy nodes in Fig 6 are RPS13 and RPS3A. Interest-

ingly, neither has a high Betti centrality in the database of 291 patients. But they have a high

Gibbs energy. RPS13 has a high Gibbs energy for 30 patients and RPS3A has a high Gibbs

energy for 278 patients. These both are clearly important nodes for deeper investigation either

as biomarkers or protein targets for inhibition.

Fig 5. Patient number 30, RPS10 and RPS18 are equivalent high Betti centrality. The nodes in the ring are nearest

neighbors to these two.

https://doi.org/10.1371/journal.pone.0226883.g005
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In Fig 7,RPL6 (ribosomal protein L6), and all those in the inner circle were found to

have a high equivalent Betti centrality. RPL6 was found to have a high Betti centrality in 11

patients and to have a high Gibbs energy 250 times in the dataset of 291 SLE patients. It was

also found in GeneCards as being important to SLE. The graph contains interferon-induc-

ible family gene number 16 (IFI16). It is associated with SLE [48]. IFI16 was found in Gene-

Cards as being important to SLE. We found it four times in our database of 291 patients. In

patient #265 (see Fig 8) it is a neighbor of two high Betti centrality nodes, APP (highlighted)

and RPL10 (not highlighted). It is also a neighbor of HUWE1 and HNRNPU. APP (Amy-

loid Precursor Protein) has a high Betti centrality. According to GeneCards it is not related

to SLE but is associated with Alzheimer’s disease. APP is found to have a high Gibbs energy

25 times in the database of 291 patients. Lastly, we point out that IQGAP1 is also in the

energetic pathway for this patient.

RPL5 (ribosomal protein L5) was found to have a high Betti centrality in 10 patients and to

have a high Gibbs energy in 21 times in the dataset of 291 SLE patients. Fig 8, patient number

49 is one of the patients with RPL5 as high Betti centrality. Very little research has been

reported on RPL5, RPL6 and RPL7, with respect to SLE. Given their prevalence in our dataset

(218, 250, 252 respectively), at energy threshold 32, it is reasonable to assume that these would

be good proteins for further research into SLE treatment and mechanisms.

Three other proteins that should be discussed because of their frequency in our Gibbs

energy analysis or because of their importance in SLE are: HSPA8, HSP90AA1 and ISG15. The

two heat shock proteins HSPA8, HSP90AA1 are associated with many inflammatory diseases

including rheumatoid arthritis, most cancers and SLE [32]. HSP90AA1 was found to have a

high Betti centrality 13 times in the dataset of 291 SLE patients and found to have a high Gibbs

energy (threshold 32) 278 times—almost every patient.

ISG15 interferon-stimulated gene 15, was found in GeneCards as being associated with

SLE. More specifically, ref. [57] found it to be more highly expressed relative to healthy

Fig 6. Patient number 124, all nodes in the circle have equivalent high Betti centrality. RPS19, RPL7 and RPL7A

have the highest Betti centrality in this graph.

https://doi.org/10.1371/journal.pone.0226883.g006
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Fig 8. Patient 49, RPL5, among others in the inner ring are equivalent targets. Outer ring are neighbors.

https://doi.org/10.1371/journal.pone.0226883.g008

Fig 7. Patient number 265, RPL6, among others in the inner circle are equivalent targets.

https://doi.org/10.1371/journal.pone.0226883.g007
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controls (p = 0.032) in patients with SLE who had lymphocytopenia prior to treatment. ISG15

is believed to up-regulate macrophage migration inhibitory factor [58]. Further, it has 187 pro-

tein neighbors in the version of BioGrid PPI we used. It was twice highly-expressed in our

dataset of 291 SLE patients, and was found to be highly expressed in four of the 492 rheuma-

toid arthritis patients.

Finally, we list ribosomal proteins and their functions that are all associated with immune

signaling response and were found to have high Betti centrality: RPL13A, GAIT complex for-

mation; RPS3, activation of NFkB; RPSA, target of tuberculosis drug PZA; RPS19, inhibition

of MIF, ERK and NFkB, also interacts with hantavirus; RPS6, stabilizes LANA; RPS25, pro-

motes virus production [35]. RPL13A is a negative regulator of inflammatory proteins, thus it

likely plays an important role in SLE. Additionally, there are also metabolomics aspects of SLE

that have been outside the scope of this study but should be the focus of a future investigation

into personalized therapies for this pathology [59].

Conclusions

This paper reports the results of a computational study analyzing protein-protein interaction

networks involved in Lupus, which is a unique auto-immune disease. SLE is a complex disease

with many manifestations. Some patients exhibiting one set of indications and another patient

exhibiting a different set. With regards to molecular network indications an interesting cross-

species study was done with Murine and Human Lupus Nephritis [60]. The authors discovered

20 commonly shared network nodes reflecting pathologic process and cite CDR1, CD14,

CCL5, CTSS, CXCL10, STAT1, CXCR5, IRF7, HCK, LYN, CFB, IFI11, GPNMB, ITGAM.

Several genes in this list are known to be associated with immune function. In particular,

ITAGM is well known to be associated with SLE. Another study [61], investigated transcrip-

tion network modules in search for new biomarkers for SLE. They discovered new biomarkers

indicative of disease progression. This paper was similar to [62], in as much as, it also discusses

new biomarkers signatures to SLE. In another study [63], of significance, the investigators con-

cluded that BAFF and interferon gens expression was high but gene signatures of these did not

change with disease activity. In general, they found, that plasma cell gene expression corre-

sponded to typical SLE serological markers.

In the present paper we analyzed patient-specific data publicly available through the GEO

database. We used a combination of systems biology (protein-protein interaction network

analysis via Betti number calculations) and statistical thermodynamics (via Gibbs homology

with energy threshold filtering) approaches to obtain information, which has statistical signifi-

cance. We found close to 300 proteins, which play substantial roles in the patient population

of approximately the same size. However, on closer inspection, most commonly implicated

proteins with major roles in the PPI networks belong to only a few special classes. The most

important class consists of ribosomal proteins and ribosomal-related proteins. Next, ubiquitin

and proteins belonging to the ubiquitination pathways have shown to Fig prominently in this

dataset. Finally, heat-shock proteins have been found to be importantly involved in these

pathologies. Some of the identified proteins should be considered for therapeutic inhibition as

they clearly appear to be biomarkers for Lupus. It appears that that SLE is related to ribosomal

stress and it is likely that epigenetic factors such as nutritional status and exposure to sunlight

may be associated aspects in this response. While speculative, the fact that the high incidence

of SLE among black African-American females may point to the involvement of mitochondrial

ribosomes. While this paper has not proposed specific therapeutic approaches to SLE, the dis-

cussed identification of the potential targets for inhibitions is, in out opinion, a major step in

this direction.
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