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Abstract 

Previous studies show that 3β-hydroxysterol-Δ24 reductase (DHCR24) has a remarked decline in the brain of AD 
patients. In brain cholesterol synthetic metabolism, DHCR24 is known as the heavily key synthetase in cholesterol 
synthesis. Moreover, mutations of DHCR24 gene result in inhibition of the enzymatic activity of DHCR24, causing brain 
cholesterol deficiency and desmosterol accumulation. Furthermore, in vitro studies also demonstrated that DHCR24 
knockdown lead to the inhibition of cholesterol synthesis, and the decrease of plasma membrane cholesterol and 
intracellular cholesterol level. Obviously, DHCR24 could play a crucial role in maintaining cholesterol homeostasis 
via the control of cholesterol synthesis. Over the past two decades, accumulating data suggests that DHCR24 activ-
ity is downregulated by major risk factors for AD, suggesting a potential link between DHCR24 downregulation and 
AD pathogenesis. Thus, the brain cholesterol loss seems to be induced by the major risk factors for AD, suggesting a 
possible causative link between brain cholesterol loss and AD. According to previous data and our study, we further 
found that the reduced cholesterol level in plasma membrane and intracellular compartments by the deficiency of 
DHCR24 activity obviously was involved in β-amyloid generation, tau hyperphosphorylation, apoptosis. Importantly, 
increasing evidences reveal that the brain cholesterol loss and lipid raft disorganization are obviously linked to neuro-
pathological impairments which are associated with AD pathogenesis. Therefore, based on previous data and research 
on DHCR24, we suppose that the brain cholesterol deficiency/loss might be involved in the pathogenesis of AD.

Keywords:  DHCR24, Cholesterol, Cholesterol deficiency, Pathogenesis, Hypothesis, Alzheimer’s disease

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
In 2000, Greeve et  al. first found that there is a signifi-
cant reduction in the expression of new gene in vulner-
able brain regions in Alzheimer’s disease (AD) patients, 
which was named selective Alzheimer’s disease indicator 
1 (Seladin-1), namely 24-dehydrocholesterol reductase 

(DHCR24) [45, 57]. In the post-lanosterol pathway of 
cholesterol synthesis, the final step in the Bloch pathway 
or the first step in the Kandutsch–Russell (K–R) pathway 
is catalyzed by the enzyme DHCR24 [132, 133]. Besides, 
as a link bridge between two pathways, DHCR24 can 
theoretically act on any intermediate from lanosterol 
through to desmosterol to transfer intermediates from 
the Bloch to the K–R pathway [30, 132]. Importantly, 
DHCR24 can also synergistically control the activity of 
7-dehydrocholesterol reductase (DHCR7), a final key 
enzyme in the K–R pathway, which would ensure con-
certed control of cholesterol synthesis [85, 132]. From a 
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physiological role, DHCR24 is universally regulated by 
sterols, dexamethasone, sex steroids, adrenocorticotropic 
hormone, thyroid hormone, Neurotrophins, and xenobi-
otics [22, 87, 112]. Furthermore, DHCR24 activity is also 
regulated by ubiquitination, phosphorylation, and epi-
genetic factors such as methylation and acetylation [64, 
87]. Collectively, accumulating evidences suggest that the 
modulation of DHCR24 activity could be a key node in 
the control of cholesterol synthesis. To sum up, above 
findings reveal that DHCR24 could play a crucial role in 
maintaining the cholesterol homeostasis via the control 
of cholesterol synthesis (Fig. 1).

Nevertheless, DHCR24 activity is also obviously down-
regulated by major risk factors from AD, such as aging, 
diabetes-related factors, amyloid-β (Aβ), oxidative stress, 
chronic inflammation, and genetic factors [11, 20, 42, 55, 
61, 63, 70, 107, 125, 135]. Thus, the above data suggest 
that downregulation of DHCR24 is obviously linked to 
the major risk factors from AD, suggesting a potential 
causative link between DHCR24 downregulation and 
major risk factors from AD. Moreover, a growing body of 
research has shown that deficiency of DHCR24 activity 

could induce lowering cholesterol level of neuronal cells 
and disruption of membrane lipid-raft structure and 
function, leading to the disregulation of cellular choles-
terol homeostasis, and abnormality of cell signaling [3, 
9, 24, 71, 122]. In addition, increasing evidences support 
that downregulation of DHCR24 could lead to Aβ pro-
duction, apoptosis of neuronal or glial cells, hyperphos-
phorylation of microtubule-associated protein tau (tau), 
inhibition of autopagy, and inflammation, which are 
tightly associated with AD and other degenerative dis-
eases [9, 24, 45, 71, 83, 95, 127, 155]. Therefore, previous 
studies strongly support that that the reduced cholesterol 
level in plasma membrane and/or intracellular compart-
ments by the deficiency of DHCR24 obviously contrib-
utes to neurodegeneration such as AD (Fig. 2).

In addition, a growing body of evidence reveals that 
there are abnormal alterations in brain cholesterol 
metabolism, including the decrease of de novo choles-
terol synthesis, and/or cholesterol trafficking (transpor-
tation, uptake, and intracellular transportation), and/or 
cholesterol catabolism, in aging human and mice, senes-
cent-accelerated mice strain 8 (SAMP8) mice, diabetic 

Fig. 1  The critical role of DHCR24 in cholesterol synthesis and homeostasis. In the post-lanosterol pathway of cholesterol synthesis, the final step 
in the Bloch pathway or the first step in the Kandutsch–Russell pathway is catalyzed by the enzyme DHCR24. Besides, as a link bridge between two 
pathways, DHCR24 can theoretically act on any intermediate from lanosterol through to desmosterol to transfer intermediates from the Bloch to the 
K–R pathway. Thus, DHCR24 play the critical role in maintaining cholesterol homeostasis via the control of cholesterol synthesis
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mice, familial Alzheimer’s disease (FAD) mice, genetic 
forms of AD animals and patients, and AD patients, sug-
gesting the brain cholesterol loss [15, 18, 54, 66, 72, 89, 
92, 107, 110, 111, 123, 129, 142, 146, 152]. The brain cho-
lesterol loss appears to be a pervasive, prominent and 
common feature in these different kinds of AD models 
and patients. To some extent, we found that these differ-
ent kinds of AD models and patients include major risk 
factors for AD, such as Aβ, genetic factors, aging, dia-
betes-related factors, chronic hypoxia, oxidative stress, 
chronic inflammation, and metabolic syndrome, etc. The 
brain cholesterol loss seems to be tightly associated with 
major risk factors from AD. Thus, we suppose that the 
brain cholesterol loss is likely to be induced by the major 
risk factors for AD, suggesting a possible causative link 
between brain cholesterol loss and AD (Fig. 3). Surpris-
ingly, accumulating data also reveal that the brain cho-
lesterol loss is very likely to occur in the initiation stage 
of AD pathology, suggesting a key role of brain choles-
terol loss in initial changes of AD pathogenesis [15, 18, 

28, 34, 35, 80, 92, 110, 111, 124, 141, 150]. Furthermore, 
the brain cholesterol deficiency seems to be an early and 
common driving factor in the onset and development of 
AD. And the brain cholesterol deficiency could be inti-
mately linked with the generation of β-amyloid, tauopa-
thy, synaptic loss, neuronal apoptosis and death, which 
are associated with the pathogenesis of AD [5, 9, 21, 
24, 45, 73–75, 93, 95, 115]. Based on previous data and 
research on DHCR24, we suppose that the brain choles-
terol deficiency/loss could trigger the onset and progres-
sion of AD.

The critical role of DHCR24 in cholesterol synthesis 
and homeostasis
The cholesterol synthesis pathway encompasses more 
than 20 enzymes and can be divided into the early sterol 
synthesis pathway and the post-lanosterol pathway [132, 
133]. In the post-lanosterol pathway, the pathway can 
take one of two intertwined routes, the Bloch and K–R 
pathway [132, 133], creating a long and complex road to 
cholesterol through various branch points. Theoretically 
speaking, DHCR24 might be a key synthetase heavily 
involved in cholesterol synthesis (Fig. 1).

Firstly, in the post-lanosterol pathway, lanosterol can 
be acted upon by Lanosterol 14-a-demethylase (LDM or 
CYP51A1) to enter the Bloch pathway [132, 133]. In the 
Bloch pathway, by reducing the double bond at carbon 
24 of the last cholesterol precursor, desmosterol, the final 
step in the Bloch pathway is catalyzed by the enzyme 
DHCR24 [30, 132, 157]. And lanosterol can be also acted 
upon by DHCR24 to enter the K–R pathway, so DHCR24 
can also control the gate of entry in the K–R pathway [30, 
132, 157]. Besides, DHCR24 can theoretically act on any 
intermediate from lanosterol through to desmosterol to 
transfer intermediates from the Bloch to the K–R path-
way, so it is also a link bridge between two pathways [30, 
132]. Furthermore, in post-squalene pathways, DHCR7 is 
another important cholesterol synthetase, which controls 
the final step of the K–R pathway [30, 85, 132]. A previ-
ous study reveals that when the DHCR24 gene is knocked 
down, DHCR7 activity is also ablated. Conversely, over-
expression of DHCR24 enhances DHCR7 activity [85]. 
So, DHCR7 activity obviously is controlled by DHCR24, 
which would ensure concerted control of cholesterol 
synthesis [85, 132]. Thus, DHCR24 obviously control the 
cholesterol synthesis in the post-lanosterol pathway.

In addition, mutations in DHCR24 enzyme, which 
converts desmosterol into cholesterol, leads to desmos-
terolosis, an autosomal recessive developmental disorder 
[3, 122, 128]. Defect in the enzyme DHCR24 causes sig-
nificant elevation of the cholesterol precursor desmos-
terol and cholesterol deficiency [3, 6, 122]. Moreover, in 
DHCR24 knockout (KO) mice the brain cholesterol lack 

Fig. 2  The contribution of DHCR24 to Alzheimer’s disease. The 
downregulation of DHCR24 could be induced by risk factors from 
FAD and SAD, including Aβ, aging, diabetes-related risk factors, 
chronic hypoxia, oxidative stress, chronic inflammation, insufficiency 
of brain neurotrophic substances, and metabolic syndrome, 
suggesting a causative link between DHCR24 downregulation and 
major risk factors from AD. Furthermore, DHCR24 downregulation 
lead to the inhibition of cholesterol synthesis and decrease 
of cholesterol level in the plasma membrane and intracellular 
organelles, resulting in cholesterol deficiency-induced pathological 
impairments, such as Aβ overproduction, tau hyperphosphorylation, 
apoptosis, synaptic impairment, and other pathological impairments, 
which are associated with neurodegenerative diseases such as AD. 
Thus, the downregulation of DHCR24 could contribute to Alzheimer’s 
disease and other neurodegenerative diseases
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with age, and brain cholesterol deficiency in 3-week-
old was associated with altered membrane composi-
tion including disrupted detergent-resistant membrane 
domain (DRM) structure [3, 71]. Similarly, in silencing 

DHCR24 cell model, it was found that cell desmosterol 
and 7-dehydrocholesterol (7-DHC) are significantly 
elevated, and cell cholesterol is greatly decreased [9, 24, 
127]. So, this genetic defect manifests that the defect of 

Fig. 3  A Revised Cholesterol Hypothesis of AD. There are abnormal alterations in brain cholesterol metabolism, including the decrease of de novo 
cholesterol synthesis, and/or cholesterol trafficking (transportation, uptake, and intracellular transportation), and/or cholesterol catabolism in 
aging humans and animals, SAMP8 mice, diabetic mice, FAD (5xFAD and APP/PS-1) animals, AD patients, genetic forms of AD animals and patients 
(ApoE4 allele, mutation of NPC1 or NPC2, polymorphism of ABC and LDL receptor family), suggesting the brain cholesterol insufficiency/loss. To 
some extent, we found that these different kinds of AD models and patients include major risk factors for AD, such as Aβ, genetic factors, aging, 
diabetes-related risk factors, chronic hypoxia, oxidative stress, chronic inflammation, and metabolic syndrome, etc. Thus, the brain cholesterol 
loss seems to be induced by the major risk factors for AD in these different kinds of AD models and patients, suggesting a possible causative link 
between brain cholesterol loss and AD. Importantly, the brain cholesterol loss might lead to the membrane lipid raft disorganization and decrease 
of intracellular compartments, resulting in the pathological impairments which are associated with AD pathogenesis. Therefore, based on previous 
data and research on DHCR24, we suppose that the brain cholesterol deficiency/loss might be involved in the onset and progression of AD
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DHCR24 enzyme activity leads to cholesterol deficiency, 
suggesting the critical role of DHCR24 in maintaining 
cholesterol synthesis and homeostasis.

Furthermore, the posttranslational phosphoryla-
tion modification of DHCR24 has been identified by 
cell kinase signals, which is a major mode of regulating 
cholesterol homeostasis [86, 87]. Moreover, data have 
identified particular putative phosphorylated sites on 
DHCR24, such as T110, Y299, Y321, and Y507 [87]. In 
addition, protein kinase C (PKC) ablated DHCR24 activ-
ity by inhibiting a major serine/threonine kinase [87]. 
Thus, modulating DHCR24 activity by phosphorylation 
would allow for a rapid means of regulating cholesterol 
synthesis. In addition to phosphorylation modification, 
a lot of evidences supported that DHCR24 could be 
ubiquitinated, and 11 ubiquitination sites are identified, 
suggesting that DHCR24 activity may be regulated by 
ubiquitin-proteasomal degradation [64, 87]. To sum up, 
these studies indicate two important regulatory mecha-
nisms for DHCR24 activity by cell kinase signals-medi-
ated phosphorylation and by ubiquitin-proteasomal 
degradation.

As mentioned above, accumulating evidence indicates 
that DHCR24 play the critical role in maintaining choles-
terol homeostasis via the control of cholesterol synthesis 
(Fig.  1). According to the above data, we conclude that 
the modulation of DHCR24 activity could be a key node 
in the control of cholesterol synthesis and homeostasis.

A causative link between DHCR24 downregulation 
and risk factors from AD
Amyloid‑β proteins
In the amyloid cascade theory, amyloid-β protein (Aβ) is 
regarded as a key risk substance, which is tightly related 
to FAD and partly to sporadic AD (SAD) [8, 29]. In 
Neuro-2A cells, to be combined exposure of amyloid-β 
peptide 1–40 (Aβ40) or amyloid-β fragment 25–35 
(Aβ25–35), the expressions of seladin-1 genes were sig-
nificantly down-regulated [135]. Moreover, in  vitro C6 
astrocytic cell lines, we also confirmed that Aβ40 or 
Aβ25–35 could markedly induce the downregulation 
expressions of seladin-1 [14]. Additionally, Najem et  al. 
also found amyloid-β peptide 1–42 (Aβ42) could induce 
the downregulation of DHCR24 and inhibited cholesterol 
synthesis pathway in SH-SY5Y cells [102]. Thus, above 
findings suggest that the downregulation of DHCR24 
expression could be induced by β-amyloid proteins.

In AD patients, it has been reported that DHCR24 
transcription and protein expression were selectively 
down-regulated in the brain areas affected in Alzhei-
mer’s disease, but the reasons for this decrease are not 
known [45, 57]. In APPswe/PS1deltaE9 (APP/PS1) AD 
mice, Vanmierlo et al. found that reduced expression of 

DHCR24 gene in both cortex and cerebellum as aging 
[57, 151].

Besides, in APP/PS1 mice, the decreased cholesterol 
level and increased phospholipids/cholesterol ratio might 
lead to the disruption of lipid raft homeostasis, which 
has been considered to contribute to cellular deregula-
tion, resulting in neuronal loss in AD [35]. Further analy-
sis found that the change of lipid raft alteration occurred 
in the early stage of AD pathology in APP/PS1 mice [35]. 
Noticeably, in 5xFAD and APP/PS1 mice brain, why is 
there the inhibition of cholesterol biosynthesis at the very 
early stage of AD? Park et al. found that Aβ production 
might directly correlate with cholesterol biosynthesis 
inhibition [110]. Furthermore, some early studies show 
that Aβ40/42 inhibits cholesterol synthesis and reduced 
cellular cholesterol levels in neuronal or glial cells by 
inhibiting the main cholesterol biosynthesis enzymes 
[14, 43, 46, 102, 135]. Intriguingly, in FAD mice, the ini-
tial increase in the production of Aβ is mutations-based 
and occurs relatively early, Aβ overload might induce the 
downregulation of cholesterol synthetic genes, result-
ing in the brain cholesterol loss, which could also occur 
in the initial stage of FAD. Does overproduction of beta-
amyloid also trigger a cholesterol loss cascade leading 
to neurodegeneration in the early stage of FAD? In fact, 
APP transgenic mice exhibited lower levels of cellular 
cholesterol in their brains, and conversely, APP knock-
out mice exhibited higher levels of cellular cholesterol in 
their brains, suggesting that Aβ mediated regulation of 
cellular cholesterol synthesis [148]. Collectively, above 
data suggest that Aβ overproduction is likely to be a risk 
factor for cholesterol biosynthesis. Taken together, accu-
mulating data support that β-amyloid proteins could lead 
to the downregulation of cholesterol synthetic genes, 
including DHCR24.

Diabetes and diabetes‑related risk factors
Studies demonstrate that Diabetes mellitus (DM) 
enhances the risk for Alzheimer’s disease [8, 13]. Moreo-
ver, diabetes-related risk factors, such as hyperglycemia, 
insulin insufficiency, and insulin resistance have been 
proposed to contribute to AD pathogenesis [13, 50, 145]. 
Kazkayasi et  al. confirmed that constant lack of insulin 
for 5 days decreased DHCR24 levels in rat primary cul-
tured neurons [61]. In addition, the intermittent high 
glucose concentrations also reduced the expression of 
DHCR24 in the human fetal neuroepithelial cells [42]. 
Besides, a decrease in DHCR24 was also found in the 
brains of rodents with streptozotocine (STZ)-induced 
diabetes [55, 61, 142]. Furthermore, in diabetic mice 
model, insulin as a regulator of DHCR24, the lack of 
insulin can downregulate the expression of all cholesterol 
synthetase, including sterol regulatory element-binding 
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protein 2 (SREBP2), DHCR24 [61, 102, 142]. To sum up, 
all the above evidence indicates that the DM-related risk 
factors can induce the downregulation of DHCR24.

Insufficiency of neurosteroid and other neurotrophic 
factors
Basic and clinical evidence suggests that neurosteroid 
such as estrogens and androgen, and neurotrophic fac-
tors such as insulin-like growth factors (IGFs) and neu-
rotrophins, have protective effects in the brain [17, 112]. 
Nevertheless, their potential role against neurodegenera-
tive diseases, in particular Alzheimer’s disease, is still a 
matter of debate. Accumulating data demonstrated that 
neurosteroid could induce the expression of DHCR24, 
as well as the synthesis of cell cholesterol, in neurons 
and astrocytes [14, 17, 112, 160]. Similarity, thyroid hor-
mones (TH) play an important role in the development 
of human brain, by upregulating the expression of spe-
cific DHCR24 genes in neuronal precursors [10]. Moreo-
ver, it has been found that IGF1 and nerve growth factor 
(NGF) induced upregulation of DHCR24 expression, and 
conversely, the inhibition of IGF signaling downregulated 
the expression of DHCR24 [22, 42]. On the contrary, 
dexamethasone could obviously decrease the expression 
of genes involved in cholesterol synthesis genes, such as 
squalene epoxidase (SQLE) and DHCR24 [58]. Besides, 
with aging, there is a progressive, age-dependent decline 
in the level of many important neurotrophic factors, such 
as estrogen, androgen, insulin, NGF and IGFs, in the 
brain of aged rodents and AD patients [19, 22, 112]. Thus, 
evidences suggest that the downregulation of DHCR24 
induced by the depletion of neurosteroids and neuro-
trophic factors in the brain might play a pivotal patho-
logical role in neurodegenerative diseases. In brief, these 
studies suggest that insufficiency of brain neurotrophic 
substances might lead to the decrease of DHCR24 
expression in the brain, which is involved in maintaining 
cholesterol synthesis and homeostasis.

Chronic hypoxia, oxidative stress and inflammation
Increasing data underscore the importance of chronic 
oxidative stress and inflammation in the pathogen-
esis of neurodegenerative diseases, including AD [23, 
97, 136]. Kuehnle et  al. show that DHCR24 expres-
sion is up-regulated in an acute response; conversely, 
upon chronic exposure to oxidative stress, the level 
of DHCR24 expression was lowered in SH-SY5Y cells 
[70, 125]. Moreover, in the hypoxia rat model, chronic 
hypoxia significantly induced the decrease of DHCR24 
expression in the hippocampus [88]. In addition, Khuda 
et  al. found that LPS-Induced inflammation obviously 
reduced the DHCR24 expression [63]. Collectively, 

under the pathological condition, chronic hypoxia, oxi-
dative stress and inflammatory response could nega-
tively modulate DHCR24 expression.

Aging and metabolic syndrome
Aging, obesity and metabolic syndrome is a cluster of 
risk factors that participate in the development of neu-
rodegenerative diseases such as AD [12, 76, 139]. Inter-
estingly, a study on bariatric surgery was performed in 
order to investigate whole blood gene expression pro-
files in obese subjects that have obvious overweight, 
BMI abnormality, and insulin resistance problems, 
including some metabolic syndrome risk factors, the 
study showed that expression of DHCR24 was sig-
nificantly decreased [11]. Additionally, all enzyme 
genes in the cholesterol synthesis pathway are signifi-
cantly downregulated in the aging mice brain, such as 
hydroxy-3-methylglutaryl-CoA reductase (HMGCR), 
SQLE, 7-dehydrocholesterol reductase (DHCR7), and 
DHCR24, compared to the adult mice [11, 106, 107]. 
Thus, the above dada support that aging and metabolic 
syndrome-related risk factors could obviously down-
regulate the expression of DHCR24.

Epigenetic factors
Cumulating Evidences suggest that epigenetic factors 
that are involved in Late-Onset Alzheimer’s Disease 
(LOAD), such as methylation and acetylation, also obvi-
ously regulate DHCR24 expression and activity [26, 88]. 
Regarding epigenetic modifications, the up-to-date epi-
genomic findings include reported modifications in the 
LOAD core pathology loci DHCR24 [88]. Another epi-
genome-wide association study on obesity-related traits 
found that the novel DNA methylations were located 
on the DHCR24 [26, 31]. Thus, epigenetic modification 
could regulate DHCR24 gene expression which contrib-
utes to Late-Onset Alzheimer’s Disease.

As stated above, increasing evidence reveals that the 
downregulation of DHCR24 could be induced by a lot 
of risk factors from AD, including Aβ, aging, diabetes-
related factors, hypoxia, oxidative stress, chronic inflam-
mation, insufficiency of brain neurotrophic substances, 
and metabolic syndrome, etc. Intriguingly, above data 
obviously suggests a causative link between DHCR24 
downregulation and major risk factors from AD (Fig. 2). 
Therefore, we propose that the downregulation of 
DHCR24 might be an early and common regulatory 
pathway in the pathogenesis of FAD and SAD, which may 
be tightly associated with dysregulation of cholesterol 
homeostasis.
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DHCR24 downregulation and pathological 
impairments related to AD
DHCR24 downregulation and Aβ metabolism
In recent years, in silencing DHCR24 SH-SY5Y cells, 
Sarajärvi et al. confirm that the reduced DHCR24 expres-
sion results in enhanced Golgi-localized gamma-ear-
containing ARF binding protein 3 (GGA3) depletion, to 
further lead to augmented post-translational stabilization 
of beta-site amyloid precursor protein cleaving enzyme 
1 (BACE1) and increased beta-amyloidogenic process-
ing of amyloid precursor protein (APP) and Aβ produc-
tion [127]. In addition, DHCR24-deficient mice brains 
had reduced levels of cholesterol and disorganized cho-
lesterol-rich membrane lipid raft, leading to membrane-
dependent plasmin inactivation and the displacement of 
β-secretase (BACE1) from membrane lipid-raft to APP-
containing membrane fractions, to increased β-cleavage 
of APP and high levels of Aβ production [24, 71]. Thus, 
the above findings suggest that DHCR24 knockdown 
promotes the cleavage of APP and production of Aβ 
through the decrease of cholesterol levels and the reor-
ganization of lipid raft. Altogether, these data suggest 
that the decrease of neuronal membrane cholesterol or 
intracellular cholesterol might contribute to excessive Aβ 
production.

DHCR24 downregulation and tauopathy
Interestingly, in APP/PS1 transgenic animals, it is found 
that that the downregulation of seladin-1 expression in 
vulnerable AD brain areas is paralleled by an increase in 
the amount of hyperhosphorylated microtubule-associ-
ated protein tau (tau) [57]. Thus, Iivonen et  al. suppose 
that the downregulation of DHCR24 expression might 
be associated with hyperphosphorylated tau in AD. Fur-
thermore, in our study, after silencing DHCR24 by len-
tivirus-mediated DHCR24 short hairpin RNA (shRNA) 
in SH-SY5Y cells, we found silencing DHCR24 could 
markedly induce hyperphosphorylation of tau at some 
specific sites, including Thr181, Ser199, Thr231, Ser262, 
Ser396, and Ser422 [9, 119]. Besides, we further found 
that DHCR24 knockdown lead to the decrease of plasma 
membrane cholesterol and disruption of lipid raft/cave-
olae, resulting in inhibition of lipid raft-dependent phos-
phoinositide 3-kinase (PI3-K)/ protein kinase B (Akt) 
signaling, Protein phosphatase 2A (PP2A) signaling, as 
well as the overactivation of glycogen synthase kinases-
3beta (GSK3β) and mammalian target of rapamycin 
(mTOR) signaling [9, 103, 119]. Similarly, defects in the 
cholesterol trafficking are associated with enhanced gen-
eration of hyperphosphorylated Tau and Amyloid-β pro-
tein [131]. Moreover, previous studies confirm that these 
sites are tightly correlated with a possible toxic effect of 

phosphorylated tau, which is involved in AD and other 
tauopathies [2, 4, 104]. Overall, these data suggest that 
cholesterol loss by DHCR24 knockdown could play a 
crucial role in tau hyperphosphorylation.

DHCR24 downregulation and synaptopathy
Desmosterolosis is caused by mutations in DHCR24, lead 
to the elevated desmosterol levels and decreased level of 
cholesterol in the patient’s brain, resulting in multiple 
congenital anomalies including white matter atrophy and 
synaptic abnormality [3, 71, 122, 159]. Furthermore, in 
a mouse model of desmosterolosis, DHCR24-KO mice 
brains showed complex changes in expression of lipid 
and sterol transcripts and synaptic plasticity transcripts, 
and the decrease of membrane cholesterol and disrup-
tion of membrane lipid raft and increased arborization 
synapse [3, 24, 71, 122]. On the contrary, the overexpres-
sion of DHCR24 significantly increased the total number 
of dendritic spines and the mushroom spines in mature 
mouse hippocampal neurons, facilitating synapse forma-
tion [95]. Very importantly, a body of evidences support 
that cholesterol reduction can trigger dysfunction of syn-
aptic structure and function, and possible mechanisms 
by which cholesterol content in the plasma membrane 
influences synaptic processes [69, 78, 114]. Therefore, the 
cholesterol loss by DHCR24 downregulation may impair 
synapse formation, maturation, and function.

DHCR24 downregulation and apoptosis
AD is characterized by severe neuronal and/or glial cells 
loss; however, the mechanisms by which neurons or glial 
cells die remain elusive [20, 105]. A line of studies has 
shown that over-expression of DHCR24 protected the 
cells from apoptotic cell death by amyloid-β-mediated 
toxicity or other stresses, and low-expression of DHCR24 
obviously induced an apoptosis upon exposure to differ-
ent stress conditions [45, 70, 82–84, 95, 127, 155]. Thus, 
these findings support that cholesterol deficiency by 
DHCR24 knockdown leads to a cell apoptosis under dif-
ferent pathological or stress conditions.

DHCR24 downregulation and other pathological injuries
In our study, we found that DHCR24 knockdown could 
obviously induce the inhibition of autophagy [9]. In addition 
to Aβ pathology, tauopathy, synaptopathy, and apoptosis, 
thus, we suppose that cholesterol loss by DHCR24 knock-
down also might be involved in other pathological injuries 
which are related to AD, such as autophagy, mitochondrial 
injuries, inflammation, neurosteroid synthesis, and other 
metabolic abnormalities. Certainly, further study is still to 
be performed in order to elucidate to complex relationship 
between DHCR24 and pathological impairments.
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In conclusion, based on current knowledge about 
DHCR24, accumulating data support that there is an 
obvious link between DHCR24 downregulation and 
major risk factors from FAD and SAD (Fig. 1). Further-
more, compelling evidences support the deficiency of 
DHCR24 activity lead to the inhibition of cholesterol 
synthesis and decrease of cholesterol level in the plasma 
membrane and intracellular organelles, coupled with dis-
ruption of membrane lipid raft, resulting in cholesterol 
deficiency-induced pathological impairments [9, 45, 70, 
82–84, 95, 112, 113, 127, 155]. Thus, accumulating evi-
dences strongly reveal that cholesterol loss by DHCR24 
downregulation could lead to Aβ overproduction, tau 
hyperphosphorylation, and other pathological impair-
ments which are associated with neurodegenerative 
diseases such as AD (Fig.  2). Regretfully, because des-
mosterolosis by DHCR24 mutation is a lethal disorder, 
the mice model lacking one or both alleles of DHCR24 
gene is still lack [3]. So, we still need to further investi-
gate the role of DHCR24 in AD pathogenesis in in vitro 
or in vivo model systems.

Alteration of cholesterol metabolism in different 
kinds of AD models and patients
Alteration of cholesterol metabolism in aging humans 
and rodents, SAMP8 mice, and diabetic mice
Age-related brain aging is regarded as a major risk fac-
tor in the initiation and progression of Alzheimer’s dis-
ease [98, 106, 130]. Compared to the adult mice, all 
enzyme genes in the cholesterol synthesis pathway are 
significantly downregulated in the aging brain, such as 
HMGCR, SQLE, DHCR7, and DHCR24, suggesting 
decreased de novo cholesterol biosynthesis in the aging 
brain [15, 106, 107]. On the contrary, genes involved in 
cholesterol-transporting proteins such as Apolipoprotein 
E (ApoE), are obviously upregulated, suggesting a com-
pensatory response due to the decrease of cholesterol 
synthesis and decreased cholesterol level in the aging 
brain [15, 107]. Moreover, aging shows an age-depend-
ent decrease of cholesterol level, and is accompanied 
by the decrease of synaptic cholesterol levels in the hip-
pocampus [138]. This is consistent with the cholesterol 
loss observed in the cortex of aged rodents and humans 
[91, 92, 137, 138, 143]. However, others have found that 
although cholesterol synthesis is decreased in the hip-
pocampus, the total brain cholesterol content remains 
stable [138, 146]. Thus, the reduction of cholesterol in 
the brain could present regional specificity during aging. 
Similarly, in SAMP8, it has been found that the hip-
pocampus of SAMP8 mice presents reduced cholesterol 
levels at 6 months of age [111]. Further, although choles-
terol levels did not differ in 2-month-old mice, a signifi-
cant 35% decrease was observed in hippocampal extracts 

from 6-month-old SAMP8 mice [111]. The extent of the 
change was similar to that observed in the hippocam-
pus of aged mice compared with young wild-type mice 
[91, 92, 138]. Pérez-Cañamás et  al. confirm that choles-
terol loss in the hippocampus of SAMP8 mice is an aging 
hallmark directly involved in cognitive decline. Overall, 
above data supports that these aging-related risk factors 
could induce the decrease of brain cholesterol synthesis 
and cholesterol level.

In recent years, it is confirmed that there is a signifi-
cant reduction in expression of SREBP-2, and its down-
stream cholesterol synthesis genes in the diabetic mice 
brain, leading to a reduction in brain cholesterol syn-
thesis in type 1 and type 2 diabetic mice [72, 91, 92, 124, 
138]. Moreover, altered insulin signaling also modulates 
the expression of molecules involved in cholesterol bio-
synthesis, resulting in inhibition of brain cholesterol syn-
thesis and decreased level of free cholesterol in diabetic 
mice brain [68, 72, 142]. And the lowering-expression 
of cholesterol synthesis genes is due, at least in part, to 
diabetes-related risk factors, such as insulin-deficiency, 
insulin resistance, lower or high glucose [72, 91, 92, 124, 
138]. Thus, inhibition of brain cholesterol synthesis and 
cholesterol insufficiency could be induced by diabetes 
and diabetes-related risk factors.

Alteration of cholesterol metabolism in 5xFAD and APP/
PS‑1 mice
In a recent study, Ye and colleagues found that in  vitro 
cultured primary astrocytes stimulated with Aβ exhibited 
higher expression of ABC transporters that is involved 
in cholesterol efflux. Unsurprisingly, detection of this 
sterol revealed that the intracellular cholesterol level 
was significantly reduced in astrocytes [156]. The same 
expression pattern of ABC transporters was also found in 
5xFAD mice, an AD mice model with early onset of Aβ 
pathology [156]. Park et  al. confirmed that the majority 
of genes involved in cholesterol biosynthesis are obvi-
ously dysregulated in 5xFAD mice, suggesting the inhibi-
tion of the cholesterol biosynthesis genes and decrease of 
cholesterol biosynthesis in mice brain [110, 156]. Simi-
larly, the main cholesterol synthetic genes were mark-
edly downregulated in AD astrocytes of APP/PS1 [106, 
107]. Conversely, further analysis found that main genes 
which mediate cholesterol transportation were signifi-
cantly upregulated, such as apoE, ATP binding cassette 
A1 (ABCA1), low-density lipoprotein receptor (LDLR), 
and sterol O-acyltransferase 1 (SOAT1) in the APP/PS1 
and 5xFAD mice brain, suggesting an increasing ability of 
cholesterol trafficking in order to compensate for choles-
terol loss by decreasing cholesterol synthesis [107, 110, 
156]. What’s more, Park et al. also found that cholesterol 
synthetic genes were downregulated in FAD mice brain 
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as a consequence of the chronically stimuli, such as Aβ, 
which is consistent with the previous studies [14, 43, 46, 
102, 107, 110, 135, 148, 156]. Therefore, above data sug-
gest that Aβ could lead to the inhibition of the cholesterol 
synthesis and the decrease of brain cholesterol in FAD 
mice brain.

Alteration of cholesterol metabolism in AD patients
Intriguingly, many evidences suggest that de novo syn-
thesis of cholesterol in the brain decline in AD patients 
[68, 117, 123, 129, 146]. In addition, compared with non-
demented controls, the cerebrospinal fluid (CSF) levels 
of cholesterol and its precursors (lanosterol, lathosterol 
and desmosterol) are lower in the brain of AD patients, 
suggesting that cholesterol de novo synthesis within the 
brain of AD patients might be reduced [68]. And choles-
terol synthesis is decreased in the hippocampus, while 
absolute cholesterol content remains at a stable level in 
the AD, suggesting a brain region-specific decrease of 
cholesterol synthesis [92, 123, 146]. Furthermore, in AD, 
the level of cholesterol is reduced in the hippocampus, 
lipid raft fraction in the whole brain, and white matter, 
coupled with membrane lipid structure perturbation; 
the brain cholesterol deficit/loss play a major role in 
the disruption of AD membrane lipid structure [1, 96, 
101]. Consequently, above data suggest that the human 
AD brain could have decreased cholesterol levels, and a 
region-dependence of cholesterol synthesis is influenced 
[123, 129, 146]

Intriguingly, in a new study, Varma et  al. found that 
the majority of genes (14/15) within the de novo choles-
terol biosynthesis pathway, including 3 in pre-squalene 
and 12 in post-squalene, showed significantly lower gene 
expression in the entorhinal cortex and hippocampus of 
AD patients compared to the non AD control, and no 
alterations were detected in the visual cortex, suggesting 
a regional-specific reduction of cholesterol biosynthesis 
[152]. Very importantly, these alterations of differential 
and region-specific genes expression in the entorhinal 
cortex and hippocampus appears to provide insights into 
cholesterol homeostasis dysregulation in AD pathogen-
esis, which might be tightly related to the initiation and 
progression of AD [62, 152]. Notably, Varma et al. found 
that gene expression alterations identified in AD brain 
were not observed in PD brain, suggesting that these 
changes may be specific to AD. Thus, the author sup-
poses that the decrease of brain cholesterol synthesis 
likely reflects fundamental features of AD pathogenesis 
[152].

In addition, it is striking that gene expression of 
cytochrome P450 46A1 (CYP46A1), is also significantly 
lowered in the entorhinal cortex and hippocampus in 
AD. Inactivation of CYP46A1 has been shown to lower 

cholesterol efflux from the brain, leading to a compen-
satory response due to the decrease in de novo choles-
terol biosynthesis [152]. Furthermore, Varma et  al. also 
show that the principal cholesterol precursor lanosterol 
and catabolic product 24S-hydroxycholesterol (24-OHC) 
is lower in AD, suggesting that both de novo choles-
terol biosynthesis and catabolism are impaired by the 
disease [152]. Interestingly, a growing bulk of evidence 
reveals that CYP46A1 expression and its catabolic prod-
uct 24-OHC content significantly decreased in late AD 
compared to control and early AD brains [41]. How-
ever, a few studies suggest that the increase of Cyp46A1 
activity might be partly responsible for cholesterol loss 
in aged and AD brain [138]. Collectively, the decrease 
of CYP46A1 expression in AD brains is likely to be due 
to the compensatory response to brain cholesterol loss, 
or a selective loss of neurons expressing the enzyme 
CYP46A1 during AD development [41, 152]. Therefore, 
increasing evidence suggest that there is a decrease of 
the cholesterol biosynthesis and/or decrease of choles-
terol catabolism, resulting in brain cholesterol loss in AD 
brain.

Alteration of cholesterol trafficking in animals/patients 
with genetic forms of AD
The apoE4 allele is the dominant genetic risk factor 
for late-onset AD, and apoE4 has great influence in Aβ 
aggregation and clearance, tau pathogenesis, neuroin-
flammation, synaptic dysfunction, and neuronal loss [56, 
89, 147]. However, the association between apoE4 and 
AD pathogenesis remains ambiguous. Though much of 
the research has focused on the ability of the apoE4 to 
increase the aggregation and decrease the clearance of 
Aβ, a lot of evidences show that apoE4 obviously impacts 
cholesterol transport and homeostasis in the brain 
[39, 89]. ApoE isoforms exert a central role in control-
ling the transport of brain lipid, including cholesterol, 
and maintaining cholesterol homeostasis in the brain 
[89]. Moreover, the accelerated degradation of apoE4 by 
astrocytes and neurons, resulting in decreased apoE4 
levels in the brain [39, 89, 147]. In apoE4 mice, with the 
reduced secretion of apoE4 by astrocytes, Astrocytes 
secreted 34% less cholesterol than those from wild-type 
mice, the amounts of total cholesterol were significantly 
decreased compared with the wild-type littermates [48, 
158]. ApoE4-expressing cultured astrocytes and neurons 
have reduced cholesterol and phospholipid secretion, 
decreased affinity for lipids, and increased intracellular 
degradation [56, 89]. In addition, in cultured neurons, 
cholesterol uptake is lower when the lipid is bound to 
apoE4 compared to apoE2 and apoE3 [56, 121]. ApoE4 
is less efficient than other forms in promoting choles-
terol efflux from both neurons and astrocytes [100]. 
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Importantly, low membrane cholesterol was observed 
in hippocampal membranes of apoE4 AD cases [74]. To 
sum up, the structural differences among different apoE 
isoforms may account for the alterations in cholesterol 
trafficking. Therefore, above findings support that apoE4 
markedly lead to the decrease of brain cholesterol levels 
in the apoE4 mice and patients, which may be involved in 
AD pathogenesis.

Interestingly, another direct association between cell 
cholesterol loss in the brain and neurodegeneration has 
been clearly demonstrated in Niemann–Pick C disease 
(NPC) [93, 150]. Niemann–Pick C disease is an autoso-
mal recessive disorder caused by mutations in the NPC1 
or NPC2 genes, which present clinical and neuropatho-
logical signs of Alzheimer’s disease dementia [93, 150]. 
Besides, at the histological level, NPC-deficient brains 
present with amyloid-β deposition, neurofibrillary tan-
gles, neuroinflammation, neuroaxonal dystrophy, and 
loss of neurons [93, 150]. NPC1 and NPC2 each bind to 
cholesterol and act in tandem in late endosomes and/or 
lysosomes to mediate the egress of unesterified choles-
terol derived from endocytosed lipoproteins [116, 120, 
150]. Thus, in NPC1- or NPC2-deficient cells, includ-
ing neurons and glial cells, unesterified cholesterol and 
other lipids become sequestered in late endosomes and/
or lysosomes [60, 93]. Accordingly, in addition to late 
endosomes and/or lysosomes, the amount of choles-
terol in the plasma membrane, endoplasmic reticulum 
and axons is reduced in Npc1−/− or Npc2−/− neurons, 
suggesting cholesterol deficiency in the brain of Nie-
mann–Pick C disease [60, 79, 93]. Particularly, NPC and 
AD share some similar molecular pathological features, 
including abnormal cholesterol metabolism, and involve-
ment of amyloid-β and tau pathology [67, 93]. Obviously, 
further studies of similarities between AD and NPC may 
be useful to increase the understanding of AD pathogen-
esis. Taking together, the neurological deficits in NPC 
disease might be attributable to a deficiency, rather than 
an excess, of cholesterol in plasma membrane and intra-
cellular organelles, which might be associated with AD 
pathogenesis [93, 150].

In addition to apoE and NPC, other genes involved in 
the transportation of cholesterol have been suggested as 
putative risk factors for AD [18, 65]. ATP-binding cas-
sette transporters (ABC) are essential component for 
mediating lipid transport in brain, especially in the for-
mation of apoE-containing lipoproteins [18, 65, 144]. 
Neuron and glia specific ABCA1 deficiency leads to 
poor lipidation of apoE, and significant decrease of cho-
lesterol level, decrease of apoE level in brain, leading to 
the pathological injuries that are tightly associated with 
degenerative diseases neurodegenerative diseases [18, 
54]. Intriguingly, many lipoprotein receptors of LDL 

receptor family have been identified in brain including 
LDLR, Low density lipoprotein receptor-related protein 
1 (LRP1), very low-density lipoprotein (VLDL)-receptor, 
Apolipoprotein E receptor 2 (apoER2/LRP8), and the 
sortilin-related receptor 1 (SORL1/LP11) [18, 51]. Con-
ditional deletion of lipoprotein receptors genes in mouse 
brain significantly decreases apoE and cholesterol level, 
resulting in related-AD neuropathological damages [51, 
80, 118]. Collectively, genetic defects in the genes of ABC 
transporters and lipoprotein receptors of LDL receptor 
family are related to decrease of brain cholesterol trans-
port and uptake, resulting in decreased brain cholesterol 
level. Based on the above data, we found that genetic 
defects in cholesterol trafficking (transport and uptake) 
also obviously lead to decreased brain cholesterol level 
which might be involved in neurodegenerative diseases, 
such as AD.

Summary: brain cholesterol deficiency and AD
As stated above, a growing body of research has revealed 
that there is abnormal brain cholesterol metabolism in 
the brain in aging human and animals, SAMP8 mice, 
diabetic mice, FAD (5xFAD and APP/PS-1) animals, 
AD patients, genetic forms of AD animals and patients 
(ApoE4 allele, mutation of NPC1 or NPC2, polymor-
phism or mutations of ABC transporter and LDL recep-
tor family). Furthermore, we found that dysregulation 
of cholesterol metabolism may be involved in choles-
terol synthesis, trafficking and catabolism, including: 1) 
the decrease of de novo cholesterol synthesis; 2) and/
or the decrease of cholesterol trafficking (transporta-
tion, uptake, and intracellular transportation); 3) and/
or the decrease of cholesterol catabolism, suggesting the 
brain cholesterol loss in these different kinds of AD ani-
mals and patients (Fig. 3). Interestingly, we found that the 
brain cholesterol deficiency appears to be a pervasive and 
prominent pathological feature in these different kinds of 
AD models and patients (Table 1). Therefore, above data 
strongly suggest a new idea that there may be the brain 
cholesterol insufficiency or loss in the brain of AD mod-
els and patients.

Widen the view on AD: brain cholesterol level 
and AD
Over the last decades, increasing biochemical and molec-
ular biological evidences reveal that altered cholesterol 
metabolism appears to play fundamental roles in amyloid 
plaque formation, tau hyperphosphorylation, synaptic 
loss, and apoptosis, suggesting a key role of cholesterol 
in the initiation and progression of AD [1, 5, 21, 74, 75, 
91, 93, 115]. However, the role of cholesterol for neuro-
degeneration such as AD, remains still controversial [1, 5, 
81, 93, 115, 154].



Page 11 of 17Bai et al. Acta Neuropathologica Communications           (2022) 10:35 	

High plasma cholesterol level and AD
Early epidemiological studies suggest that increased 
level of plasma cholesterol is a risk factor for the devel-
opment of AD [77, 140, 149]. Several studies show that 
lipophilic statins (brain-permeant statin) which can cross 
the blood–brain barrier, present a reduced incidence of 
AD [7, 37, 38, 59]. However, randomized double-blind 
placebo-controlled studies have shown no beneficial 
effect of statins on the progression of symptoms in sub-
jects with AD [126, 134]. On the contrary, the lipophilic 

statins induce high amyloid production and senile plaque 
deposition in mice brain [74, 109]. And recent stud-
ies show that lipophilic statins could increase the risk of 
developing dementia, coupled with the decrease of brain 
cholesterol level, suggesting brain cholesterol loss have 
the increasing risk of dementia [47, 108]. Because the 
blood–brain barrier prevents entry of cholesterol-rich 
lipoproteins, all cholesterol in the brain is made locally. 
Thus, causal correlations between high blood cholesterol 
and AD are controversial.

Table 1  Defects of cholesterol metabolism in AD patients and AD models

− Expression of specific gene is downregulated, + expression of specific gene is upregulated

Defects of cholesterol metabolism Molecular changes Evidence References

Cholesterol synthesis DHCR24/Seladin-1 (−) Aβtreatment (C6, SH-SY5Y, N2A cells) [14, 102, 135]

chronic oxidative stress (SH-SY5Y cells) [70]

High glucose treatment (neuroepithelial cells, neurons) [42, 61]

insulin deprivation (neurons) [61]

diabetic rat (hippocampus, cerebral cortex) [55, 61]

Astrocyte-Ribotag mice and APP/PS1mice (Aged astrocytes) [15, 106]

AD patients (temporal lobe, hippocampus) [45, 57, 152]

APP/PS1 mice (cerebellum, hippocampus, cortex,) [57, 151]

Chronic hypoxia (hippocampus) [88]

HMGCR (−) Astrocyte-Ribotag mice and APP/PS1mice (Aged astrocytes) [15, 106]

Diabetic rat/mouse (cerebral coretex, hypothalamus) [124, 142]

AD patients (hippocampus) [152]

SQLE (−) Astrocyte-Ribotag mice and APP/PS1mice (Aged astrocytes) [15, 106]

Diabetic mice (hypothalamus) [142]

DHCR7 (−) Astrocyte-Ribotag mice and APP/PS1mice (Aged astrocytes) [15, 106]

diabetic mice (hypothalamus) [142]

SREBF2 (−) Aged cortical astrocytes [107]

Diabetic rat/mouse (cerebral cortex, hypothalamus) [124, 142]

Cholesterol trafficking APOE (+) Astrocyte-Ribotag mice (Aged astrocytes) [15]

APOE4 knock-in mice [48]

5xFAD mice [110]

Diabetic rat (cerebral cortex) [124]

APP/PS1 mice (hippocampus) [151]

ABC transporters (ABCA1/
G1/C1)(+)

Diabetic rat (cerebral cortex) [124]

5xFAD mice [110, 156]

APP/PS1 mice [151]

NPC (−) NPC-deficient cells [60, 79]

LDLR (−) LRP1-deficient neurons/LRP1 knock-out mice [80]

Diabetic rat (cerebral cortex) [124]

Cholesterol catabolism CYP46A1 (−) AD patients (entorhinal cortex) [152]

Cholesterol deficiency (uncategorized) AD patients (lipid rafts from frontal cortices and entorhinal 
cortex, temporal cortex)

[34, 101]

Aged mice (lipid rafts from neocortex) [35]

APP/PS1 mice (lipid rafts from neocortex) [35]

AD patients (CSF, temporal gyrus, white matter) [68, 96, 123]

Aged human (frontal and temporal cortices) [137, 143]

APOE mice (primary astrocyte) [158]
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High brain cholesterol level and AD
Early-study shows that brain cholesterol is high in the 
brains of patients with AD [25]. However, many studies 
suggest that cholesterol levels don’t differ in hippocampal 
region and the cerebral cortex tissue of AD patients com-
pared with control subjects [32, 52]. Further, there are 
inconsistent outcomes in brain cholesterol levels of AD 
patients, but the variability of cholesterol level amongst 
the studies might obviously pertain to brain tissue sam-
ple selection, tissue preparation and assay methods [153]. 
Consequently, there is no enough evidence to prove that 
high brain cholesterol level contributes to AD.

Low brain cholesterol level and AD
Based on the data in the part 5, increasing evidences 
support that there may be obvious cholesterol loss in 
the brain of different kinds of AD animals and patients. 
Intriguingly, we found that the different kinds of AD 
models and patients included the major risk factors for 
AD, such as Aβ, aging, diabetes and diabetes-related fac-
tors, oxidative stress, chronic inflammation, and genetic 
risk factors, metabolic syndrome, etc. (Fig.  3). Further-
more, the brain cholesterol loss seems to be tightly asso-
ciated with major risk factors from the different kinds of 
AD model animals and patients. Thus, we suppose that 
the brain cholesterol loss seems to be induced by the 
major risk factors for AD in the different kinds of AD 
models and patients. Thus, accumulating evidences sug-
gest that there may be a direct link between brain choles-
terol loss and major risk factors for AD.

Although there are conflicting reports on the role 
of cholesterol in AD, it is not difficult to envision how 
reduced neuronal cholesterol levels can lead to the neu-
ropathological impairments which are associated with 
AD, resulting in the brain dysfunction [16, 27, 33, 40, 
49, 53]. Very importantly, increasing evidences reveal 
that the neuronal cholesterol deficit/loss could induce 
the disruption of membrane lipid rafts and/or intracel-
lular organelles, and eventually leads to the formation of 
pathological impairments, which are obviously linked to 
the pathological changes which are associated with the 
pathogenesis of AD and other neurodegenerative dis-
eases [1, 5, 9, 16, 21, 24, 27, 33, 36, 40, 44, 74, 75, 91, 93, 
99, 115, 119]. Taking together, compelling evidences sug-
gest that the brain cholesterol deficiency could contrib-
ute to AD pathogenesis.

Conclusion and future perspective
In this paper, we try to provide a current state of 
research on the role of DHCR24 in the pathogenesis 
of Alzheimer’s disease. Importantly, based on previous 
studies and our research on DHCR24, the decreased cho-
lesterol level by DHCR24 knockdown could contribute 

to neurodegenerative diseases such as AD, thus, these 
findings suggest that augmentation of DHCR24 in the 
affected brain areas might provide a potential therapeutic 
approach to intervene in AD and other neurodegenera-
tive diseases. As a key node in the control of cholesterol 
synthesis and homeostasis, targeting DHCR24, careful 
modulation of brain cholesterol metabolism may provide 
an alternative or complementary interventional approach 
in order to test whether modulating brain neuronal cho-
lesterol metabolism is a viable strategy for preventing AD.

With the continuously growing body of knowledge in this 
field, a body of studies has pinpointed that brain cholesterol 
deficiency is very likely to be an early and common driving 
factor in the onset and development of AD, and seems to be 
intimately linked with the generation of amyloid plaques, 
tauopathy, synaptic injuries, neuronal loss, which are cen-
tral to the pathogenesis of AD. To sum up, based on pre-
vious data and research on DHCR24, we suppose that the 
brain cholesterol deficiency/loss could trigger the onset and 
progression of AD (Fig. 3). In addition, although there are 
many acceptable hypotheses, such as amyloid-β, tau, and 
inflammatory hypotheses, the pathogenetic mechanism of 
Alzheimer’s disease is still elusive. Furthermore, uncovering 
the key causative alterations of AD can be valuable in devel-
oping models for AD treatment. In order to gain a better 
understanding of cholesterol’s role in AD pathogenesis, we 
hope that this new proposal will stimulate further experi-
mental research in this direction that allows the testing of 
our hypothesis. In the review, we only chose some topics 
for in depth discussions. Unfortunately, a lot of important 
research topics were left with little or with no discussion. 
Certainly, in order to gain a more comprehensive recogni-
tion of cholesterol’s role in AD pathogenesis, we still need 
to investigate more the role of cholesterol metabolism in 
AD patient and animal brains, including the brain choles-
terol amount, specific regional changes, as well as the dis-
tribution of cholesterol within neurons such as lipid rafts or 
intracellular organelles.
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