
NeuroImage: Clinical 29 (2021) 102534

2213-1582/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Disentangling the effects of age and mild traumatic brain injury on brain 
network connectivity: A resting state fMRI study 
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A B S T R A C T   

Introduction: Cognitive complaints are common shortly after mild traumatic brain injury (mTBI) but may persist 
up to years. Age-related cognitive decline can worsen these symptoms. However, effects of age on mTBI sequelae 
have scarcely been investigated. 
Methods: Fifty-four mTBI patients (median age: 35 years, range 19–64 years, 67% male) and twenty age- and sex- 
matched healthy controls were studied using resting state functional magnetic resonance imaging in the sub- 
acute phase. Independent component analysis was used to identify intrinsic connectivity networks (ICNs). A 
multivariate approach was adopted to evaluate the effects of age and group on the ICNs in terms of (static) 
functional network connectivity (FNC), intensities of spatial maps (SMs) and time-course spectral power (TC). 
Results: We observed significant age-related changes for a) FNC: changes between 10 pairs of ICNs, mostly 
involving the default mode (DM) and/or the cognitive-control (CC) domains; b) SMs: intensity decrease in 
clusters across three domains and intensity increase in clusters across two domains, including the CC but not the 
DM and c) TC: spectral power decrease within the 0–0.15 Hz range and increase within the 0.20–0.25 Hz range 
for increasing age within networks located in frontal areas, including the anterior DM. Groups only differed for 
TC within the 0.065–0.10 Hz range in the cerebellar ICN and no age × group interaction effect was found. 
Conclusions: We showed robust effects of age on connectivity between and within ICNs that are associated with 
cognitive functioning. Differences between mTBI patients and controls were only found for activity in the 
cerebellar network, increasingly recognized to participate in cognition. Our results suggest that to allow for 
capturing the true effects related to mTBI and its effects on cognitive functioning, age should be included as a 
covariate in mTBI studies, in addition to age-matching groups.   

1. Introduction 

Traumatic brain injury (TBI) is one of the most important causes of 
morbidity and mortality in adults (Carroll et al., 2014). Mild TBI (mTBI) 
accounts for 85% of the cases (Levin and Diaz-Arrastia, 2015). Cognitive 
and/or emotional complaints are common within the first weeks after 
mild traumatic brain injury (mTBI) and may persist for months to years 
in a subgroup (≈20%) (Levin and Diaz-Arrastia, 2015). Age-related 
cognitive decline can worsen these symptoms (Moretti et al., 2012). 
Although older age has been identified as an independent predictor of 
worse outcome after mTBI (Jacobs et al., 2010), few studies have 
investigated the effects of age on mTBI sequelae and the mechanism 
underlying this apparently interactive phenomenon remains unknown 
(McDonald et al., 2012; Thompson et al., 2006). 

One way to capture brain mechanisms underlying changes in 

behavior is to study brain networks that subserve functions such as 
vision, cognition or movement control. Since it has been identified that 
brain networks exhibit consistent patterns across healthy participants, 
there has been growing interest in functional magnetic resonance im-
aging (fMRI) analyses that explore brain networks in the search for 
biomarkers of diseases. Several studies have reported that brain con-
nectivity changes with age (see Ferreira and Busatto, (2013) and Sala- 
Llonch et al. (2015) for reviews) and evidence has accumulated that 
there are alterations in the connectivity of brain networks after mTBI 
(see Mayer et al. (2015); Puig et al. (2020); Sharp et al. (2014) for re-
views). In this study, we hypothesize that age affects the brain func-
tioning and that its effect on brain connectivity can be disentangled from 
the effect of mTBI itself. 

Brain networks can be analyzed at different levels. In this functional 
MRI (fMRI) study we investigate large-scale intrinsic connectivity 
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networks (ICNs) as their interactions are relevant for high-level cogni-
tive function (Seeley et al., 2007). ICNs are composed of clusters of 
voxels (Smith et al., 2013) that show temporally correlated blood oxy-
gen level dependent (BOLD) responses and they can be grouped into 
functional domains according to their functional and anatomical roles 
(Allen et al., 2014; Du et al., 2020). Independent component analysis 
(ICA) is a data-driven approach that can be used to identify components 
that correspond to ICNs based on fMRI data. Based on identified ICNs, 
subsequent between-network functional connectivity analyses can pro-
vide information on how brain areas interact with each other based on 
pairwise correlation analysis of the temporal BOLD signal (time course) 
of ICNs. Within-network connectivity analyses can provide information 
about the network’s integrity by analyzing changes in the intensity of 
spatial maps and on the time course spectra of ICNs. 

A number of ICNs and their respective domains are widely recog-
nized, where the default mode network (DMN) is one of the most studied 
ICNs. The DMN is highly active when an individual is at rest as opposed 
to being engaged in a task. The DMN has two main cores: the anterior 
DMN, based in the ventral medial prefrontal cortex (vmPFC) and the 
posterior DMN, based in the posterior cingulate cortex (PCC), precuneus 
and the lateral parietal cortex (Raichle, 2015; Uddin et al., 2009). Ac-
cording to the literature, the vmPFC acts as a mediator in the interplay 
between emotional processing and cognitive functioning (Broyd et al., 
2009; Gusnard et al., 2001) and both vmPFC and PCC are associated 
with introspective, self-referential processes (Gusnard et al., 2001). Fox 
et al. (2005) demonstrated that the activation in a set of ICNs that 
typically increases their activation when a person is engaged in a task 
(“task-positive network”) is anticorrelated to activation in ICNs of the 
DMN and that this anticorrelation pattern is preserved at rest. Since this 
apparent intrinsic organization of the brain has been identified, where 
the DMN plays a central role, investigating alterations in ICN patterns 
that occur with healthy aging or disease and how they relate to changes 
in behavior or cognitive performance emerged as a research topic of 
high interest (Broyd et al., 2009). For that reason, several studies on the 
mTBI population investigated altered connectivity patterns both be-
tween and within the DMN and other ICNs using ICA (Zhou et al., 2012) 
or other techniques such as seed-based analysis (Iraji et al., 2015) in 
search for insight into the underlying mechanisms of mTBI-related 
sequelae. Although the DMN (domain) is of particular interest, we will 
analyze its central role in whole brain connectivity in an exploratory 
fashion instead of pre-selecting areas of interest. The ICNs of the DMN 
have been consistently identified in resting state studies and, therefore, 
we expect that they will be among the ICNs revealed by fMRI data 
analysis. Thus, we will firstly identify ICNs using a data-driven approach 
and then we will group them according to the functional domains they 
belong to. The results will be discussed with a particular focus on the 
DMN. 

Here, we use group independent component analysis (GICA; Calhoun 
et al., 2001) to identify the ICNs in a group of mTBI patients and healthy 
controls (HCs) and we use group information guided independent 
component analysis (GIG-ICA; Du and Fan, 2013) for the back- 
reconstruction of subject specific ICNs. GICA is one of the data-driven 
techniques that can be used to identify the components of brain net-
works (that are associated with functional aspects of the brain) and it has 
been widely used to make group inferences based on fMRI data. GIG-ICA 
achieves high reliability in back-reconstruction of subject specific ICNs 
(Du et al., 2017). Following this parcellation-approach, we assess 
changes in two aspects of FC: a) (static) between-network functional 
network connectivity (FNC) (Jafri et al., 2008) and b) within-network 
connectivity evaluated in terms of two complimentary measures: in-
tensities of spatial maps activation (SMs) and power spectra of ICN time 
courses (TCs). 

In summary, to get a better understanding of the neurological pro-
cesses involved in the early recovery stages after mTBI and their possible 
interactions with aging, we aim to investigate age- and mTBI-related 
alterations in functional connectivity between and within the ICNs 

identified in our sample population. Together, changes in these two 
variables will allow to better understand the mechanisms behind 
cognitive complaints after mTBI. 

2. Methods 

2.1. Study participants 

We studied fifty-four patients (median age: 35 years (IQR: 23–52), 
range 19–64 years, 36 male) with mTBI and 20 healthy participants 
(median age: 30 years old (IQR: 26–49), range 18–61 years, 14 male), 
whose data were obtained as part of a larger prospective multicentre 
follow-up study (UPFRONT study; van der Horn et al., 2016a, 2016b; 
Van Der Horn et al., 2017; van der Naalt et al., 2017). This sample cohort 
has been analyzed in previous studies (van der Horn et al., 2016a, 
2016b; Van Der Horn et al., 2017). Patients were included at the Uni-
versity Medical Center Groningen, the Netherlands (a level 1 trauma 
center) between March 2013 and February 2015. The diagnosis of mTBI 
was based on a Glasgow Coma Scale score of 13–15 and/or loss of 
consciousness ≤30 min and/or post-traumatic amnesia up to 24 h (Vos 
et al., 2012). Healthy controls (HCs) were recruited via social contacts 
and advertisements. The HCs did not have any history of TBI or other 
neurological or psychiatric diseases and did not suffer from current 
psychiatric or neurological conditions. MTBI patients and HCs were 
group matched for age and sex (Van Der Horn et al., 2017). 

The UPFRONT study was approved by the local Medical Ethics 
Committee of the UMCG; written informed consent was obtained from 
all participants. All procedures were performed according to the decla-
ration of Helsinki. 

2.2. Patient subgroups 

A 21-item post-traumatic questionnaire (de Koning et al., 2016), 
derived from the Rivermead Post-concussion Symptoms Questionnaire 
(RPQ; King et al., 1995), was administered to the patients two weeks 
after the injury. The interval between the questionnaire’s administration 
(two weeks after injury) and the fMRI acquisition (four weeks after 
injury) is mainly related to the time required for planning for the fMRI 
scan. As previously described (van der Horn et al., 2016a, 2016b), the 
presence of post traumatic complaints (PTCs) was defined by self- 
reporting at least three complaints (regardless of severity). Conse-
quently, two subgroups of patients were defined for presence (PTC- 
present) or absence (PTC-absent) of PTCs. 

2.3. fMRI acquisition 

A 3.0T Philips Intera MRI scanner (Philips Medical Systems, Best, 
The Netherlands) equipped with a 32-channel SENSE head coil was used 
for image acquisition. A high-resolution transversal T1-weighted 
sequence image was made for anatomical reference (repetition time 
[TR] 9 ms, echo-time [TE] 3.5 ms, flip angle 8◦, field of view [FOV] 256 
× 232 × 170 mm, reconstructed voxel size 1 × 1 × 1 mm). For resting- 
state imaging, T2*-weighted echo planar imaging volumes were ac-
quired with slices aligned in the anterior commissure (AC)-posterior 
commissure (PC) plane and recorded in descending order (TR 2000  ms, 
TE 20 ms, FOV 224 × 224 × 136.5 mm, reconstructed voxel size 3.5 ×
3.5 × 3.5 mm). 

The patients’ fMRI resting state data were acquired at approximately 
four weeks (median: 33 days, range: 22–69 days) post-injury. All par-
ticipants (both patients and controls) were instructed to close their eyes 
and to stay awake (duration: 10 min, 300 volumes). 

2.4. fMRI preprocessing 

Statistical Parametric Mapping (SPM12 Wellcome Department Uni-
versity College London, London, England) implemented in Matlab 
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(version R2017b; MathWorks, Natick, MA) was used. The preprocessing 
followed the same pipeline previously used (Van Der Horn et al., 2017), 
which consisted of slice timing correction, image realignment to the first 
functional image, co-registration of functional images with individual 
participants’ T1-weighted images, normalization using a diffeomorphic 
nonlinear registration tool (DARTEL) (isotropic voxels of 3x3x3mm) to 
the Montreal Neurological Institute [MNI] template and smoothing (8 
mm full-width at half maximum [FWHM] Gaussian kernel). The first five 
volumes out of a total of 300 volumes from each participant were 
excluded from the analysis to ensure T1 equilibrium. 

2.5. Group independent component analysis 

The Group ICA fMRI Toolbox (GIFT1; version 4.0b) was used to 
perform group-level spatial component analysis (Calhoun et al., 2001). 
The preprocessed fMRI data from 74 participants were decomposed into 
independent components (ICs) using group-information guided inde-
pendent component analysis (GIG-ICA) (Du and Fan, 2013). The number 
of ICs (Nc) was estimated using the minimum description length (MDL) 
criteria (Li et al., 2007). Subject-specific data reduction using two-step 
principal component analysis (PCA) first reduced the data to 100 prin-
cipal components followed by group data reduction retaining Nc ICs. The 
Infomax ICA algorithm (Bell and Sejnowski, 1995) was repeated 20 
times using the built-in ICASSO2 tool, which is used to estimate the 
stability and quality of the ICs. Additional parameters for ICASSO were 
bootstrapping with randomized initial condition, minimum cluster size 
of 16 components (0.8*20 ICA repetitions) and maximum cluster size of 
20 components (same value as the number of ICA repetitions) (Himberg 
et al., 2004). The quality of components was quantified as the quality 
index (Iq; range 0–1) and the minimum Iq for inclusion of the component 
in the analysis was set at 0.9. The Nc ICs from the best performing run 
were used as templates for subject-specific back-reconstruction using 
GIG-ICA (Du et al., 2014; Du and Fan, 2013). We identified the ICs 
considered to be ICNs, as opposed to physiological artefacts, by visually 
inspecting their aggregate spatial maps and their average power spectra. 
The identification of the ICNs was done by authors MBV and HJvdH 
independently. In accordance with previously published literature, the 
classification of components as ICNs was based on the following criteria: 
a) exhibiting peak activations primarily in gray matter, b) low spatial 
overlap with known vascular, ventricular motion and susceptibility ar-
tefacts and c) time courses dominated by low frequency fluctuations 
(Cordes et al., 2000). Differences were discussed until consensus was 
reached. 

2.6. Connectivity assessment 

For the set of C selected ICNs, we assessed three different but com-
plimentary aspects of functional connectivity: (static) functional 
network connectivity (FNC; Jafri et al., 2008), related to the connec-
tivity between networks; intensity of spatial maps activations (SMs), 
related to the degree of coactivation within a network; and power 
spectra of the ICN time course (TC), related to the level of coherent 
activity within a network (Allen et al., 2011). All measures of connec-
tivity were calculated using the MANCOVAN toolbox3 (Allen et al., 
2011) that is implemented in GIFT. We included sex and motion 
correction for head movement in the scanner as nuisance covariates. To 
reduce excessive statistical testing and the chance of spurious findings, 
we followed a multivariate approach (Allen et al., 2011). 

FNC was estimated as the Pearson’s correlation of pairs of TCs (Allen 
et al., 2011; Jafri et al., 2008). Subject-specific TCs were detrended and 

despiked using 3dDespike4, then filtered using a fifth-order Butterworth 
low-pass filter with a high-frequency cut-off of 0.15 Hz. The variance 
associated with the motion parameter covariates was regressed out. For 
FNC statistical analysis, correlations were transformed to z-scores using 
Fisher’s transformation: z = atanh(FNC), as implemented in the MAN-
COVAN toolbox (Allen et al., 2011). 

The ICN SMs were thresholded based on voxelwise t-statistics to limit 
the statistical analysis to voxels with strong and consisted activation 
across participants, as explained in (Allen et al., 2011). The threshold for 
voxel selection was set at t > μ + 4σ.GIG-ICA automatically generates Z- 
scored ICs (Du and Fan, 2013). 

Spectra were estimated for the detrended subject-specific TCs using 
the multi-taper approach as implemented in Chronux5, with the time- 
bandwidth product set to 3 and the number of tapers set to 5 (Mitra 
and Bokil, 2009). For all spectral analyses, spectra were log-transformed 
to normalize the highly skewed power distribution. For each of the N 
subjects, we thus have C power spectra with b = 257 elements (fre-
quency bins) each for the frequency range 0–0.25 Hz. 

2.7. Statistical analysis 

For testing differences between (sub)groups in log(age) and sex, we 
used independent T-tests and Chi-Square tests, respectively. Age was 
first log-transformed to normalize its slightly skewed distribution. For 
testing differences between (sub)groups in sex, education level and in-
terval between injury and fMRI scan, we used Chi-Square tests. 

The design matrix included three covariates of interest: group as a 
categorical variable (mTBI patient or HC), age as a continuous variable 
and the interaction term group by age. In addition, we included two 
nuisance covariates: sex as a categorical variable (male or female) and 
average framewise displacement (FD; in mm) (Power et al., 2012) as a 
continuous variable representing head motion in the scanner. Sex was 
included because previous studies with HCs found small effects for sex 
on the outcome measures (Allen et al., 2011). FD was first log- 
transformed to normalize its slightly skewed distribution. 

A second model was built to investigate differences between the 
subgroups PTC-present and PTC-absent and to include the interval be-
tween the accident and the scan (in days) as well as the GCS score as 
nuisance covariates. The second model was built because these two 
covariates are not applicable for HCs. The design matrix of the second 
model and its respective results can be found in the Supplementary 
Material (Sections A and D). 

We used a multivariate model selection strategy based on multivar-
iate analysis of covariance (MANCOVA) as implemented in the MAN-
COVAN toolbox. The purpose of this procedure is to assess to what 
extent each covariate explains the variance in each of the functional 
connectivity measures for selection of important covariates before per-
forming the univariate tests. The MANCOVAN implementation tests the 
explained variance of each predictor for the multivariate response and 
performs backward selection of the model terms using a stepwise se-
lection method using the mSTEPWISE algorithm. For more details on the 
MANCOVAN implementation, please refer to (Allen et al., 2011) and to 
Supplementary Material (Section B). 

Univariate t-tests on SMs, TC power spectra and FNC were corrected 
for multiple comparisons at an α = 0.05 significance level using false 
discovery rate (FDR; Genovese et al., 2002) correction. 

For FNC results, in case of main effects for age, we calculated the 
Pearson correlation coefficients (rAGE) to measure the strength of the 
linear relationship between age and FNC using the “corr” function 
implemented in Matlab. The results were visualized using scatter plots. 

For SM results, in case of main effects for age, z-scores were averaged 
over the total number of voxels (Nv) with significant effects of the same 

1 http://mialab.mrn.org  
2 http://www.cis.hut.fi/projects/ica/icasso.  
3 http://www.mathworks.com/matlabcentral/fileexchange/27014-mancova 

n. 

4 http://afni.nimh.nih.gov/afni.  
5 http://chronux.org. 
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sign (positive or negative). We calculated the Pearson correlation co-
efficients (rAGE) to measure the strength of the linear relationship be-
tween age and (average) z-score using the “corr” function implemented 
in Matlab. The results were visualized using scatter plots. 

For TC power spectra results, in case of main effects for age, log 
(power) was averaged over the total number of frequency bins (Nb) with 
effects of the same sign (positive or negative). We calculated the Pearson 
correlation coefficients (rAGE) to measure the strength of the linear 
relationship between age and (average) TC power spectra using the 
“corr” function implemented in Matlab. The results were visualized 
using scatter plots. Additionally, we calculated the average TC power 
spectra (of the affected ICNs) for the younger and the older participants 
based on median split. In case of main effects for group, we calculated 
the average TC power spectra (of the affected ICNs) per group (mTBI and 
HCs) and subgroup (PTC-present and PTC-absent). 

3. Results 

The summary of participant characteristics per group of participants 
is presented in Table 1. Independent samples T-tests did not indicate any 
significant differences for log(age). Chi-square tests did not indicate 
significant differences for sex nor for education level between groups. 

The summary of mTBI patients’ characteristics per subgroup is pre-
sented in Table 2. The PTC-present subgroup contained more females 
than the PTC-absent subgroup (χ2 = 7.78, p < 0.01). Independent 
samples T-tests did not indicate any significant differences for log(age). 
Chi-square tests did not indicate significant differences for education 
level nor for interval between injury and fMRI scan between groups. 

3.1. Group independent component analysis and ICNs 

The estimation using MDL criteria resulted in Nc = 30 ICs. The final 
quality index (Iq) of all ICs was above 0.95, according to ICASSO tool 
estimation. Of the Nc ICs extracted, we identified C = 18 ICNs that could 
be grouped into seven functional domains. The SMs of the 18 ICNs are 
shown in Fig. 1. The final set included four ICNs for the Default-Mode 
Network domain (DM), seven for the cognitive-control domain (CC), 
three for the visual domain (VIS), two for the sensorimotor domain 
(SMO), one for the auditory domain (AUD), and one for the cerebellar 
domain (CB). 

3.2. Multivariate results 

Fig. 2 illustrates the results from the multivariate tests representing 
the significance of the model terms age, group, group × age, sex and FD 
in predicting the outcome variables SMs, TC power spectra and FNC for 
the 18 identified ICNs. Age was retained as a significant predictor for all 

of the three connectivity measures. Sex was retained as significant 
predictor for SMs of several ICNs and for TC spectra of a few ICNs, 
supporting its incorporation as a nuisance covariate for measures of 
connectivity within networks. Group was found to be a weak significant 
predictor for the SMs and TC spectra of a few ICNs, but not for the FNC 
correlation matrix. The interaction group × age was found to be a weak 
significant predictor only for the SM of one ICN. FD was retained for 
several ICNs when predicting TC spectra and for some ICNs when pre-
dicting SMs, suggesting residual motion artefacts on ICN TCs. 

3.3. Univariate results 

Lastly, we aimed to identify which ICN pairs in the FNC correlation 
matrix are associated with age; which ICN regions (voxels) are associ-
ated with age, group and/or group × age and for which ICN spectral bins 
of the TC spectra power is associated with age and group. Therefore, 
univariate tests were performed on the covariates of interest for the 
terms that were retained in the backward selection step. 

3.3.1. FNC 
Fig. 3 illustrates the effects of age on FNC between ICNs. 
The matrix in Fig. 3A presents the FNC correlation between pairs of 

ICNs, averaged across all participants. To facilitate the visualization of 
results, we highlighted the 10 ICN pairs for which significant effects for 
log(Age) on FNC were found with black squares or rectangles. These 
significant results are depicted in Fig. 3B, where the FNC matrix displays 
the significance and sign (positive or negative) of the effects of age for 
each pairwise correlation. From a total of 10 ICN pairs, we chose one 
example of the most extreme positive and negative linear relationship 
between FNC and log(age) to depict in scatterplots (Figs. 3C, D). 

The first scatterplot (Fig. 3C) shows an example of a positive linear 
relationship between log(age) and FNC for the pair ICN23 (anterior DM) 
and ICN19 (SMO). The correlation coefficient (rAGE = 0.55, p < 0.0001) 
indicates moderate explained variance. 

The second scatterplot (Fig. 3D) shows an example of a negative 
linear relationship between log(age) and FNC for the pair ICN17 (VIS) 
and ICN13 (CB). The correlation coefficient (rAGE = − 0.43, p < 0.001) 
also indicates moderate explained variance. 

The scatterplots with the results from the remaining eight ICN pairs 
are given in in the Supplementary Material (Section C1, Fig. S1). 

In total, we found 10 ICN pairs for which FNC was significantly 
correlated to log(age). Nine out of the 10 pairs involved one ICN from 
the DM (more specifically ICN23 or ICN5) or from the CC (more spe-
cifically ICN16, ICN18 or ICN27). 

3.3.2. Spatial map intensities 
The effects of age on SM intensities are shown in Fig. 4. The z-scores 

Table 1 
– Participant characteristics per group.   

HC 
(N = 20) 

mTBI patients 
(N = 54)  

Median Range Median Range 

Age (years) 30 (27–48) 18–61 35 (23–51) 19–64 
Education levela 6 (5–7) 5–7 6 (5–6) 2–7 
Interval injury to scan (days) – – 33 (28–42) 22–69 
Sex N % N % 

Male 14 70 36 67 
Female 6 30 18 33 

GCS – – N % 
15 – – 29 54 
14 – – 18 33 
13 – – 7 13  

a Education level was based on a Dutch classification system, according to 
Verhage (1964), ranging from 1 to 7 (highest). Abbreviations: GCS = Glasgow 
Coma Score. 

Table 2 
mTBI patient characteristics per subgroup.   

mTBI PTC-present 
(N = 34) 

mTBI PTC-absent 
(N = 20)  

Median Range Median Range 

Age (years) 35 (23–50) 19–63 34 (23–57) 20–64 
Education levela 6 (5–7) (4–7) 6 (5–6) (2–7) 
Interval injury to scan (days) 33 (29–42) 22–62 33 (25–41) 22–69 
Sex N % N % 

Male 18 53 18 90 
Female 16 47 2 10 

GCS N % N % 
15 15 44 14 70 
14 15 44 3 15 
13 4 12 3 15  

a Education level was based on a Dutch classification system, according to 
Verhage (1964), ranging from 1 to 7 (highest). Abbreviations: GCS = Glasgow 
Coma Score. 
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for which the univariate test statistics exceeded the FDR threshold 
(Fig. 4A) were averaged over voxels of the same sign (positive or 
negative). The number of voxels (Vl) corresponds to the total number of 
voxels that contributed to the averaging of the displayed data. 

Increases in SM intensities with age were found only in a two ICNs 
and the largest clusters were found in ICN15 (CC; Vl = 55; rAGE = 0.62, p 
< 0.0001). 

Decreases in SM intensities with age were found in five ICNs across 
three domains, specifically ICNs 15, 16 and 22 (CC), ICN12 (VIS) and 
ICN2 (SMO). The largest clusters were found in ICN12 (VIS; Vl = 32; 
rAGE = 0.68, p < 0.0001). 

3.3.3. Timecourse spectra 
For low frequencies, below 0.15 Hz, TC power decreased 

significantly with age, for ICNs 5, 15 and 23 (p < 0.05, FDR-corrected). 
For these same ICNs, TC power increased significantly with age for 
higher frequencies, above 0.15 Hz (p < 0.05, FDR-corrected). These 
results are illustrated in Fig. 5A. 

The power values where the univariate test statistics exceeded the 
FDR threshold (Fig. 5A) were averaged over frequency bins of the same 
sign (positive or negative). The number of frequency bins (Nb) corre-
sponds to the total number of bins that contributed to the averaging of 
the displayed data. The scatterplots (Fig. 5B) show the results for ICN23 
(anterior DM), where we found a negative linear correlation between log 
(age) and average log(power) for low frequencies (rAGE = − 0.58, p <
0.0001) and a positive linear correlation between log(age) and average 
log(power) for high frequencies (rAGE = 0.47, p < 0.0001). The scat-
terplots with the results from ICN5 and ICN15 can be found in the 

Fig. 1. Spatial maps of the 18 intrinsic connectivity networks identified as belonging to functional domains, thresholded at z-score > 1.  

Fig. 2. Results from the multivariate tests showing the significance of the covariates of interest and nuisance predictors for intensity of spatial maps, TC power 
spectra and FNC. Gray squares represent model terms that were not retained in the backward selection process (α = 0.05). 
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Supplementary Material (Section C2, Fig. S2). 
The average TC power spectra (for the ICNs 5, 15 and 23) for younger 

and older participants are presented in Fig. 5C. 
For low frequencies, within the 0.065–0.10 Hz range, TC power was 

significantly lower for mTBI patients in comparison to HC for ICN13 (CB; 
p < 0.05, FDR-corrected), suggesting abnormal deactivation in the 
cerebellum after mTBI. These results are illustrated in Fig. 6A and B. 
Additionally, the average TC spectra for ICN13 per subgroup of mTBI 
patients are detailed in Fig. 6C. The results of univariate tests on TC 
power spectra per patient subgroup (PTC-present and PTC-absent) vs. 
HCs can be found in the in the Supplementary Material (Section C2, 
Fig. S3). 

4. Discussion 

In this study, we used group ICA to identify fMRI-ICNs in a sample of 

mTBI patients and HCs aged 18–64 years. We aimed to identify how age 
and mTBI affect brain connectivity and whether their effects can be 
separated. We employed a multivariate analysis to identify the effects of 
age and mTBI on between- and within-network connectivity while 
controlling for sex and head motion. To investigate differences between 
the two patient subgroups (PTC-present and PTC-absent) and to include 
the interval between the accident and the scan (in days) as well as the 
GCS score as nuisance covariates, we built a second model (see Sup-
plementary Material, sections A and E). 

Consistent with previous studies, we identified age-related changes 
for all of the three connectivity measures that were analyzed (Allen 
et al., 2011; Geerligs et al., 2015). Although the ventral medial pre-
frontal cortex (vmPFC) area, represented by ICN23 (anterior DM), was 
most profoundly affected by age, presenting age-related changes for 
both between-network connectivity (FNC) and within-network connec-
tivity (TC power spectra) measures, our findings revealed significant 

Fig. 3. Effects of age on (static) functional network connectivity (FNC) between intrinsic connectivity networks (ICNs). (A): FNC matrix showing the pairwise 
correlations between ICN TCs (FNC) averaged across all participants. Black squares and rectangles highlight ICN pairs for which significant effects for log(Age) were 
found. (B): The matrix displays the significance and direction of the effects of age for each pairwise correlation (p < 0.05, FDR-corrected). (C, D): Scatterplots 
depicting how FNC between pairs of ICN TCs changes for increasing age based on two examples from the significant results displayed in (B): (C) is an example of 
positive age-related correlation (rAGE) between pairwise FNC and age, based on the pair ICN23 (DM) and ICN19 (SMO). (D) Is an example of negative age-related 
correlation (rAGE) between pairwise FNC and age, based on the pair ICN17 (VIS) and ICN13 (CB). The examples selected for the scatterplots (C) and (D) are 
highlighted in the FNC matrix (B) with asterisks. Age is presented in the scatterplots (C) and (D) on a log-scale. 
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Fig. 4. Effects of age on SM intensities. (A): Significant effects of age for each ICN SM (p < 0.05, FDR-corrected) in a representative slice. The top panel indicates an 
example of a cluster with significant SM intensity increase for increasing age (B in the circle) and an example of cluster with significant SM intensity decrease for 
increasing age (C in the circle). (B;C): Scatterplots depicting how SM intensities change for increasing age. Age is presented in the scatterplots on a log-scale. 
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age-related changes for connectivity between components (FNC) across 
all ICNs, suggesting global changes in the brain connectivity architec-
ture. We consistently observed a linear correlation between the FNC 
measures and the logarithmic transformation of age, indicating that 
more pronounced changes occur during young adulthood and progress 
at a slower pace during mid- to late-adulthood. 

Furthermore, we found significant changes related to age for within- 
component connectivity for both outcome measures (SMs and TC power 
spectra). Both age-related decrease and increase for SM intensity were 
identified in clusters located in subcortical and cognitive control areas. 
Additionally, an age-related decrease for SM intensity was identified in 
clusters located in sensorimotor and visual areas. Age-related changes 

for TC spectra were identified in three ICNs (one from the CC, two from 
the DM) located in frontal brain regions. For all three frontally located 
ICNs we identified a power decrease for lower frequencies (below 0.15 
Hz) and a power increase for higher frequencies (above 0.15 Hz) sug-
gesting that a single process might be underlying this apparently local 
trend. 

No significant changes related to mTBI (compared to HC) were found 
for connectivity between components (FNC) and significant changes 
related to mTBI for within-component connectivity (SM intensity and TC 
power spectra) were found only for the TC spectra of the cerebellar ICN. 
It suggests that effects of mTBI for static functional connectivity between 
components are absent or much subtler than those of age, but that local 

Fig. 5. Effects of age on TC power spectra. (A): Effects of age for each IC TC power spectrum; the color bars display their significance and direction (p < 0.05, FDR- 
corrected). (B): Scatterplots depicting the significant results of changes in TC for increasing age for ICN23 (DM). (C): Line plots of the average TC power spectra of 
ICNs 5, 15 and 23 for younger and older participants based on median split (median age = 32 years old). The line plots show mean log(power) ± 1SE. 
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changes in coherent activity within ICNs might occur after mTBI. 
Moreover, the interaction group by age was never retained in the 
multivariate analysis, suggesting that mTBI does not affect an older 
brain more (nor less) than an younger brain for the age range and 
connectivity measures investigated in this study. 

The findings of the second model were consistent with and compli-
mentary to those of the main model. In the multivariate analysis of the 
second model, similar to the first model, age was retained as a significant 
predictor for all of the three connectivity measures and the only sig-
nificant predictor for FNC. The results also support the incorporation of 
sex and FD as nuisance covariates for measures of connectivity within 
networks. Additionally, the terms subgroup and the interaction sub-
group × age were found to be weak significant predictors for TC spectra 
of several ICNs. Surprisingly, the two additional nuisance covariates 
(GCS score and time interval between accident and scan) were retained 
as weak significant predictors for TC spectra and SMs of few ICNs, 
suggesting that their effects on brain connectivity are lower than the 
effects that are associated with the other covariates. When comparing 
the results of the univariate analysis between both models, similar 

effects for age were found for all of the three measures (FNC, SMs and 
TCs). Small differences (i.e. different p-values) were found, as expected 
due to a smaller number of participants in the second model (mTBI 
patients only, N = 54) compared to the main model (mTBI patients and 
HCs, N = 74). A few significant effects for subgroup (PTC-present vs. 
PTC-absent) were found for the TCs of two ICNs (ICN 27 (CC) and ICN 17 
(VIS)). Significant effects for the interaction term subgroup × age were 
found for SM intensities of ICN 19 (SMO) only. In spite of this interesting 
finding, the cluster size was small (Vl = 2) and results should be 
reproduced in future studies before further interpretation. 

At last, the point in time of scanning is an important matter for mTBI 
research. In our study, we opted to scan at four weeks after injury as one 
of the main goals of the study was to examine alterations of brain con-
nectivity associated with the increased risk of developing persistent 
symptoms. It could be argued that, after four weeks, potentially patho-
logical effects of mTBI in resting-state brain connectivity might have 
been mitigated. However, several cross-sectional and longitudinal mTBI 
studies have shown altered brain connectivity at four weeks post-injury 
or beyond (see van der Horn et al. (2016a, 2016b) for a review). For 

Fig. 6. Effects of Group (mTBI vs. HC). (A): 
the color bar displays the significance and 
direction of the effects of group for ICN13 
(cerebellar network) in the TC power spec-
trum (p < 0.05, FDR-corrected). (B): Line 
plots of the average TC power spectra for 
mTBI patients (mTBI; red) and healthy con-
trols (HC; blue). C): Line plots of the average 
TC power spectra for mTBI patients with 
PTC-present (PTC-present; red), mTBI pa-
tients with PTC-abstent (PTC-absent; green) 
and healthy controls (HC; blue). The line 
plots show mean log(power) ± 1SE. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the web version of this article.)   
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example, Mayer et al. (2011) identified altered connectivity at two 
weeks post-injury that persisted for (at least) four months in comparison 
to HCs. Iraji et al. (2016) found similar levels of hyperconnectvity in 
mTBI patients at the first day and at four to six weeks after mTBI. A more 
recent study by Meier et al. (2017) found that differences in functional 
connectivity were stronger at one month than at one or at two weeks 
after injury, in comparison to HCs. Unfortunately, none of these three 
studies added age as a covariate and not all of them age-matched groups. 
Therefore, direct comparison with our results is not possible. 

In the following subsections, we will discuss changes in between- and 
within-network connectivity, separately, and will review our findings in 
relation to previous mTBI studies. 

4.1. Between-network connectivity: FNC – Age-related changes and mTBI 

Our results match and extend the findings from previous studies 
(Sours et al., 2015; van der Horn et al., 2016a, 2016b), where the FNC 
between none of the component pairs was significantly different be-
tween the mTBI patients and HCs based on cross-sectional analyses with 
data acquired during the subacute phase. 

Previous research on mTBI patients indicates that interactions be-
tween the salience network (SN) and the DM can be disrupted after brain 
injury, possibly leading to impairments in cognitive control (Sharp et al., 
2014). The SN is involved in processing of external salient stimuli and is 
part of the CC (domain), with key areas located in the anterior cingulate 
cortex (ACC) and in the anterior insula (AI). In this study, the SN is 
captured by ICNs 15, 16 and 18 (CC). Here, we did not find any changes 
for between-network connectivity involving ICN pairs that correspond 
to the DM and the SN. Perhaps changes would be more likely when 
administering a cognitively challenging task (e.g. go-no go task), where 
processing of external salient stimuli is actively required (Bonnelle et al., 
2012). 

Previous studies also indicated that higher functional connectivity 
between the anterior and posterior components of the DM in the early 
subacute phase was associated with a greater number of PTCs in the late 
subacute phase (Van Der Horn et al., 2017). These PTCs include com-
plaints related to emotional, cognitive and/or physical functioning. In 
this study, the anterior and posterior components of the DM are repre-
sented by ICNs 23 and 11, respectively. Although we did not identify 
changes for FNC between the DM pair ICN 23 and ICN11, all of the 
measurements of our study were performed (cross-sectionally) in the 
early subacute phase and using a multivariate approach in an explor-
atory fashion, while the aforementioned study investigated how con-
nectivity changes in pre-defined ICNs correlate with PTCs longitudinally 
in age-matched groups, without adding age as a covariate. Therefore, a 
direct comparison of results is not possible. 

With respect to age-related changes in FNC, our results indicate that 
the anterior DM (ICN23) and CC (ICN16 and ICN18) are more strongly 
affected by aging: nine out of the 10 pairs involved ICN from the DM 
(most frequently ICN23; anterior DM) and/or an ICN from the CC (most 
frequently ICN16 or ICN18). The remaining pair corresponds to ICN13 
(CB) and ICN17 (VIS). In the next paragraphs, we will discuss the most 
relevant findings for age-related changes in our study, with focus on 
pairs involving ICNs of the DM and of the CC domains. An extension of 
the discussion can be found in the Supplementary Material (section E). 

In this study, we found increased as well as decreased correlation 
between FNC and age across ICN pairs. This is consistent with the notion 
that brain connectivity between ICNs changes throughout adulthood 
with increasing age, but neither decreasing nor increasing ICN connec-
tivity with aging can be taken as a general rule (Geerligs et al., 2015). 
Importantly, increased correlation can also reflect a reduction in anti- 
correlation, which means that interpretation is not straightforward. 

The presence of anticorrelations between ICNs of the DM and ICNs 
from other domains has been observed and explored in previous studies 
(Fox et al., 2005; Uddin et al., 2009) and usually pertains to connections 
between the DM and the so-called ‘task-positive’ network (TPN; Fox 

et al., 2005). Correlation increase is mainly associated with neural 
dedifferentiation. According to the dedifferentiation theory, functional 
areas of the brain become less distinct (increasingly correlated) in 
elderly (Baltes and Lindenberger, 1997; Park et al., 2004). This concept 
has been extended to functional networks (Chan et al., 2014; Geerligs 
et al., 2014; Koen et al., 2020). It is worth noting that although dedif-
ferentiation is generally associated with age-related performance loss, 
less distinctive functional networks could also reflect a compensatory 
mechanism (Cabeza, 2002). Particularly, increased connectivity 
involving frontal areas (e.g. PFC), which are associated with high 
cognitive processing, seems to reflect an age-related compensation 
phenomenon that was termed ‘Posterior to Anterior Shift in Ageing’ 
(PASA; Davis et al., 2008). Dedifferentiation and compensation are 
unlikely to be mutually exclusive (Burianová et al., 2013; Geerligs et al., 
2015). Because the current study used resting-state fMRI, in contrast to 
task-based fMRI, it is not possible to provide direct evidence of which 
mechanism (dedifferentiation and/or compensation) plays a stronger 
role in our sample population regarding changes in connectivity. 

In our study, we found a decrease in anticorrelation between ICN23 
(DM) and ICN27 (CC) slowly progressing with log(age). ICN27 (CC) 
includes the bilateral dorsolateral prefrontal cortex (dlPFC) which is 
activated during cognitive tasks involving working memory (WM) and 
attention (Barbey et al., 2013; Petrides, 2000). Additionally, we 
observed an increase in correlation between ICN23 (DM) and ICN16 and 
ICN18. Both ICN16 and ICN18 are part of the cognitive domain and are 
associated with language functioning. It could be argued that these 
findings indirectly reflect the cognitive deficits and compensation 
mechanisms that are expected with aging, indicating that this process 
starts at a younger age. 

In addition to the possibility that an mTBI does not significantly 
affect FNC (at rest), we can speculate that the effects of aging are more 
pronounced than those resulting from an mTBI for the lifespan of the 
population in this study (18–64 years old) and effects of mTBI on FNC 
might be reduced after the acute phase. 

4.2. Within-network connectivity – age-related changes and mTBI 

The SM together with BOLD TC spectra are the main features of an 
ICN. Changes in SM intensities can indicate abnormalities in co- 
activation patterns of voxels within networks. Changes in BOLD spec-
tral power can indicate abnormalities in coherent activity patterns 
within the global time course of networks. 

4.2.1. Spatial map intensities 
Previous fMRI studies on mTBI patients found both increases and 

decreases in within-network connectivity in ICNs of the DM, SN (CC) 
and ICNs of other domains, reporting that these abnormalities correlate 
with cognitive deficits or post-concussive complaints (Messé et al., 2013; 
Sharp et al., 2014; Stevens et al., 2012). During task performance, 
increased activation is also frequently observed in ICNs involved in 
cognitive control and without deficits in performance, suggesting a 
compensatory mechanism. Reduced activation has been reported in the 
ICNs of the SMO, involved in motor tasks. 

In this study, we did not find any significant changes in ICN SM in-
tensities when comparing mTBI patients in the subacute phase post- 
injury to HCs or when comparing mTBI patient subgroups (PTC-pre-
sent to PTC-absent). However, we did find age-related increased in-
tensities in the ICN15 (CC; partly contains the SN) and decreased 
intensities in the SMO both in the main model including mTBI patients 
and HCs and in a second model including only mTBI patients (sub-
grouped by presence or absence of complaints). 

This suggests that age affects SM intensity patterns in cognitive and 
motor related ICNs, among others. Additionally, effects of aging in SM 
intensities develop slowly with time and can be robustly identified when 
analyzing a broad lifespan compared to effects of mTBI, which might be 
more difficult to measure (or absent). 
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4.2.2. TC power spectra 
We found reduced coherent cerebellar activity for mTBI patients 

within the range of the BOLD TC spectra where neural activation is more 
reliably captured. Our results indicate power decreases for frequencies 
between 0.065 and 0.10 Hz in the TC spectra of ICN13 (cerebellar 
network) in mTBI patients relative to HCs. A closer inspection of the 
average TC power spectra from both groups actually indicated an absent 
“power peak” between 0.065 and 0.10 Hz for mTBI patients. When 
further inspecting the average TC power spectra from mTBI subgroups in 
an explorative manner, we observed a late, lower “power peak” between 
0.10 and 0.11 Hz for mTBI PTC-absent patients, in contrast to no ‘peak’ 
for the mTBI PTC-present group. These results suggest that abnormal 
deactivation in the cerebellum after mTBI might be associated with the 
presence of complaints. 

Our results are in line with previous studies that found regional 
reduced activity in the cerebellum for mTBI patients. Previously, 
Peskind et al. (2011) found that cerebellar glucose hypometabolism in 
war veterans after blast-induced mTBI was associated with subtle im-
pairments in aspects of cognitive processing speed, attention and 
working memory. Additionally, Stevens et al. (2012) found that func-
tional connectivity within the right cerebellum posterior lobe (among 
other areas) negatively correlated with post-concussive symptoms. 
Furthermore, Zhan et al. (2016) reported reduced power between 0.01 
and 0.08 Hz in the left posterior lobe of the cerebellum for a group of 
acute mTBI patients at rest. All these previous results suggest that the 
cerebellum is a relevant part in the mechanisms involved in the devel-
opment of cognitive symptoms after mTBI. These results may be 
explained by the fact that direct and indirect damage to the cerebellum 
might occur after mTBI (Potts et al., 2009; Vergara et al., 2018). 

Anatomically, the cerebellum is connected to the PFC through 
polysynaptic projections via the thalamus. Functionally, the cerebellum 
has a traditionally recognized role in motor control. There is increasing 
evidence that the cerebellum is also involved in cognitive and emotional 
control, but the detailed characterization of its functional role is still 
unclear. Recent studies based on functional connectivity suggest a 
homotopic representation of the cerebellum that is coupled to the ce-
rebral cortex (Buckner, 2013; Buckner et al., 2011; Schmahmann, 
2019). Furthermore, it has been demonstrated that transcranial mag-
netic stimulation (TMS) applied to specific areas in the cerebellum can 
modulate the activity within the (cerebral) DM and other networks. 

Clinical studies also suggest that, in addition to ataxia and impaired 
fine motor control, cognitive and affective deficits might occur after 
cerebellar damage (Alexander et al., 2012; Gottwald et al., 2004; Rav-
izza et al., 2006). The latter however, are subtle and transient in com-
parison to the more obvious motor deficits. 

With respect to age-related changes in TC power spectra, we 
consistently found significant spectral power decreases for low BOLD 
frequencies (below 0.15 Hz) and significant spectral power increases for 
high BOLD frequencies (above 0.15 Hz) for three ICNs mainly located in 
the medial PFC: for ICN23 (anterior DM), including the vmPFC; for 
ICN15 (CC), including the dorsomedial prefrontal cortex (dmPFC) and 
for ICN5 (DM), including the orbitofrontal prefrontal cortex. Interest-
ingly, all three components are medially located in the frontal lobe and 
share a similar trend of changes in (intra-component) coherent activity. 
These results suggest common underlying mechanisms that are either 
restricted to or intensified at areas involved in higher order cognitive 
processes and that also present a similar pattern for changes in the 
power spectra of TCs with age as previously identified by Allen et al. 
(2011) (on a broad population of HCs). Previous studies associated 
power decreases in frontal areas at low frequencies (below 0.1 Hz) to 
deterioration of cognitive performance (Fryer et al., 2015; He et al., 
2013). Other studies have suggested that higher frequency BOLD oscil-
lations (>0.1 Hz) are associated with non-neural fluctuations (e.g. 
vascular artifacts, respiratory rhythms) (Birn et al., 2006; Wise et al., 
2004). However, there is increasing evidence that higher frequency 
BOLD oscillations (>0.1 Hz) also reflect neural activity (Chen and 

Glover, 2015; Gohel and Biswal, 2015; Jahanian et al., 2019) and that 
increased power in higher frequency oscillations may be indicative of 
reduced connectivity within the ICN (Balsters et al., 2013a). Our find-
ings also match other studies that kept frequencies between 0.1 and 
0.25 Hz in the analysis and found increasing high frequency power with 
age (above 0.2 Hz) for several ICNs (Allen et al., 2011; Balsters et al., 
2013a). 

Our results revealed decreasing power for increasing age at the lower 
end of the spectra, mainly below 0.1 Hz, where intrinsic fluctuations 
resulting from activations in gray matter can be typically identified. Our 
findings are in line with a number of other studies reporting that within- 
network connectivity in frontal areas in the brain (including the DMN) 
decreases with age (Achard et al., 2006; Glerean et al., 2012). Similar to 
the findings of (Geerligs et al., 2015), our observed significant power 
decrease within ICNs was restricted to high-cognitively demanding 
areas. Interestingly, Allen et al. (2011) investigated a broad population 
of HCs and found decreasing low frequency power with age (below 0.15 
Hz) for all 28 ICNs they identified and stronger age-related effects were 
found in fronto-parietal (CC) and DM ICNs. Although there are some 
methodological differences with our study (e.g. Allen et al. (2011) 
investigated a relatively younger, larger population and acquired data 
during resting state with eyes-open), the results are not conflicting. 
Altogether, their and our results suggest an underlying global age- 
related trend in within-network connectivity changes that locally 
affect the DM and the frontal/fronto-parietal areas more strongly and 
may be associated with cognitive decline. Lastly, a closer inspection of 
the average TC spectra per age group (median split), revealed decreased 
low-frequency power in ICN15 (CC) for older participants. The “deac-
tivation” of components in the cognitive domain ICN15 (CC) together 
with decreased (anti-) correlation between components in frontal areas 
(see 4.1) indicates decreased segregation and reduced activation of 
networks in the frontal lobe for increasing age, in line with the previ-
ously discussed dedifferentiation hypothesis. 

In the aging brain, we could speculate that abnormal cerebellar ac-
tivity acts as a stressor in an already adapted, cognitively vulnerable 
brain organization, facilitating the development of PTCs. Because 
altered activity in the cerebellum can modulate the activity in networks 
that are located in the PFC, this could also facilitate well established 
effects of age on brain connectivity within frontally located networks 
and between components pairs involving the anterior DM. 

It is therefore tempting, although very speculative, to suggest that 
abnormal activity of the cerebellum in mTBI contributes to the devel-
opment of PTCs. Lastly, how neural processes in the cerebellar structure 
can lead to changes in the BOLD signal also remains under investigation 
and, therefore, suggesting that abnormal activity in the cerebellum leads 
to PTCs would be based on indirect evidence. 

5. Limitations and future directions 

In this study, children (below 18 years old) or elderly participants 
(above 65 years old) were not included. Therefore, considering the age 
of the population investigated in this study (median age: 32 years (IQR: 
23–51), range 18–64 years), it would not be advisable to extrapolate its 
results to very young nor to elderly population. Additionally, protective 
effects related to cognitive reserve, for example, might play a stronger 
role in older age. Thus, it would be interesting for future studies to 
investigate brain network connectivity involving the elderly population 
including covariates related to protective factors. 

Moreover, the cerebellum has been omitted or received limited 
attention in several studies analyzing functional connectivity, given that 
the main focus has traditionally been on the cerebral cortex, especially 
on the DMN. Additionally, while several studies on functional connec-
tivity analyze correlation between BOLD TCs and/or alterations in the 
intensity of ICN spatial maps, underlying changes in the TC spectra are 
rarely made explicit. We therefore hope that future studies on connec-
tivity will explore the temporal and spectral characteristics of all ICNs, 
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including (but not limited to) the DMN. 
With regard to the effects of mTBI, in addition to the presence/ 

absence of PTCs, how different complaints relate to changes in func-
tional connectivity remains a matter for further investigation. It is also 
known that mTBI patients compose a heterogeneous group where, in 
addition to age, sex and education level, other factors as cognitive 
reserve and pre-injury mental state might play a role in brain func-
tioning. Further research investigating the effects of additional de-
mographic and clinical factors, if possible longitudinally, is thus 
encouraged. 

Furthermore, in the current study we opted to scan at four weeks 
after injury to assess changes that are associated with mTBI-related 
pathology and long-lasting symptoms. However, the optimal point in 
time for this purpose remains unknown. Perhaps we could have been 
more sensitive at an earlier point in time. We encourage future longi-
tudinal mTBI studies that help elucidating the course of mTBI pathology. 

Finally, the source and the functional meaning of the BOLD low- 
frequency oscillations (LFOs) remains under investigation (Klimesch, 
2018). There is growing evidence that features of LFOs are related with 
cognitive abilities and behavior (Balsters et al., 2013b; Fryer et al., 2015; 
Mennes et al., 2011). In parallel, speculative conclusions that BOLD and 
electrophysiological signals share the same underlying phenomenon are 
accumulating (Balsters et al., 2013a; He et al., 2008; Palva and Palva, 
2012). Cross-modal studies (e.g. combined EEG and fMRI) are gaining 
momentum and might help elucidate how changes in the BOLD spectra 
relate to cognition and behavioral aspects in health and disease (Abreu 
et al., 2020; Sadaghiani and Wirsich, 2020). 

6. Conclusion 

This study demonstrates that effects of mTBI on between-network 
functional connectivity, if any, are much subtler than those of aging 
and reinforces the importance of adding age as a covariate in mTBI 
studies, in addition to age-matching groups. Aging, regardless of mTBI, 
strongly affects functional connectivity over the whole brain, with ef-
fects for between-network connectivity being most evident in pairs 
involving the anterior DMN and/or the CC; for within-network con-
nectivity being most evident in frontal areas. MTBI effects can be 
detected as abnormal coherent activity in the cerebellum within a spe-
cific low-frequency range (0.065–0.10 Hz) and seem to be associated 
with presence of post-traumatic complaints. Future cross-modal func-
tional connectivity studies investigating the interaction between cere-
bellar and DM ICNs and evidencing spectral properties of the BOLD 
signal are encouraged. 
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