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Few basepairing-independent 
motifs in the apical half of the avian 
HBV ε RNA stem-loop determine 
site-specific initiation of protein-
priming
Markus Gajer, Katharina Dörnbrack, Christine Rösler, Bernadette Schmid, Jürgen Beck & 
Michael Nassal

Hepadnaviruses, including human hepatitis B virus (HBV), replicate their tiny DNA genomes by 
protein-primed reverse transcription of a pregenomic (pg) RNA. Replication initiation as well as pgRNA 
encapsidation depend on the interaction of the viral polymerase, P protein, with the ε RNA element, 
featuring a lower and an upper stem, a central bulge, and an apical loop. The bulge, somehow assisted 
by the loop, acts as template for a P protein-linked DNA oligo that primes full-length minus-strand DNA 
synthesis. Phylogenetic conservation and earlier mutational studies suggested the highly based-paired 
ε structure as crucial for productive interaction with P protein. Using the tractable duck HBV (DHBV) 
model we here interrogated the entire apical DHBV ε (Dε) half for sequence- and structure-dependent 
determinants of in vitro priming activity, replication, and, in part, in vivo infectivity. This revealed single-
strandedness of the bulge, a following G residue plus the loop subsequence GUUGU as the few key 
determinants for priming and initiation site selection; unexpectedly, they functioned independently 
of a specific structure context. These data provide new mechanistic insights into avihepadnaviral 
replication initiation, and they imply a new concept towards a feasible in vitro priming system for 
human HBV.

Hepadnaviruses, with the important human pathogen hepatitis B virus (HBV) as their prototype, are small envel-
oped DNA viruses that replicate via protein-primed reverse transcription of a pregenomic (pg) RNA intermedi-
ate1, 2 (Fig. 1A). A crucial cis-element for replication initiation is a highly conserved bipartite RNA hairpin, the 
encapsidation signal ε, which comprises a lower and an upper stem, a central bulge and an apical loop (Fig. 1B). 
ε is specifically recognized and bound by the viral polymerase, P protein. Productive ribonucleoprotein (RNP) 
complex formation is accompanied by structural rearrangements (Fig. 1C) in protein and RNA3–6, and triggers 
co-packaging of pgRNA and P protein into newly forming nucleocapsids, i.e. encapsidation (in DHBV facilitated 
by the downstream “region II”)7, 8, yet also the synthesis of a 3–4 nucleotide (nt) DNA oligo that is templated 
by the 3′ half of the ε bulge; its first nt is covalently linked to a Tyr-residue in P protein’s Terminal Protein (TP) 
domain (protein-priming). For extension into full-length minus-strand DNA the oligo is translocated to a com-
plementary acceptor at the 3′ proximal direct repeat DR1* (Fig. 1A). At least the two 3′ terminal nt of the DNA 
oligo must match the acceptor site for translocation to this site9, 10, therefore only oligos initiated at the correct 
position in the ε bulge ensure formation of proper minus-strand DNA and eventually the hepadnavirus-typical 
relaxed circular (RC) DNA genome present in mature nucleocapsids and enveloped virions1, 2.

Hence ε RNA contains elements that activate P protein, similar to the RNA components in telomerase11 and 
in the CRISPR/Cas9 system12, and must also encode the information for proper positioning of P protein over the 
initiation site at the 3′ end of the bulge; in most conventional DNA copying systems the initiation site is defined 
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Figure 1.  Key roles of the ε RNA stem-loop in hepadnaviral replication. (A) Protein-priming and minus-
strand DNA synthesis. The 3 kb DHBV DNA genome is schematically shown on the top in linearized form; 
ORFs for preC (pC), core, preS/S and P with its Terminal Protein (TP), Reverse Transcriptase (RT) and RNase 
H (RH) domains are indicated. Pregenomic (pg) RNA, transcribed from transfected vector or, in infection, 
from covalently closed circular (ccc) DNA43, serves as mRNA for core and P protein, and as precursor for new 
RC-DNA. Binding of P protein to 5′ ε triggers co-encapsidation of the complex (in DHBV requiring additional 
downstream sequences symbolized by the box labeled “II”7, 8) into newly forming nucleocapsids (not shown) 
and synthesis of a short, TP-linked DNA oligonucleotide (“protein priming”); transfer to a sequence-matching 
acceptor at DR1* mediates minus-strand DNA synthesis. The subsequent steps towards RC-DNA are not 
shown. (B) Known functional subelements in Dε and comparison to HBV ε. The central bulge and the apical 
loop are established determinants for ε function. The initiation site is indicated by the encircled C at the 3′ end 
of the bulge, templating a G as first residue linked to TP. The connecting upper stem (green) might act as a 
space bar ensuring a specific distance between bulge and loop for optimal interaction with the assumed binding 
sites (BS1, BS2) on P protein22. HBV ε exerts a similar structure, except the upper stem structure is more stably 
basepaired. A general assignment for the ε subelements lower and upper stem, bulge and loop is given on the 
HBV ε structure. The apical sequences in Dε and ε given in red denote the classical heptaloop (DHBV) and 
hexaloop (HBV), the intra-loop pairings shown are derived by NMR. (C) Distinct steps during protein-priming 
deduced from in vitro priming systems available for DHBV but not HBV. P protein activation by chaperones 
(dispensable for miniDP used here) enables initial binding to Dε; mutations in Dε can cause an arrest at this 
stage. Rearrangements in RNA and protein provide the complex with priming activity (green protein color), 
enabling synthesis of the bulge-templated DNA oligo (red).
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by the extendable 3′ end of a nucleic acid primer, e.g. a host tRNA in retroviruses. Current knowledge on how 
this is achieved in hepadnaviral P - ε complexes is limited. To date it has been impossible to isolate functional 
RNPs in sufficient quantity and quality for direct structural investigation. For HBV, mutational analyses were 
largely confined to using pgRNA packaging and viral DNA formation in transfected cells as readout. In vitro HBV 
RNP complex formation has been achieved but without detectable DNA synthesis activity13; we refer to this a 
non-productive binding. The most advanced cell-free HBV priming system relies on co-expression of tagged P 
protein and ε RNA in mammalian cells, with subsequent affinity purification14, 15; however, the RNA in the iso-
lated RNPs cannot be exchanged. Hence for functional studies using P protein and/or ε RNA mutants each new 
RNP must individually be generated, precluding larger scale analyses. For DHBV, in contrast, in vitro priming 
systems are long established16. Priming activity of recombinant full-length or near full-length P protein requires 
cellular chaperones, as present in rabbit reticulocyte lysate6, 17–19 or added in substance18, in particular heat shock 
proteins Hsc70 and Hsp404, 5, 20. This chaperone dependence is overcome by terminal truncations in P protein20, 21,  
with the respective “miniDP” proteins providing the most feasible systems to investigate Dε-dependent 
protein-priming. Conversely, the impact of ε mutations can even be analyzed in the context of genuine DHBV 
infection of ducks22.

Collectively, the available data indicate that both the bulge and the loop are important for a productive inter-
action with P protein. Bulges, loops and unpaired residues within an RNA double-helix offer a wealth of unique 
recognition surfaces and thus are predestined as highly specific binding sites, including for P protein. The actual 
presence of both elements in free HBV and DHBV ε RNA was biochemically confirmed6, 23–25, and NMR investi-
gations revealed further details, including non-canonical basepairs, in the previously assumed (“classical”) hepta- 
and hexaloop sequences capping the upper stem, creating a tetraloop in Dε26 and a pseudotriloop in HBV ε27.

By necessity, bulges and loops are defined by their flanking double-helical regions. In ε the stable lower stem 
determines the start of the bulge, and the upper stem defines its end and closes the apical loop. Furthermore, 
the functional need for both bulge and loop implies their concerted interaction with P protein, either directly or 
through a separate loop-binding factor28; hence the connecting upper stem could also act as a molecular ruler that 
determines the spacial distance and orientation of the two subelements, optimally positioning them for produc-
tive binding to P protein, including for proper initiation site selection (Fig. 1B).

Phylogenetic conservation of the bipartite ε structure amongst different hepadnaviruses and early mutagen-
esis studies23, 24, 28, 29 supported such a function for the upper stem. Yet, in priming-competent Dε complexes this 
region is opened up6, and various in vitro selected Dε variants lacking basepairing potential in the top part of the 
upper stem supported in vitro priming30 and even chronic infection in ducks22.

However, all previous studies addressed only small sections of the upper ε stem, leaving most of the natu-
ral sequence and, given the dependence of RNA structure on sequence, structural context intact. Hence which 
sequence- and/or structure-dependent determinants enable ε RNA to activate P protein and present a specific nt 
for replication initiation remained open.

We here sought to comprehensively interrogate the entire apical Dε part for determinants that allow for a 
productive interaction with P protein, using as readout in vitro priming, replication in transfected cells and, 
for selected variants, infectivity in ducks. Altogether, an unexpectedly large number of length, sequence and 
structure modifications had only modest impacts on Dε function, including selection of the authentic initiation 
site. Forward selection using a replication-dependent systematic evolution of ligands by exponential enrichment 
(SELEX) procedure revealed a subsequence of the classical heptaloop sequence, GUUGU, and a single G residue 
immediately following the bulge as the only crucial determinants in the apical Dε part, including for selecting 
the genuine 3′ terminal bulge nt (bulge position 6) as initiation site; again, however, no need for a specific struc-
ture context became obvious. We then confirmed our suspicion that the bulge region itself harbors functionally 
important determinants for initiation site selection via combinatorial mutations targeting bulge position 6 and 
the unpaired U residue opposite the bulge. Altogether, the results suggested a revised model for a productive 
DHBV P protein - Dε interaction whereby the critical determinants in the RNA are a single-stranded bulge 
region (guaranteed by the stable lower stem), a G residue following the bulge 6 position with an oppositely located 
pyrimidine, plus a GUUGU motif in not too far a distance but independent from a specific upper stem structure. 
This was verified by the priming activity and replication-competence of artificial Dε RNAs in which these primor-
dial elements were embedded into a completely unstructured context. Hence accessibility of a few crucial RNA 
determinants is the main prerequisite for a functional upper stem sequence.

These results shed new mechanistic light on replication initiation in avian hepadnaviruses and have also impli-
cations for mammalian HBVs, including a new concept as to why human HBV ε with its highly stable upper stem 
structure does not support in vitro priming. The methods developed in this study should provide suitable tools 
to test this concept.

Results
The exact bulge-loop distance is not decisive for priming activity and initiation site selec-
tion.  In the largely double-helical wild-type Dε the distance between bulge and loop is around 5–6 nm26. To 
modulate this distance with minimal induction of new, alternative basepairings we used as parent a Dε variant, 
S1230, in which the top part of the upper stem lacks basepairing potential; however, the five basepairs on top of 
the bulge and the two basepairs closing the tetraloop can form (Fig. 2A), as in heron HBV (HHBV) ε26. S12 is 
priming-active in vitro, and in the context of the DHBV genome, supports replication in transfected LMH cells 
as well as in ducks in vivo22.

In a first set of variants (termed “class I”) we deleted two residues from the left or the right half-stem (−2L_I; 
−2R_I), or both (−2LR_I); alternatively, two C residues each were inserted in the left or right half-stem (+2L_I; 
+2R_I), or both (+2LR_I). An analogous series of more severely altered variants (class II) were based on a 
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derivative in which 6 nt at the base of the right half-stem (positions 2597–2602) were a priori deleted (mutants 
−2L_II and so on). Notably, variant −2LR_II lacks 10 of the totally 27 nt in the Dε upper stem.

We then assessed the ability of the variant RNAs to support in vitro priming with α32P-labeled dGTP, the natu-
ral first nt of minus-strand DNA templated by the 3′ terminal C of the bulge (b6 position), either with full-length 
DHBV P protein in vitro translated in rabbit reticulocyte lysate (RRL) or using a truncated recombinant P protein 
variant (miniDP) that retains priming activity without any protein co-factors31. Reactions with wt Dε or without 
RNA served as controls. Reaction products were separated by SDS-PAGE and band intensities of 32P-labeled P 
protein were quantitated by phosphorimaging (Fig. 2B, top panel). All class I mutants produced similarly strong 
signals as wt Dε in either system, except for a slightly stronger reduction with the most extended variant +2LR_I. 
Hence adding or deleting up to 4 nt from the upper stem had little effect on priming efficiency with dGTP.

In contrast, only very weak signals (though still higher than in the no-RNA control) were obtained with the 
class II RNAs lacking additional two or four nt, whereas adding back two or four nt partially rescued higher 
priming activity (Fig. 2B, bottom panel). To test whether the reduced class II priming signals reflected a general 
reduction in priming efficiency or an altered dNTP preference caused by a shift in initiation site we repeated 

Figure 2.  Interrogating a potential space-bar function of the upper Dε stem. (A) Sequence alterations in 
class I and class II variants. The distance between bulge and loop in the replication-proficient Dε variant S1222 
was altered by deleting two of its non-authentic residues on the left or right upper half-stem or both, or by 
analogously introducing two extra C residues on one or both sides (class I). The same changes were introduced 
in a variant lacking a priori six nt in the lower right half-stem (class II). The encircled C represents the dominant 
initiation site. (B) In vitro priming activities. The indicated Dε variants were in vitro transcribed and subjected 
to α32P-dGTP priming assays using full-length DHBV polymerase in rabbit reticulocyte lysate (RRL), or 
recombinant miniDP protein. 32P-labeled P protein was visualized, after SDS-PAGE, by autoradiography. Signal 
intensities were quantified by phosphorimaging; numbers below each lane show the mean relative priming 
signals ± standard deviation (SD; n ≥ 3) compared to wt Dε RNA which was set to 100%; nd, not detectable. 
Analogous data for α32P-dATP are shown in Supplementary Fig. S1. (C) No impact of typical class I and class 
II mutations on dNTP specificity during in vitro priming. MiniDP priming assays were performed using either 
α32P-dGTP or α32P-dATP in the presence of only Mg2+, or Mg2+ plus Mn2+. In either constellation, dGTP was 
incorporated ~20-fold more efficiently than dATP. (D) Class I and class II variants support viral replication. 
LMH cells were transfected with pCD16 vectors bearing the indicated mutant sequences in both 5′ and 3′ Dε. 
Vectors encoding wt-DHBV16 (wt), a variant defective in 5′ Dε (DHBV Δε), and the upper stem variants S5 
and S1222, 30 served as controls. DNA from cytoplasmic nucleocapsids was analyzed by Southern blotting using 
a32P-labeled DHBV DNA probe. Numbers indicate mean signal intensities ± SD (n ≥ 3) of full-length DNAs 
(RC + dsL) relative to wt-DHBV which was set to 100%.
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all experiments using α32P-dATP (Supplementary Fig. S1) which might be templated by any of the various U 
residues around the genuine C template (Fig. 2A). In line with previous results31, the dATP signals with wt Dε 
were much weaker than with dGTP, and the same held for all mutants. Even inter-mutant variations were highly 
similar to those with dGTP. We also assessed whether Mn2+, routinely present in our miniDP assays because it 
stimulates priming31, affects dNTP preference. To this end, variants +2L_I and +2R_II were subjected, alongside 
wt Dε, to miniDP priming assays with dGTP or dATP, and in the presence of only Mg2+, or Mg2+ plus Mn2+ 
(Fig. 2C). For all RNAs, Mn2+ stimulated dGTP (by four- to fivefold) and also dATP utilization; however, the 
priming signals with dATP remained ten- to twenty-fold lower than with dGTP, corroborating a comparably 
strong dGTP preference of the variants as seen with wt Dε and indicating that a C residue acted as template.

To investigate whether the length-modified upper stems in the Dε variants affected replication as a whole, we 
transferred the variant sequences (plus two in vivo derived derivatives of +2LR_I and +2R_II, labeled with the 
suffix “vi”; see below) into the DHBV expression vector pCD16. Upon transfection into LMH cells all constructs 
produced similar amounts of cytoplasmic capsids (Supplementary Fig. S1). Southern blotting of the isolated 
capsid-borne viral DNAs revealed two- to three-fold lower DNA levels for the class I variants (Fig. 2D, top panel), 
and stronger reductions for the class II variants (Fig. 2D, bottom panel) compared to wt DHBV; this was con-
firmed by direct detection of the viral DNAs in intact capsids (Supplementary Fig. S1). Altogether, the extent of 
DNA signal reduction for each variant paralled that seen in the in vitro priming assays. Most notably, the pat-
terns of replicative DNA intermediates (RC, relaxed circular; dsL, double-strand linear) were indistinguishable 
between variants and wt DHBV. Hence also in the cellular setting were all variants able to generate oligo primers 
supporting formation of full-length viral DNA, in line with their using the authentic priming initiation site; 
this was corroborated by mapping the minus-strand DNA 5′ ends by primer extension (Supplementary Fig. S1), 
where the major signals from all variants comigrated with those from wt DHBV and their relative intensities 
matched those seen in the previous assays. Hence minor changes in the distance between Dε bulge and apical 
loop (class I mutations) were well tolerated and major changes (class II mutations) affected the efficiency but not 
the accuracy of initiation site selection during priming.

We also assessed in vivo infectivity of selected variants (−2R_I, −2LR_I, +2LR_I; all class II mutants except 
+2L_II). All variants except −2R_II and −2LR_II with the poorest in vitro performance were able to estab-
lish viremia, although with later onset and substantially lower maximal titers than the wt DHBV controls 
(Supplementary Fig. S2). Sequencing revealed no difference to the inocula for variants −2R_I, −2LR_I and −2L_
II; however, over time variant +2LR_I lost one of the two extra C residues in the left half-stem, in variant +2R_II 
one of the two extra C residues in right half-stem was mutated to A (Supplementary Fig. S2). In transfected cells, 
the latter variant (termed +2R_II vi), but not the former variant (termed +2LR_I vi), showed an increased repli-
cation capacity (Fig. 2D), possibly indicating a positive selection in vivo.

Altogether, these experiments confirmed that substantial alterations in the length and sequence of the Dε 
upper stem do not fundamentally compromise Dε function as origin of replication or as encapsidation signal. In 
particular, for most variants initiation site selection remained sufficiently accurate to enable formation of fully 
functional genomes over many generations.

In-cell SELEX as a means to identify functional determinants in Dε.  Given the modest impact of 
the upper stem modifications seen above we next focussed on the Dε subelements that were left intact in the class 
I and class II mutants, i.e. the loop and the bulge with their immediate vicinity.

To interrogate a larger sequence space we employed a similar SELEX approach as before30, however using as 
selection principle replication competence of complete viral genomes in cells rather than in vitro binding to P pro-
tein of short Dε RNAs. Only Dε sequences competent for pgRNA packaging, priming and reverse transcription 
should yield progeny RC-DNA. We further reasoned that a requirement for defined sequences in a subregion of 
Dε would result in the selection of one or few individual sequences whereas the absence of such a selection would 
indicate the absence of specific sequence requirements.

To this end, we transfected DHBV expression vector pools randomized at the desired Dε regions (see 
Materials and Methods, and Supplementary Methods) into LMH cells, then enriched viral particles and used 
nuclease-resistant DNA as template for another subgenomic PCR, the products of which served to create a new 
vector pool. This procedure was repeated several times. For characterization, we used pool sequencing combined 
with cloning of individual sequences, various of which were also analyzed for replication competence. As targets 
for randomization we chose the bulge, the loop, and the seven nt of the upper left stem (ULS) immediately fol-
lowing the bulge.

In-cell SELEX rapidly selects for the authentic template sequence.  Given the importance of a prop-
erly ε-templated oligo primer for the subsequent replication steps, randomizing the bulge allowed to validate the 
procedure. Figure 3A shows the relevant parts of the pool sequence chromatograms over five selection rounds. As 
expected, sequences conforming to the wt bulge sequence 5′ ctTTAC (template region in capitals) were rapidly 
enriched while some heterogeneity persisted at the two 5′ terminal positions. This was confirmed by individual 
clone sequences obtained after 3 and 5 selection rounds and their replication capacities when singly transfected 
into LMH cells (Fig. 3B,C). The proportion of poorly or not at all replicating clones decreased with each new 
selection round (see Supplementary Fig. S3 for additional individual clones), and replication-competence cor-
related strongly with the presence of the authentic template sequence TTAC. Weak replicators after round 3 
(Figs 3B and S3) contained severely altered template regions (bu3-2, bu3-16). A seeming counter-example was 
clone bu3-7 with a single C > G exchange at bulge position 1; however, this exchange could engage the initiating 
C and/or the unpaired U opposite the bulge into new basepairs (Fig. 3D; see also below). Conversely, clone bu3-6 
had only two of the six authentic bulge positions preserved but replicated well. Notably, this bulge sequence may 
be regarded as a deletion of just the first template nt, specifying a wt-similar primer that still carries the TAA motif 
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matching the DR1* acceptor site. While these interpretations will have to be confirmed by subsequent experi-
ments, the results as such corroborated the viability of the approach.

In-cell SELEX identifies a critical subsequence in the loop.  Next we applied the procedure to the 
classical loop sequence CUGUUGU23, in the context of either wt Dε or the previously described viable variant 
S122, 30 in which the sequence underlying the loop cannot basepair (Fig. 4A). As shown in Fig. 4B for the wt Dε 
based pool, there was a rapid selection of sequences carrying the authentic UGUUGU motif, except selection of 
the leading U residue was slower; the highest level of heterogeneity persisted at loop position 1. Of 15 individual 
clones from round 5, 14 carried the wt loop sequence, one corresponded to the round 4 clone wt4-2 which har-
bors an upstream-shifted UGUUGU motif (Fig. 4B,C).

The replication phenotypes of several individual round 4 clones diverging from the authentic loop sequence 
are shown in Fig. 4C. Clone wt4-6 with no match to the authentic loop sequence replicated only marginally, 
whereas clone wt4-5 with mutations at loop positions 1 and 2 nt and clone wt4-2 with an upstream shifted 
GUUGU motif replicated as well as the wt DHBV control vector. The same held for clone wt4-1 where the leading 
G was replaced by A; however, the low abundance of A residues at this position suggests a clear preference for G. 
Hence the GUUGU motif appeared crucial for Dε function. In miniDP priming assays using either of the four 
dNTPs clones wt4-2 and wt4-5 both retained a wt-like preference for dGTP (Fig. 4D). To confirm the importance 
of the GUUGU motif as such we replaced the two central U residues (loop positions L4 and L5) individually by all 
other nt. At L4, all non-U nt caused a drastic drop in dGTP priming efficiency, at L5 a G was tolerated but A and 
especially C gave only extremely weak signals (Fig. 4E).

Figure 3.  In-cell SELEX efficiently selects for wt-like Dε bulge template sequences. A pool of pCD16-Δ3′ε 
vectors bearing random nt at the six bulge positions was subjected to sequential transfection/selection rounds 
as detailed in Supplementary Methods. (A) Pool sequencing. Sequencing chromatograms were obtained 
from the recombinant vector pool before transfection (round Ø) and the new vector pools generated after the 
indicated number of SELEX rounds. Note the increasing proportion of sequences conforming to the genuine 
template sequence TTAC, and the persistence of some heterogeneity at bulge positions 1 and 2. (B) Replication 
capacity of individual round 3 clones in transfected LMH cells. The round 3 pool comprised a mixture of high 
and low replicators; their sequences are shown on the right; the bulge sequence is in red, the template region 
is boxed. Lower case black letters indicate non-wt nt. (C) Replication capacity of individual round 5 clones. 
All sampled individual clones were replication-competent; round 3 clone bu3-1/4 served as low replicator 
control. (D) Functional bulge consensus sequences derived from individually characterized clones. Despite 
some heterogeneity at bulge positions 1 and 2, most high replicators contained the authentic template sequence 
TTAC, low replicators deviated from that sequence (e.g. bu3-2, bu3-16). The schemes show wt-Dε (SELEX-
targeted nt in white letters with green background) vs. the exceptional clones bu3-6 and bu3-7. Clone bu3-6 
replicated at near wt-level despite an altered template sequence; non-wt nt are given in lower case. However, it 
may specify a primer similar to the wild-type primer GTAA. Clone bu3-7 replicated poorly despite only a single 
C > G at bulge position 1 (in red), possibly due to an altered bulge structure as indicated.
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To address a potential impact of the loop flanking sequences we repeated the SELEX experiments in the con-
text of variant S1 (see Fig. 4A). Again there was a rapid selection of the wild-type sequence at the six 3′ proximal 
loop positions, with persisting heterogeneity at position 1 (Fig. 5A). Of 14 individual clones isolated after round 
5, nine conformed to the wild-type sequence, five had a T instead of C at position 1 (termed S1–2); this sequence 
also replicated well (Fig. 4C). Hence also in S1 context the GUUGU motif was strongly selected. To confirm 
the physiological relevance of these findings we finally inoculated two ducklings with virions from LMH cells 
transfected with the S1-based starting pool (Fig. 5B). One of the ducklings developed detectable viremia. Pool 
sequencing of a serum sample collected on day 14 post inoculation revealed a mixture of sequences, however the 
GUUGU motif was already prominently visible. The day 35 sample showed one dominant sequence, gaGUUGU 
(Fig. 5B). To address whether the leading ga dinucleotide reflected an adaptation to the S1 context (Fig. 5C), we 
compared the replication capacity of the gaGUUGU loop sequence within S1 vs. wt Dε context in transfected 
LMH cells, however without detecting substantial differences to genuine wt DHBV (Fig. 5D); also, both variants 
exerted a wt-like preference for dGTP as first nt in in vitro priming (Fig. 5E).

Together, these data strongly support the functional importance of the 3′ terminal GUUGU motif but not the 
first two positions in the classical Dε loop sequence. Moreover, both gaGUUGU variants cannot form the C-G 
pair (Fig. 5C) that stabilizes the tetraloop in wt Dε26. Hence the classical loop subsequence GUUGU appeared to 
largely represent a linear determinant for Dε function.

In-cell SELEX defines a critical G residue following the initiation site.  Finally we applied the SELEX 
procedure to the seven nt of upper left half-stem (ULS) immediately following the bulge. A requirement for base-
pairing should result in selection of nt that are complementary to the right half-stem, including for clarification 
whether the 3′ end of the bulge needs to be closed by a stable double-stranded structure (and thus would meet 
the definition of a bulge). Using as recipient variant S1222, 30 with an even more open top upper stem than in S1 
allowed to interrogate the importance of basepairing in almost the entire upper stem sequence (Fig. 6A). Not the 
least, potential sequence-specific features in the connecting sequence between bulge and loop might be revealed.

Figure 4.  In-cell SELEX reveals the importance of the GUUGU motif in the apical loop of wt-Dε. SELEX 
experiments were performed using a starting pool carrying a randomized classical loop sequence in the context 
of wt-Dε. (A) Positions of the randomized loop sequences in wt-Dε and variant S1. Targeted nt are shown as 
white letters with green background. (B) Pool sequencing chromatograms. Note the rapid emergence of the 
GUUGU motif already after round 3. After round 5, 14 of 15 individual clones carried the wt-loop sequence, 
one (wt4-2; already seen after round 4) still contained the TGTTGT motif though a shifted position, as shown 
at the bottom. (C) Replication capacity of individual round 4 sequences. Clone wt4-6 with a completely non-wt 
loop sequence replicated poorly; all others replicated at near wt-levels, including clone S1–2 derived from the 
next SELEX experiment. Note the common presence of the GUUGU motif (aUUGU in clone wt4-1) though 
at a shifted position in clone wt4-2. (D) No impact of GUUGU-adjacent residues on dNTP specificity during 
in vitro priming. Variants wt4-5 (non-wt nt at loop positions 1 and 2) and wt4-2 (shifted GUUGU motif) were 
analyzed by miniDP in vitro priming assays with either dGTP, dATP, dTTP or dCTP as only dNTP. Both exerted 
a strong preference for the authentic dG. (E) Strong impact of mutations within the GUUGU motif on priming-
activity. The central U residues at loop positions L4 (U2590) and L5 (U2591) were individually mutated as 
indicated, then analyzed by miniDP priming assays with dGTP.
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Monitoring selection by sequencing the pools (Fig. 6B) plus individually isolated clones (Fig. 6C) after various 
selection rounds uncovered two striking features. First, even after six rounds no specific sequence emerged at 
positions 2 to 7 of the randomized ULS sequence; second, and much in contrast, position 1 exclusively contained 
a G residue, as in wt Dε. This was also true for all functional clones isolated from prior selection rounds (Fig. 6C), 
suggesting an important role for the specific nt following the template bulge but not the rest of the left upper 
half-stem. There, the only common feature was the absence of G residues at positions 2 to 5 and position 7 of the 
randomized sequence. Only after 13 selection rounds (though not yet after 11 rounds; see Supplementary Fig. S4) 
did a single winning sequence emerge that had previously been seen after round 3 as one (clone ULS3-3) of var-
ious different sequences and replicated well (Fig. 6C); in direct competition with wt-DHBV, ULS3-3 replicated 
about one third as efficiently (Supplementary Fig. S4). Notably, the only common sequence features in the rand-
omized region of ULS3-3 vs. wt Dε were the G following the bulge, plus a U at position 4 (Fig. 6D), leaving nearly 
no basepairing potential in the entire upper stem; in particular, basepairing directly above the template bulge 
would be limited to a single G-C pair. In miniDP priming assays ULS3-3 as well as clone ULS5-2 with only the 
first and seventh of the randomized ULS positions occupied by wt-residues exerted a similarly strong preference 
for dGTP as wt Dε (Fig. 6D). Though based on a limited number of variants, the data do not provide any positive 
evidence for a major role in initiation site selection of the ULS sequence downstream of the leading G or its ability 
to pair with the right half-stem.

Altogether, the SELEX data revealed surprisingly few specificity determinants for a productive Dε - P protein 
interaction in the entire upper stem, except a G residue following the initiation site and a downstream GUUGU 
motif, functional in various sequence and structure contexts. Thus a remaining option for proper initiation site 
selection was that selective recognition of the template region relies largely on the bulge region as such, including 
its immediate vicinity.

The unique architecture of the bulge region is important for efficient priming and initiation site 
selection.  Besides carrying sequence-specific determinants in its tip32 the stable lower stem in wt Dε expels 
the 5′ end of the bulge as well as the oppositely located unpaired U26. To test whether these features contribute to 

Figure 5.  In-cell SELEX and in vivo selection confirm context-independence of the GUUGU motif. SELEX 
experiments were performed using a starting pool carrying a randomized loop sequence in the context of 
variant S1 (see Fig. 4A). (A) In-cell SELEX pool sequencing chromatograms. As in wt-Dε context sequences 
carrying the UGUUGU motif were rapidly selected, with some heterogeneity at loop position 1. In the sequence 
assignments above each chromatogram the S1-specific nt exchanges are indicated by lower case lettering. The 
winning sequences after round 5 are shown at the bottom. (B) Selection of the GUUGU motif in vivo. Two 
ducklings were inoculated with transfection-derived virions from the round 1 pool. Sequencing chromatograms 
are derived from the inoculum and serum samples of DHBV-positive animal #26/6 collected on d14 and d35 
DNA post inoculation which revealed gaGTTGT as dominant winning loop sequence. (C–E) The non-wt 
gaGUUGU motif is functional in S1 and wt-Dε context. (C) Schematic representation of the modified loop 
sequence in S1 and wt-Dε. (D) Wild-type like replication capacity in transfected LMH cells. (E) No impact on 
dNTP specificity during in vitro priming.
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defining bulge position 6 (b6) as initiation site we deleted the unpaired U (uΔ) or replaced it by the other three 
nucleotides (uA, uG, uC). We then combined these mutations with all possible nt at the b6 position. The variants 
were designated as uXb6Y where X denotes the nt at the unpaired U position and Y that at the b6 position. Using 
the miniDP in vitro priming system we then assessed each RNA’s dNTP preference. Preferential incorporation of 
the dNTP complementary to b6 would indicate use of the authentic initiation site. The original priming data are 
compiled in Fig. 7A, and a semiquantitative evaluation in Fig. 7B.

Though complex in detail, already visual inspection of the priming signals (Fig. 7A) revealed several trends. 
First, the wt combination uUb6C outperformed all others, with a strong preference for dG, i.e. complementary 
to b6C (Fig. 7A, upper left panel). Replacement of the unpaired U or its deletion maintained this preference, 
although at lower efficacy (Fig. 7A, upper row). A G at b6 (uXb6G; Fig. 7A, second row) reduced overall priming 
efficiency (see below) and led, uniquely, to preferential utilization of both dC and dT when combined with the 
authentic unpaired U and, less pronouncedly, with an A at the unpaired U position; in all other b6G combina-
tions signals were very low, without an evident preference for a particular nt. An A at b6 (uXb6A; Fig. 7, third 
row) caused preferential utilization of dT, especially in combination with the genuine unpaired U or an A at this 
position. Lastly, with a U at b6 (uXb6U; Fig. 7A, fourth row) dA was preferentially incorporated by all unpaired 
U variants, except those with a G.

The graphic representation of these data in Fig. 7B re-highlights the impact of the b6 nt on dNTP preference. 
In all groups but one the respective unpaired U mutants showing reasonable priming activity exerted a clear 
preference for the dNTP complementary to b6, confirming that this position represents the dominant initiation 
site. The exception was the nearly equal utilization of dCTP and dTTP by the two b6G variants with the authentic 
unpaired U, or an A at this position. Given the importance of a G residue following the initiation site (further 
confirmed below) and the presence of two consecutive Gs in the b6G variants, either G residue might take on this 
role (Fig. 7C), in one case specifying b6 as template for dC incorporation, in the other b5 for dT incorporation.

A common feature of the variants exerting strongly reduced priming efficacy, e.g. those carrying a G at b6 or 
the unpaired U position, was their potential to severely alter the bulge region architecture by new basepairings, 
as indicated for some representative examples in Fig. 7C and more comprehensively in Supplementary Fig. S5. In 
general, the absence of such stable alternative structures correlated with higher priming efficacy.

We also assessed the replication performance of all bulge region mutants (Supplementary Fig. S6). Though a 
thorough analysis will require further experiments, all variants except uCb6G (which had given extremely weak 

Figure 6.  In-cell SELEX reveals the importance of a G residue following the initiation site. SELEX experiments 
were performed using a starting pool randomized at the seven 5′ proximal residues of the left upper stem (ULS) 
in the context of variant S12. (A) Schematic representation of Dε variant S12. Residues in lower case differ from 
wt-Dε; randomized nt are shown as white letters on green background. (B) In-cell SELEX pool sequencing. 
Except for a strong selection of G at ULS position 1 (arrowhead) the randomized region remained heterogenous 
after round 6, and a dominant sequence (ULS3-3) emerged only after round 13. (C) Replication capacity of 
individual ULS sequences. A collection of clones isolated after various SELEX rounds (top panel) were analyzed 
in parallel with wt-DHBV by Southern blotting after transfection into LMH cells. Even clones from early rounds 
universally contained a G at ULS position 1 but differed substantially from each other at the remaining six 
ULS positions. Differences in the ratio of RC-DNA vs. dsL-DNA signals as marked as here were not seen in all 
experiments. (D) No impact of multiple non-wild-type nt in the upper left half-stem on dNTP specificity. Wt 
nt selected during SELEX are shown in red upper case, non-wt nt in encircled lower case. Clones ULS3-3 (the 
winning sequence after 13 rounds) and ULS5-2 (with wild-type nt only at the first and last randomized ULS 
position) were analyzed by miniDP priming assays using a single dNTP; both exerted a strong preference for 
dGTP. A quantitative assessment of the replication performance of ULS3-3 vs. wt-DHBV in LMH cells is shown 
in Supplementary Fig. S4.
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in vitro priming signals) produced detectable bands at the authentic RC-DNA and dsL-DNA positions; band 
intensities correlated well with in vitro priming efficiency. For instance, the two best-performing variants uAb6C 
and uCb6C (~50% and ~25% signal intensity of wt DHBV) had also given the strongest in vitro priming signals, 
with a pronounced preference for the authentic dG (Fig. 7A,B). Poor replication of the other variants is as well 
in line with their poor in vitro priming capacities, and may further be reduced in variants that, in vitro, preferred 
a nt different from dG. Hence the bulge architecture and template sequence in wt Dε are optimized for efficient 
synthesis of the most appropriate primer.

Altogether, these data suggested that the b6 position represents the preferred initiation site. The only (partial) 
shift was seen with the b6G variants (see above), underscoring the potential importance of a G residue immedi-
ately after the initiation site.

To directly address this point, we swapped the G-C pair closing the top of the bulge to C-G, while other-
wise maintaining the original wt Dε sequence. This exchange drastically reduced in vitro priming efficiency by 
~20-fold while a preference for dG utilization was preserved (Fig. 7D). In the RRL system, signals generated by 
the c-g mutant did not exceed those from a control without Dε RNA (not shown). Hence the G residue following 
the bulge sequence is indeed crucial for efficient priming from the genuine initiation site. To clarify whether the 
opposite C-residue (at least formally allowing formation of a “bulge-closing” G-C pair) contributes to this activity 
we replaced the respective C by the three other nt (bulge closing pair variants G-a, G-g, G-u). In in vitro dGTP 
miniDP priming assays both the G-g and G-a mutations massively reduced the priming signals whereas the 
G-u mutation was well tolerated (Fig. 7E). Though compatible with a basepairing requirement for the G residue 

Figure 7.  Impact of bulge region architecture on initiation site selection. Dε RNAs in which the unpaired U 
opposite the bulge (uA, uG, uC, or uΔ where the U was deleted) and the initiation site C at the b6 position 
(b6G, b6A, b6U) were mutated individually or in combination, were analyzed by miniDP priming assays with 
either of the four dNTPs. Variants are designated as uXb6Y, with X and Y defining the nt at the unpaired U 
and the b6 position, respectively. (A) Autoradiograms of individual priming assays. Note the preference of all 
substantially active variants for the nt complementary to the respective b6 position, except those with b6G 
which equally utilized dTTP and dCTP. (B) Graphical representation. Signal intensities were determined by 
phosphorimaging and related to the dGTP priming signal with wt Dε (uUb6C) which was set to 100%. Note 
the strong reduction in overall priming efficiency for all variants carrying a G at the unpaired U position, 
and the preference for utilizing the dNTP complementary to b6, except for b6G. (C) Schematic correlation of 
priming efficacy and b6 initiation site specificity with structural impact on the bulge region. RNA variants were 
categorized for overall priming efficacy and preference for utilizing the dNTP complementary to b6. Structural 
impact was assessed by the potential for new canonical plus G-U pairs. A high potential correlated with low 
overall priming; assessments for all variants are shown in Supplementary Fig. S5. The relaxed specificity of 
uUb6G and uAb6G for both dCTP and dTTP is in line with the importance of a G following the initiation site 
(see Fig. 6 and below). (D) Impact of the top bulge closing nt on priming efficacy and initiation site selection. 
The G-C bulge closing G-C pair in wt-Dε was swapped to c-g. Both RNAs were analyzed in parallel in miniDP 
priming assays with all four dNTPs. Note the drastic drop in priming efficacy but detectable maintainance of 
dGTP preference in the mutant. (E) Impact of the nt opposite the G following the bulge. Priming capacity was 
assessed by miniDP assays with dGTP. Note the ample options for new basepairings in mutants G-g and G-a.

http://S5


www.nature.com/scientificreports/

1 1SCieNtiFiC REPOrTS | 7: 7120 | DOI:10.1038/s41598-017-07657-z

following the initiation site, the G-g and the G-a mutations could also exert their negative impact by disturbing 
the genuine bulge region structure via alternative pairings, as schematically indicated in Fig. 7E.

The presumed linear determinants for productive P protein interaction are functional in a fully 
unstructured upper stem context.  In sum, the data described above indicated specific features of the 
bulge region, a G following the initiation site, plus a distant GUUGU motif as key elements for productive P 
protein interaction. However, all RNAs tested so far still contained additional wt-like sequence and/or struc-
ture features. As an ultimate test we therefore devised two “minimal variants” of Dε (mini-Dε1 and mini-Dε2; 
Fig. 8A) where these elements were presented in a completely unstructured context of runs of seven Us replacing 
the original upper stem. Bulge region specific features on the basal side were ensured by a stable lower stem with 
the authentic top five basepairs and three non-wild-type basepairs at the bottom. Mini-Dε1 maintained the orig-
inal C residues opposite the G following the bulge and at loop position 1; in mini-Dε2 also these residues were 
replaced by U. Both RNAs were then used as templates in miniDP in vitro dGTP priming assays, alongside wt 
Dε RNA as positive control and a reaction without RNA as negative control. Remarkably, both RNAs produced 
very substantial priming signals approaching 50% (mini-Dε1) and 35% (mini-Dε2) of those generated by wt Dε 
RNA (Fig. 8B). Hence the supposed key elements are not only required but also sufficient to establish a productive 
interaction with P protein, without need for a specific sequence and/or structure context in the apical Dε part. 
Furthermore, the activity of RNA mini-Dε2 indicates that basepairing of the G residues following the initiation 
site and at the base of apical loop (schematically indicated in Fig. 8) is not essential because the likelihood for 
exactly these G-U pairs to form (as opposed to pairs involving any other of the multiple U residues) appears min-
ute. Hence the fundamental determinants in the apical Dε part for generating a priming-active complex with P 
protein are of linear nature. Perhaps most surprisingly, both mini-Dε1 and mini-Dε2 supported viral replication 
when transfected as part of the DHBV genome in the pCD16_Δ3′ε vector into LMH cells (Fig. 8C). The presence 
of the mini-Dε sequences in the RC-DNAs was confirmed by direct sequencing of RC-DNA specific PCR ampli-
cons obtained using a forward primer that binds to DHBV positions 2474–2496, i.e. upstream of the 5′ end at 
position 2520 of the DHBV genome in plasmid pCD16_Δ3′ε; this also excluded that the sequences were derived 
from transfected plasmid.

Figure 8.  The GUUGU motif and the G following the bulge maintain functionality in the absence of a 
defined structure context. (A) Sequences of mini-Dε1 and mini-Dε2 RNAs. The two U residues distinguishing 
mini-Dε2 from mini-Dε1 are encircled. Lower case lettering indicates non-wt nt; those shown in orange in the 
lower stem were present in the RNAs used for in vitro priming but not in the mini-Dε pCD16_Δ3′ε vectors 
used to assess replication competence. (B) Mini-Dε in vitro priming activity. In vitro transcribed mini-Dε 
RNAs were subjected to miniDP priming assays with dGTP, in parallel with controls without RNA (ø) and with 
wt-Dε RNA; of the latter sample, only half as much of the reaction was loaded (1/2 wt). Signals were quantified 
by phosphorimaging and those of the variants were related to twice the intensity (set as 100%) of the 1/2 wt 
signal. (C) Mini-Dε1 and mini-Dε2 support DHBV replication. LMH cells were transfected with wt-DHBV 
vector pCD16_Δ3′ε or derivatives carrying mini-Dε1 and mini-Dε2 at the 5′ ε position. DNA from cytoplasmic 
nucleocapsids was analyzed by Southern blotting using a32P-labeled DHBV DNA probe.
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Discussion
The hepadnaviral ε RNA element allows selective recognition of pgRNA amongst a plethora of other RNAs in 
a cell by P protein, activates P protein’s enzymatic function and provides the information for initiating DNA 
synthesis at a specific internal site. The intricate bi-partite ε stem-loop structure appears highly suited to fulfil all 
these requirements and the special importance of the unpaired bulge and apical loop regions, as in many other 
protein-RNA interactions, was experimentally proven6, 10, 23–25, 29, 30, 33–35. As unpaired RNA regions are defined by 
their flanking double-stranded regions a structural role for the connecting upper stem in maintaining and possi-
bly orienting the bulge and loop appeared well conceivable. Moreover, the unique location of the 3′ terminal bulge 
nt (b6) at the junction to the upper stem double-helix could contribute to its specific use as initiation site. Not the 
least, the upper stem sequence could itself harbor direct determinants for a productive interaction with P protein.

The comprehensive mutational data of this study challenge all of these notions. The only fundamental deter-
minants identifiable in the entire apical half of Dε were the GUUGU motif in the classical Dε loop sequence 
and a G residue following the bulge with an oppositely located pyrimidine; yet they could exert their functions 
in priming and initiation site selection independently of a specific RNA structure context. Hence the structural 
determinants in Dε are confined to the lower stem which ensures single-strandedness of the bulge and the oppo-
site unpaired U; in addition, the specific bulge architecture must not be altered by improper basepairing.

Numerous lines of evidence support these conclusions. Varying the distance between bulge and loop had only 
modest effects on priming (Fig. 2B) and replication (Fig. 2D), except for the most severely altered class II mutants. 
In vitro, all variants preferred dGTP over dATP (Fig. 2B,C) and all supported formation of wt-like replicative 
DNA intermediates (Fig. 2D) with the same minus-strand DNA 5′ ends as in wt DNA (Supplementary Fig. S1); 
moreover, even two class II variants established infection in vivo (Supplementary Fig. S2). Hence the upper stem 
sequence acts at most as a flexible tether for the bulge and loop, allowing them to cooperate, within limits, at vari-
ous distances from each other. Only in the most severely disabled variants −2R_II and −2LR_II (Fig. 2) may that 
distance be too short to allow both elements to efficiently interact with P protein.

SELEX-targeting the classical seven nt loop sequence in different contexts (Figs 4 and 5) rapidly selected the 
3′ proximal wt sequence GUUGU but differing nt at the two 5′ terminal positions; these did neither substan-
tially impair replication nor the wt-like preference for dGTP as first nt in priming. Notably, the variant loop 
sequence gaGUUGU was selected in vivo, although it lacks the ability to form a wt-like apical tetraloop (Fig. 5C). 
Most convincingly dispensability of a stable apical loop structure was confirmed by the priming activity and 
replication-competence of the mini-Dε variants (Fig. 8).

Sequence-specific features in the GUUGU motif itself were corroborated by the sensitivity of the central U 
residues towards mutations (Fig. 4D), extending previous data22, 25, 28. Hence the GUUGU motif in the classical 
loop sequence is a crucial linear determinant for Dε function.

SELEX-targeting the upper left half-stem (ULS) revealed as the only strongly selected feature a G residue 
immediately following the bulge, with the notable absence of G from the following four positions (Fig. 6B). 
Multiple mutations at the other ULS positions were compatible with replication competence (Fig. 6C) and main-
tained a preference for dGTP in in vitro priming (Fig. 6D). Hence the ULS sequence is neither crucial in itself nor 
is there a fundamental need for basepairing with the opposite upper right half-stem. Remarkably, variants ULS3-3 
and ULS5-2 lack the potential to form more than a single G-C pair to close the bulge (Fig. 6D) which is unlikely to 
occur, as is particularly evident for the mini-Dε variants (Fig. 8). Hence the bulge in Dε does not have to conform 
to the definition of being closed on both sides, and the invariantly selected G residue following the bulge may also 
be considered as a linear determinant for Dε function. Its functional importance was confirmed by a drastic drop 
in priming efficiency upon swapping the bulge closing G-C pair to c-g (Fig. 7D).

In contrast to the virtual absence of specificity determinants in the upper stem (except the GUUGU motif 
and the G following the bulge), the distinct architecture of the bulge region was critical for priming activity and 
initiation site selection, as inferred from some low replicators from early SELEX rounds (Fig. 3B,C) and directly 
shown by the combinatorial mutations of the unpaired U opposite the bulge plus the b6 position (Fig. 7). These 
confirmed the dominant role of the b6 position as initiation site by the preference for the complementary dNTP 
with almost all substantially active RNAs (Fig. 7A,B); hence base-identity at b6 is not itself decisive for initiation 
site selection. The only exception were mutants with a G at b6 which caused equal utilization of dC and dT. Likely, 
in these variants both G residues at the 3′ end of the bulge can contribute to selecting the preceding residue as ini-
tiation site (Fig. 7C). Another general feature was the detrimental impact on overall priming activity of mutations 
allowing new stable basepairings within the bulge region (Figs 7C and S5).

Hence single-strandedness of the bulge region for at least 6 nt from the top end of the lower stem appears cru-
cial for efficient priming, with the sixth nt predestined as initiation site; however, its efficient utilization is strongly 
favored by a G residue at the following position, as confirmed by the bulge closing basepair mutant c-g which still 
preferred dG but at a drastically lower overall priming level (Fig. 7D). Replacing the opposite C by U had only a 
minor impact on priming whereas G or A drastically reduced priming activity (Fig. 7E). Though suggestive of a 
role for a bulge-closing G-C or G-U pair, stable isolated G-C or G-U pairs are unlikely to exist, especially in the 
absence of supporting neighboring structures as in mini-Dε (Fig. 8). Hence a pyrimidine above the unpaired U 
may be part of the determinant at the top of the lower stem and/or directly contribute to initiation site selection. 
Alternatively, purines at this position may act inhibitory via improper intra-bulge pairings (Fig. 7E). In this and 
other ambiguous cases mini-Dε would provide an ideal framework for distinction, including for the question 
whether an A-U (or U-A) pair could functionally substitute for the G-C or G-U pair.

How can this new view of the Dε upper stem as a largely passive unstructured tether for the GUUGU motif 
(and the G following the bulge) be reconciled with the highly structured upper stem in wt Dε? A likely scenario 
is outlined in Fig. 9 which integrates all data sets from this study. As demonstrated by the mini-Dε RNAs, a mere 
three principal determinants make an RNA suitable as template for initiation site-specific protein-priming by 
DHBV P protein: (i) a template region followed by a G residue that is kept single-stranded by a stable stem on the 
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basal but not necessarily the apical side; (ii) a nearby linear GUUGU motif, however without stringent distance 
constraints; (iii) as previously established, a stable lower stem of at least five basepairs36, with the top two or three 
carrying sequence-specific information32. These elements suffice to activate P protein and position the template 
region such that the catalytic residues of the RT domain, the dNTP binding pocket, and the last nt of the bulge 
(the initiation site) are all properly aligned; only then can the bond to the priming Tyr-residue in the TP domain 
form (Fig. 9).

Most plausibly, this is achieved by complementary sites on P protein that specifically bind the RNA determi-
nants (grey areas in Fig. 9). One such site must exist for the 3′ proximal bulge region such that the nt at b6 can 
template incorporation of the first, complementary dNTP; this likely includes the crucial following G residue. 
A second site likely involves the nt at the top lower stem where basepairing alone is insufficient for priming 
activity32. A third binding site is predicted to accomodate the GUUGU motif or parts thereof; a strong candidate 
for a direct contact is the first U (L4 position) where no other nt was tolerated (Fig. 4E). Its functioning from 
various distances and without a rigid connection favors a role in P protein activation rather than initiation site 
selection. A separate loop-binding factor28 can be excluded because in the miniDP system only P protein, Dε 
RNA and buffer salts are present. The GUUGU motif may then bind within the RT domain and indirectly cause 
TP to accomodate a priming-active orientation in the complex; alternatively, it could bind directly to TP (Fig. 9). 
In all the rest of the apical Dε part, neither a specific sequence nor the ability to adopt a distinct structure are 
fundamentally important. To the contrary, accessibility of the few relevant RNA determinants appears as key to 
priming-competence.

Priming-active P protein - ε RNA complexes do not form via lock-and-key binding but in a dynamic multi-step 
process. For instance, various Dε RNA variants can bind to P protein but do not support priming29, 30, coincident 
with their inability to undergo the apical structural rearrangement that occurs with priming-competent RNAs6. 
Which explanation holds for which of the priming-defective variants from the current study remains to be deter-
mined. However, from the many priming-active variants we can propose that a main feature of a functional 
Dε upper stem sequence is to allow engagement by P protein of the specific RNA determinants at a reasonable 
energetic cost, defined by the energy required to break the existing intra-RNA interactions and the energy gained 
by the new RNA - protein interactions. Full occupancy of all RNA binding sites on P protein, likely in a stepwise 
process, would correlate with priming activity, and partial occupancy with non-productive binding, as also seen 
with HBV (see below). In this model, mini-Dε1 and mini-Dε2 represent one extreme with little or no energy 
input required to disrupt existing structures. Wild-type Dε with its largely basepaired upper stem would represent 
an intermediate case where the energy gained by productive binding to P protein is just high enough to enable the 
RNA rearrangement, possibly via mini-Dε-like intermediates. The tether rather than ruler function of the upper 

Figure 9.  Updated model of avihepadnaviral replication initiation. The cartoons integrate key findings of 
this study with previous results, including the stepwise formation of a priming-active complex (Fig. 1B). The 
essential RNA elements in a generalized mini-Dε like sequence (center) are a stable lower stem with specific nt 
at its tip (red) that ensures single-strandedness of the template region (blue); this must be followed by a G (red). 
X denotes bulge region nt that are flexible as long as they do not interfere with the genuine bulge architecture; 
Py represents the pyrimidine opposite the G following the template sequence. GUUGU (red) denotes the apical 
loop motif, grey wavy lines the connecting sequences to the bulge region which can be of various lengths; length 
limits from this study are indicated. Grey areas symbolize specific binding sites on P protein; alternatively to RT, 
a binding site for the GUUGU motif may reside in TP (white area with a dashed outline). In the priming-active 
state (green) all binding sites are occupied, and the priming Tyr in TP, the incoming dGTP and the initiation 
site are properly aligned. Partial occupancy corresponds to non-productive binding (magenta). Whether the 
active state is reached depends on the energy balance between breaking existing intra-RNA interactions (higher 
in wt Dε than in mini-Dε) vs. the energy gained by protein binding. Mini-Dε RNA may represent a transient 
intermediate or a separate entry into the pathway. The order of binding site occupation and number of sites to 
be occupied for stable non-productive binding is not known. However, in HBV binding of the GU-rich loop 
motif appears as the limiting step for in vitro priming competence. See text for further details.
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stem sequences would conform to a “fly-casting” mechanism37 whereby occupation of one site increases chances 
for engagement of nearby other RNA determinants. Further stabilizing the upper stem would increase the ener-
getic barrier beyond a threshold and prevent in vitro priming6. In non-binding Dε variants the a priori accessible 
RNA determinants would be insufficient to sustain any stable protein interaction, in line with the dramatic influ-
ence of RNA context on protein-binding to specific RNA sequences38.

How relevant is this model for naturally occurring ε sequences? As the identified primordial RNA determi-
nants are invariantly present in the ε sequences of all known avian HBVs30 the principal conclusions should apply 
to all of them. Nonetheless, there is much less natural sequence variability in the upper stem part than implicated 
by the in vitro priming activity of the mini-Dε variants. This probably reflects the multiple additional functions 
of the ε sequence22, e.g. compatibility with the mRNA function of pgRNA for core and P protein, and as part of 
the preC ORF from which the secreted (albeit non-esssential) e antigen is produced. Notably, all natural avian ε 
sequences maintain two or more canonical basepairs to close the top of the bulge and the apical loop, in seem-
ing contrast to our data. Plausibly such local basepairing constrains the ability of the relevant ε determinants to 
undergo irrelevant pairings elsewhere in the pgRNA. Also, while no defined loop structure is required for the 
GUUGU motif to function, its presentation on a properly structured loop could still facilitate initiation of direct 
contacts with P protein.

The overall similarity to Dε of HBV ε (Fig. 1) suggests that key features of the model also apply to the human 
and other orthohepadnaviruses, however with some adaptations. The bulge in orthohepadnaviruses is not fol-
lowed by G but by the sequence AAG. Possibly one of the A residues takes on the role of the G residue in Dε, or the 
G residue acts from a distance to the initiation site at the 3′ terminal C in the bulge14 and/or the following A10, 39.  
Otherwise, a specific architecture of the bulge region itself appears also crucial in HBV13, 14, 24, 40, 41. The classical 
sequence in orthohepadnaviruses is similar to that in avihepadnaviruses (CUGUGC vs. CUGUUGU) and also 
here the central GUG motif appears most important24, 34. However, any deeper mechanistic understanding will 
require an HBV in vitro priming system, ideally comprising just P protein and ε RNA; obviously, this could also 
serve to screen for new antivirals that interfere with protein-priming as a highly virus-specific target.

Up to date, none of the in vitro systems that work for DHBV has yielded authentic ε-templated protein-priming 
activity. Intriguingly, specific though non-productive in vitro binding to HBV P protein requires most of the ε 
RNA but not the apical loop13, 33, implying that failure of P protein to engage the loop sequence causes the lack 
of activity. One interpretation is the absence, from all systems tested, of an auxiliary loop-binding host factor13. 
Based on our model (Fig. 9) we propose instead that embedment of the motif into the highly stable upper stem 
structure in HBV ε precludes a productive, direct interaction with P protein in vitro. Hence destabilizing the 
upper stem should lower the energy barrier that prevents rearrangement of the HBV RNA into a new, productive 
conformation. If the upper stem in HBV ε harbors more specific information than in Dε, as suggested by earlier 
studies13, 28, 41 and its near universal sequence conservation in the mammalian viruses, the in-cell SELEX meth-
ods developed here lend themselves to identifying mutants that combine decreased upper stem stability with 
replication- and consequently priming-competence.

Materials and Methods
A detailed description of the in-cell SELEX procedures is provided in Supplementary Methods.

Plasmid constructs.  The parental DHBV16 expression vector pCD16 carries a 1.1 × DHBV16 genome 
(GenBank accession no. K01834; DHBV16 positions 2520–3021/1–2816) under control of the cytomegalovirus 
(CMV) immediate-early (IE) enhancer promoter. In its derivative pCD16_Δ3′ε the 3′ copy of Dε was made 
non-functional by a 40 nt deletion (DHBV16 positions 2568–2607). For in vitro transcription, pUC19T7 vectors 
were used which carry the Dε sequence, or derivatives thereof, under control of the bacteriophage T7 RNA poly-
merase promoter22, 30. Vectors encoding the modified Dε sequences S1 and S12 have previously been described22, 30.  
Additional mutations were introduced via conventional cloning of PCR products obtained using mutagenic prim-
ers, or via the Q5 mutagenesis kit (NEB). Generation of the SELEX vector pools is detailed in Supplementary 
Methods. All construct were verified by Sanger sequencing.

In vitro priming.  In vitro Dε transcripts were generated from the respective pUC19T7 vectors linearized 
immediately after the Dε cassette22, 30 using the T7 MEGAScript kit (Ambion). Priming assays were performed 
using either DHBV P protein in vitro translated in rabbit reticulocyte lysate6, or using bacterially expressed 
DHBV miniDP protein (which does not require chaperones for activation) and 1 µM in vitro transcribed Dε 
RNA plus the desired α32P-labeled dNTP (at equal specific activity when comparing different dNTPs) as pre-
viously described31; Covalently 32P labeled P protein resulting from successful protein-priming was detected by 
autoradiography and/or phosphorimaging (Typhoon system, GE Healthcare) after SDS-PAGE separation. Band 
intensities were quantified by phosphorimaging, using ImageQuant software.

Cell culture and transfection.  Chicken LMH hepatoma cells were cultured and transfected using Mirus 
TransIT-LT1 reagent (Mirus) as previously described22.

Detection of viral gene products and nucleic acids.  Detection of cytoplasmic capsids by immunoblot-
ting after native agarose gel electrophoresis (NAGE), isolation of viral nucleic acids associated with cytoplasmic 
nucleocapsids and extracellular viral particles after enrichment by polyethylen glycol precipitation, and Southern 
blotting using a32P labeled DHBV DNA probe were all conducted as previously described22. The presence of 
the mini-Dε1 and mini-Dε2 sequences in nucleocapsid-associated viral DNAs from LMH cells transfected with 
the respective pCD16_Δ3′ε plasmid derivatives was verified by sequencing of PCR amplicons obtained using 
a forward primer matching DHBV positions 2474–2496 and and a reverse primer complementary to positions 
2821–2844.
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In vivo infection of ducklings.  All animal experiments were approved by the Regierungspräsidium 
Freiburg (project G02/36) and performed in compliance with German animal welfare legislation at a registered 
facility of the University Hospital Freiburg under veterinary supervision. Two- to three-day-old Pekin ducklings 
were inoculated with a dose of 108 vge of transfection-derived virus and viremia over time was monitored using 
a one-step qPCR with a lower detection limit of about 105 vge/ml22, 42. For sequencing of the Dε regions, primers 
DR1-SpeI DHBV+ (aaaaaaactagTACACCCCTCTCCTTCGGAGC; the non-DHBV 5′ sequence in lower case 
letters creates a SpeI restriction site) and D2738- (TTAGCATCTCTAACAAGATCATC) spanning DHBV posi-
tions 2537 to 2738 were used22.

In-cell and in vivo SELEX procedure.  A detailed account of the generation of the SELEX vector pools and 
the selection procedure, including the built-in precautions to minimize contamination with wt-DHBV sequences 
during the multiple cloning and amplification steps as well as a functional validation is given in Supplementary 
Methods. In brief, a ~160 bp Dε comprising DNA fragment was created via PCR using one synthetic oligonu-
cleotide carrying the desired randomized region (the 6 nt in the bulge, the 7 nt of the classical loop, or the 7 5′ 
proximal nt of the upper left half-stem) as template, plus two oligos acting as forward and reverse amplification 
primers. The product was extended in a second PCR to generate a ~2 kb DHBV fragment which was finally 
cloned into a special recipient pCD16_Δ3′ε derivative, carrying a nonrelated 1.2 kb stuffer DNA instead of the 
5′ proximal DHBV sequence. For the in-cell SELEX, the vector DNA pooled from ten- to twenty-thousand indi-
vidual colonies was transfected into LMH cells. Three days post transfection, DNA associated with viral particles 
(secreted enveloped virions and in some cases intracellular nucleocapsids, as indicated) was used as template for 
PCR amplification of a ~2 kb genome segment harboring the Dε region from which a new vector pool was recon-
stituted. This procedure was repeated from five to thirteen times. Selection progress was monitored by sequenc-
ing the resulting new vector pools plus various individual plasmid clones from each round. Functionality of the 
pools and of select clones with known sequence was assessed by Southern blotting, using viral DNA from cells 
transfected with pCD16 and/or pCD16_Δ3′ε as reference. For in vivo selection, two ducklings were inoculated 
as described above with virions from a first round transfection-derived vector pool carrying a randomized loop 
sequence in the context of variant S122. Sequence analyses were performed on PCR products obtained using DNA 
from serum-borne virions as template at the indicated time points post inoculation as described22.

Data Availability.  All data generated or analysed during this study are included in this published article and 
its Supplementary Information files.
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