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Diadenosine polyphosphates (Ap3A and Ap4A) behave as alarmones triggering
the synthesis of enzymes of the phenylpropanoid pathway in Arabidopsis thaliana
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a b s t r a c t

It is known that cells under stress accumulate various dinucleoside polyphosphates, compounds
suggested to function as alarmones. In plants, the phenylpropanoid pathways yield metabolites pro-
tecting these organisms against various types of stress. Observations reported in this communica-
tion link these two phenomena and provide an example of a metabolic ‘‘addressee’’ for an
‘‘alarm’’ signaled by diadenosine triphosphate (Ap3A) or diadenosine tetraphosphate (Ap4A). In
response to added Ap3A or Ap4A, seedlings of Arabidopsis thaliana incubated in full nutrition med-
ium increased both the expression of the genes for and the specific activity of phenylalanine ammo-
nia-lyase and 4-coumarate:coenzyme A ligase, enzymes that control the beginning of the
phenylpropanoid pathway. Neither adenine mononucleotides (AMP, ADP or ATP) nor adenosine
evoked such effects. Reactions catalyzed in vitro by these enzymes were not affected by Ap3A or
Ap4A.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction been termed alarmones. However, no clear metabolic or molecular
Dinucleoside 50,50 0 0-P1,Pn-polyphosphates, NpnN’s (where N and
N0 are 50-O-nucleosides and n is the number of phosphate residues
in the polyphosphate chain that links the two 50-esterified
nucleosides), are naturally occurring compounds. They can be syn-
thesized by some ligases [1–6], firefly luciferase [7] and certain
transferases [8–10], and have been identified in bacteria [11,12],
yeast [13,14] and animals, including sea urchin [15], Artemia salina
[16], Drosophila [17] and mammals [18–20]. The presence of
NpnN’s has been demonstrated in yellow lupin seedlings (Gura-
nowski, unpublished observation) but no detailed report of the
occurrence of these compounds in plants has appeared yet. Three
plant ligases, phenylalanyl- and seryl-tRNA synthetases [4] and
4-coumarate:CoA ligase [6], have been shown to catalyze the
synthesis of diadenosine 50,500 0-P1,P4-tetraphosphate (Ap4A) and
some other adenylyl derivatives. Since it has been shown that cells
subjected to stresses such as elevated temperature, ethanol or cad-
mium, accumulate various NpnN’s [11–14], these compounds have
chemical Societies. Published by E
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target (‘‘addressee’’) of the postulated ‘‘alarm’’ signalled by the
NpnN’s has been experimentally demonstrated. In higher plants,
heavy metals including cadmium (II) stimulate the production of
many compounds that protect plant tissues against these harmful
agents. Among such compounds are products of the phenylpropa-
noid pathway, including flavonoids and lignins [21–24]. We
wondered, therefore, whether exogenously applied Ap3A and
Ap4A, the most predominant NpnN’s that probably also accumulate
in plant cells subjected to stress-inducing agents like Cd(II), could
affect the activities and/or synthesis of any enzymes of the phenyl-
propanoid pathway. This communication reports that 7-day-old
seedlings of Arabidopsis thaliana incubated in medium containing
micromolar concentration of Ap3A or Ap4A increased the specific
activities of phenylalanine ammonia-lyase (PAL) and 4-couma-
rate:CoA ligase (4CL) as well as the expression of the genes encod-
ing these enzymes. To the best of our knowledge, this is the first
evidence in a plant system that exogenously applied NpnN’s can
signal stress conditions by triggering a cascade of reactions to yield
various protective compounds.

2. Materials and methods

2.1. Plant growth conditions

Wild-type A. thaliana, ecotype Col-0 (Lehle Seeds, USA) were
grown in sterile full nutrition medium prepared as described by
lsevier B.V. All rights reserved.
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Scheible and co-workers [25]. The Arabidopsis seedlings (100–120)
were kept in 250-ml glass Erlenmeyer flasks containing 30 ml of
the above medium in orbital shakers with constant (24 h), uniform
fluorescent light (150 lmol m�2 s�1) at 22 �C. During the first
3 days the shaker’s speed was low (30 rpm) and then it was set
at 80 rpm. After 5 days, the old medium was removed and replaced
with a fresh portion of the same medium. After a further 2 days
each flask was supplemented with a 30 ll aliquot of the compound
under study at an appropriate concentration, or water (control),
and the growth continued. The plants were harvested after 5, 10,
30, 60, 120 or 180 min, depending on the experiment. A group
of plants from each flask was quickly blotted on tissue paper,
washed twice with an excess of distilled water, blotted on tissue
paper again, frozen in liquid nitrogen, and kept at �80 �C for
analysis.

2.2. Determination of Ap3A and Ap4A in the growth medium

To monitor uptake of the dinucleotides by A. thaliana seed-
lings, samples of the growth medium (2 ml) were collected at
the same time as the plants and analyzed by HPLC as described
earlier [26].

2.3. mRNA level determination

Total RNA was extracted from A. thaliana seedlings using an
RNeasy Plant Kit (Qiagen). DNA was removed with RNase-free
DNase (Qiagen). RNA purity was confirmed by PCR using actin-
specific primers. RNA concentration was determined with a Qubit
fluorometer (Invitrogen) and 4 lg of total RNA was used for cDNA
synthesis. RNA and oligo(dT)19 (50 lM) primers were mixed in a to-
tal volume of 42 ll and incubated for 5 min at 65 �C followed by
1 min on ice. SuperScript III reverse transcriptase (Invitrogen),
dNTP mix, 5� first strand buffer, DTT and RNase inhibitor (RNase-
OUT Invitrogen) were mixed at 4 �C and dispensed into the tubes
with RNA. The reaction was carried out in 60 ll at 50 �C for
60 min. Reverse transcriptase was inactivated by heating at 70 �C
for 15 min. A real-time quantitative PCR reaction was performed
(Mastercycler� ep realplex, Eppendorf) on the synthesized cDNA
(20 ng) using HotStar-IT SYBR Green qPCR Master Mix (USB) and
the following primers specific for A. thaliana (PAL1, PAL2, 4CL,
common to 4CL1, 4CL2 and 4CL3, and CHS, respectively): PAL1F 50-
CCAAATGATTGTCTGTGAAGTGG-30, PAL1R 50-CCGATGTTTGTTATG-
GATATTGAG-30, PAL2F 50-CAATGGATCAAATCGAAGCA-30, PAL2R
50-TATTCCGGCGTTCAAAAATC-30 and 4CL (4CL1, 4CL2, and 4CL3);
4CLF 50-CATCCCTAACCACCTCCCACTC-30 i 4CLR 50-GGAGGAGGAT-
CATTACAACGTC-30, CHSF 50-GGCAAAGAAGCGGCAGTGAAGG-30

and CHSR 50-GACGGAAGGACGGAGACCAAG-30. Standard cycling
conditions were: 2 min at 50 �C, 10 min at 95 �C and 40 cycles alter-
ing between 15 s at 95 �C and 55 �C for 15 s and 1 min at 60 �C, then
the melting curve profiles were determined. The comparative CT

(cycle threshold) method for relative quantification was used
with actin ACTF 50-ACTTTCATCAGCCGTTTTGA-30 and ACTR 50-
ACGATTGGTTGAATATCATCAG-3’ as the endogenous control. The
amount of target, normalized to an endogenous reference and rela-
tive to the calibrator, was determined using the 2�DDCT method [27].
The GenBank Accession Nos. for the sequences used in this work
are: NM_129260 (PAL1), NM_115186 (PAL2), NM_179462 (4CL1),
NM_113019 (4CL2), NM_179513 (4CL3), NM_121396 (CHS),
NM_114519 (actin).

2.4. Enzyme extraction and assays

2.4.1. PAL activity
Frozen A. thaliana seedlings (0.5 g) were ground in a mortar in li-

quid nitrogen and mixed with 5 ml of extraction buffer (150 mM
Tris–HCl, pH 8.8, 12 mM 2-mercaptoethanol, 0.1 g ml�1 Dowex�

1X4-200). The homogenate was centrifuged at 23,000g for 30 min
at 4 �C. The supernatant, referred to as the enzyme extract, was used
for the determination of phenylalanine ammonia-lyase (EC 4.3.1.5)
activity according to Alokam and co-workers [28] by measuring
the increase in A290 for 10 min at 30 �C due to the accumulation of
trans-cinnamic acid (e290 = 9.5 mM�1 cm�1). The PAL assay mixture
(0.2 ml) contained 50 mM Tris–HCl, pH 8.8, 5 mM L-phenylalanine
and 10 ll enzyme extract.
2.4.2. 4CL activity
Frozen A. thaliana seedlings (0.5 g) were ground in a mortar

with liquid nitrogen and 5 ml of extraction buffer (100 mM Tris–
HCl, pH 7.8, 5 mM 2-mercaptoethanol, 5% glycerol). Next, 0.5 g
Dowex� 1X4-200 was added and the sample stirred for 15 min at
4 �C. The homogenate was centrifuged at 23,000g for 30 min. The
4:coumarate-CoA ligase (EC 6.2.1.12) was assayed according to
Knobloch and Hahlbrock [29]. The reaction mixture (0.2 ml) con-
tained 100 mM Tris–HCl (pH 7.8), 0.1 mM p-coumaric acid,
0.5 mM ATP, 0.3 mM CoA, 5 mM MgCl2 and 10 ll enzyme extract
(4-6 lg of protein). The activity of 4CL was determined at 30 �C.
Formation of coumaroyl-CoA was measured by monitoring the
A333 (e333 = 21 mM�1 cm�1) [30]. Assays with Ap3A or Ap4A were
performed with pure recombinant At4CL2 kindly donated by Dr.
Erich Kombrink (Max Planck Institute for Plant Breeding Research,
Cologne, Germany).
2.4.3. CHS activity
The extraction and assay of chalcone synthase (EC 2.3.1.74) was

performed according to a modification of the method of Fischer
and co-workers [31]. Frozen A. thaliana seedlings (0.5 g) were
ground in a mortar in liquid nitrogen and mixed with extraction buf-
fer (100 mM KH2PO4/K2HPO4 pH 8.0, 18 mM L-cysteine, 20 mM
ascorbic acid, 0.1 g ml�1 Dowex� 1X4-200). The homogenate was
centrifuged at 23,000 g for 30 min and the supernatant (enzyme ex-
tract) used for the enzyme assay. The reaction mixture (63 ll) con-
tained 50 mM KH2PO4/K2HPO4 pH 8.0, 20 mM L-cysteine, 2% BSA
(w/v), 0.2 mM p-coumaroyl-CoA (see below for its synthesis),
0.2 mM [2-14C]malonyl-CoA and 10 ll enzyme extract (4–6 lg of
protein). Incubation was carried out at 35 �C for 1 h. After this time,
the reaction was stopped by adding 6 ll 20% HCl. Next, 200 ll ethyl
acetate was added and the reaction mixed using a vortex and centri-
fuged for at least 2 min. The ethyl acetate layer was transferred to a
new tube and evaporated to dryness in a SpeedVac concentrator. The
sample was redissolved in 20 ll methanol and applied to an alumi-
num-backed silica gel plate containing a fluorescent indicator
(Merck, Cat. No. 5554). The chromatogram was developed for
45 min in chloroform:ethanol (3:1 vol/vol), dried, and the naringe-
nin visualized under a short-wave ultraviolet lamp. The spots of
naringenin were cut out and radioactivity determined by scintilla-
tion counting.

p-Coumaroyl-CoA was prepared according to Sullivan [32]
using recombinant At4CL2 protein. The thioester was synthesized
in a 2-ml reaction mixture containing 100 mM Tris-HCl pH 7.8,
0.5 mM CoA, 5 mM ATP, 5 mM MgCl2, 1 mM p-coumaric acid and
4 lg recombinant 4CL2. The reaction mixture was incubated at
37 �C and monitored by measuring the A333 up to 2 h. Next, the
reaction mixture was applied to a 1-ml ENVI-18 solid-phase
extraction column (Supelco) preequilibrated with 3 ml methanol
and 3 ml 0.1% acetic acid in water, pH 2.75. The column was
washed with 6 ml 0.1% acetic acid in water, pH 2.75, and the cou-
maroyl-CoA eluted with 1 ml methanol. After methanol evapora-
tion, the thioester was dissolved in 0.5 ml 25 mM MOPS buffer,
pH 7.5. The concentration of p-coumaroyl-CoA was determined
spectrophotometrically (see Section 2.4.2).
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2.5. Protein concentration

Total protein concentration was estimated according to Brad-
ford [33], using bovine serum albumin as a standard.

2.6. Statistical analysis

The experiments were carried out in triplicate for the enzyme
assays and in duplicate for the mRNA level determination. The re-
sults are the mean ± SD.
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Fig. 1. Phenylalanine ammonia-lyase gene PAL1 and PAL2 expression (A) and PAL
activity (B and C) in Arabidopsis thaliana seedlings treated with Ap3A or Ap4A.
(A) Treatment with 5 lM Ap3A or Ap4A for 0–180 min; (B) treatment with 5 lM
Ap3A or Ap4A for 0–180 min; (C) Treatment with 0–25 lM Ap3A or Ap4A for
180 min. Values are means of three independent experiments ±SD.
3. Results

In initial experiments designed to determine whether exoge-
nously applied Ap3A or Ap4A could affect the synthesis and activity
of PAL and 4CL in A. thaliana seedlings, a concentration of 5 lM
dinucleotide was used in the growth medium. Under these condi-
tions we observed a dramatic time-dependent increase in the
expression of the PAL2 gene with either dinucleotide (Fig. 1A).
Ap4A triggered an increase in PAL2 expression within the first
5 min of the incubation, reaching a maximum 75-fold increase
within 10 min and remaining at this level for at least 3 h. Although
we analyzed fewer time points with Ap3A, this nucleotide ap-
peared to cause a very similar effect. Interestingly, PAL1 expression
remained practically unaffected. Fig. 1B shows that the specific
activity of PAL in seedling extracts also increased in response to
Ap3A (up to 8- to 9-fold in 3 h) and Ap4A, though to a lesser extent
and with different kinetics (up to 3-fold by 10 min followed by a
decline). The dependence of PAL catalytic activity in the seedling
extracts on the concentration of Ap3A or Ap4A in the growth
medium is shown in Fig. 1C. With Ap3A, a kind of saturation curve
can be seen that reaches a plateau at 0.2 lM, decreasing slightly
thereafter up to 25 lM. In the case of Ap4A, the highest increase
in PAL activity was observed at 40 nM. The magnitude of the re-
sponse to 8 nM Ap3A is quite striking.

Analogous measurements were performed for the Arabidopsis
4CL genes (Fig. 2A) and 4CL catalytic activity (Fig. 2B and C).
Ap3A- and Ap4A-stimulated expression of the 4CL genes was also
observed, although it was much less dramatic (less than 3-fold)
than that of PAL2. In the case of 4CL activity, the effects evoked
by Ap3A and Ap4A were similar. The plateau of 4CL activity in
response to 5 lM Ap3A or Ap4A was reached in 30 min, with that
particular concentration of the dinucleotides appearing to exert
the strongest effect (Fig. 2C). Finally, we found that the gene and
the catalytic activity of chalcone synthase, which catalyzes a more
downstream reaction in the phenylpropanoid pathway than does
PAL or 4CL, were both poorly stimulated by either AP3A or AP4A
(Fig. 3A and B).

We also found that neither Ap3A nor Ap4A affected PAL or 4CL
activity directly when added at concentrations up to 50 lM to
the in vitro assay mixtures (not shown). Since all organisms [34],
including plants [35] possess a number of specific and nonspecific
enzymes that can degrade NpnN’s yielding nucleoside mononucle-
otides, we checked whether these potential degradation products
(ATP, ADP, AMP or adenosine), used at the same micromolar con-
centrations as those of Ap3A or Ap4A, could exert the above effects
on the genes or activities of PAL and 4CL. When individually tested
at a concentration of 5 lM, none of these four compounds could
stimulate the expression or activity of either enzyme in the seed-
ling extracts. Using HPLC, we also monitored changes in the con-
centration of Ap3A and Ap4A in the growth medium during the
experiments. In each case, the starting concentration of 5 lM fell
to about 3 lM after 3 h but no measurable amounts of adenine
mononucleotides were detected in the medium. Thus, the apparent
‘‘consumption’’ of these dinucleotides by the seedlings was not
accompanied by the appearance of their potential degradation
products in the growth medium.

4. Discussion

For more than three decades, researchers have carried out many
different kinds of experiments in different systems to try to answer
the question about the biological role of NpnN’s. For example, Ap4A
was found to trigger the initiation of DNA replication in vitro [37]
and to be a ligand of a 57-kDa protein associated with DNA poly-
merase a [38]. It also stimulated DNA synthesis when microin-
jected into Xenopus laevis oocytes [39] and induced apoptosis in
cultured human cells [40]. Extracellularly, different ApnNs can con-
trol blood pressure [41,42] and act as neurotransmitters [43].
Recently, Ap4A has been reported to be a signaling molecule in
immunologically activated mast cells [44]. For more examples
and a comprehensive discussion on these issues see the review



Time (min)

R
el

at
iv

e 
ge

ne
 e

xp
re

ss
io

n

0

1

2

3 Ap3A

Ap4A

A

B

Time (min)

4C
L

 a
ct

iv
it

y

pk
at

 m
g 

-1
 p

ro
te

in

0

50

100

150

200 Ap3A

Ap4A

Concentration (µM)

Control 60 120 180

Control 10 30 60 120 180

Control 0.008 0.04 0.2 1 5 25

4C
L

 a
ct

iv
it

y
pk

at
 m

g-1
 p

ro
te

in

0

50

100

150

200 Ap3A

Ap4A

C

Fig. 2. 4-Coumarate:CoA ligase gene 4CL expression (A) and 4CL activity (B and C)
in Arabidopsis thaliana seedlings treated with Ap3A or Ap4A. (A) Treatment with
5 lM Ap3A or Ap4A for 0–180 min; (B) treatment with 5 lM Ap3A or Ap4A for 0–
180 min; (C) treatment with 0–25 lM Ap3A or Ap4A for 180 min. Values are means
of three independent experiments ±SD.
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Fig. 3. Expression of chalcone synthase gene CHS (A) and CHS activity (B) in
Arabidopsis thaliana seedlings treated with Ap3A or Ap4A. (A) Treatment with 5 lM
Ap3A or Ap4A for 0–180 min; (B) treatment with 5 lM Ap3A or Ap4A for 0–180 min.
Values are means of three independent experiments ±SD.
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by McLennan [36]. Until now however, no potential function for
NpnN’s has been demonstrated in plants. Our findings described
above show that at least Ap3A and Ap4A can act as alarmones in
plants. They evoked the strongest response in stimulating the
expression and activity of PAL, the enzyme that catalyzes the first
reaction of the phenylpropanoid pathways. The response of 4CL
was much weaker and that of chalcone synthase was insignificant.
It is generally believed that the products of the phenylpropanoid
pathways protect plants against various stresses caused by wound-
ing, pathogen infection, ultraviolet irradiation and heavy metals,
including cadmium [21,45,46]. A large number of studies have
shown that PAL expression is responsive to these environmental
stimuli [45,47,48]. PAL activity is a key factor in the increased accu-
mulation of flavonoids and other phenolic compounds under UV-B
radiation and water deficit [49,50]. We have checked the expres-
sion of PAL1 and PAL2 because these genes proved to be important
for lignin synthesis and also have functional specialization in abi-
otic environmentally-triggered flavonoid synthesis [51]. Expres-
sion of various 4CLs, including 4CL1, 4CL2 and 4CL3, and the 4CL
activity were also shown to respond to different stresses, in partic-
ular to pathogen-related elicitor treatment [52,53] and UV-B irra-
diation [50,54,55]. Our findings suggest that plant tissues possess
a specific receptor that recognizes diadenosine tri- and/or tetra-
phosphates but not adenine mononucleotides and apparently trig-
gers a cascade of events to yield these protective metabolites. Thus
our work opens up new avenues for studies on the role of Ap3A,
Ap4A and of other NpnN0s in plants. In the near future, efforts
should be undertaken to at least answer such questions as: (i) do
the non-adenylylated NpnN0s evoke the same effects as Ap3A or
Ap4A; (ii) is this phenomenon common to other plant systems;
(iii) can a plant cell receptor be identified with specificity for these
dinucleotides; (iv) do the exogenously applied diadenosine poly-
phosphates affect accumulation of particular phenylpropanoic
compound(s) in the plant tissues; and (v) how do other genes
and enzymes of the phenylpropanoid pathways respond to those
uncommon (di)nucleotides?

Based on existing knowledge of the reactions caused in cells by
cadmium [12,13,21–23] and on the observations communicated in
this paper, we postulate that in plant cells Cd (II) causes accumu-
lation of Ap3A and/or Ap4A and, by analogy with the activation of
the MITF transcription factor in mast cells by Ap4A [44], these com-
pounds interact with transcription factors that control mainly the
PAL2 gene and to a lesser extent the 4CL genes. Since the metabo-
lites of the phenylpropanoid pathways protect plants against the
harmful effects of different types of stress, Ap3A and Ap4A behave
in our biological system as true alarmones, initiating the rescue ac-
tion. Finally, as 4CL is considered to be an enzyme involved in the
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response to different harmful factors, one can hypothesize that it
plays at least two roles under conditions of stress. First, it is able
to synthesize the diadenosine polyphosphate (the putative alar-
mones) [6] and secondly, as one of the enzymes of the phenylprop-
anoid pathways, it then contributes to the production of
metabolites that minimize the effects of the stress.

Note: Preliminary report of this study was presented as a poster
at the 46th Meeting of the Polish Biochemical Society (Cracow,
September 5–9, 2011) [56].
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