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Abstract: The statistical inference of the reliability and parameters of the stress–strength model has
received great attention in the field of reliability analysis. When following the generalized progressive
hybrid censoring (GPHC) scheme, it is important to discuss the point estimate and interval estimate
of the reliability of the multicomponent stress–strength (MSS) model, in which the stress and the
strength variables are derived from different distributions by assuming that stress follows the Chen
distribution and that strength follows the Gompertz distribution. In the present study, the Newton–
Raphson method was adopted to derive the maximum likelihood estimation (MLE) of the model
parameters, and the corresponding asymptotic distribution was adopted to construct the asymptotic
confidence interval (ACI). Subsequently, the exact confidence interval (ECI) of the parameters was
calculated. A hybrid Markov chain Monte Carlo (MCMC) method was adopted to determine the
approximate Bayesian estimation (BE) of the unknown parameters and the high posterior density
credible interval (HPDCI). A simulation study with the actual dataset was conducted for the BEs with
squared error loss function (SELF) and the MLEs of the model parameters and reliability, comparing
the bias and mean squares errors (MSE). In addition, the three interval estimates were compared in
terms of the average interval length (AIL) and coverage probability (CP).

Keywords: multicomponent stress–strength model; generalized progressive hybrid censoring;
reliability; maximum likelihood estimation; Bayesian estimation

1. Introduction

The stress–strength model is used extensively in mechanical engineering. The model
plays a crucial role in designing and analyzing the reliability of system equipment. In the
model, the reliability of a system is described by the relationship between the strength of
the system and the stress applied to the system. If the strength of the system is unable
to resist the stress applied to the system, the system fails. Therefore, R = P(Y < X)
represents the reliability of the system, where X denotes the strength and Y denotes the
stress applied to the system. Birnbaum [1] was the first to propose the Mann–Whitney
statistic, following which the formal terms ‘stress’ and ‘strength’ appeared in the report by
Church and Harris [2]. Since then, the stress–strength model has been studied extensively
in terms of statistics and reliability. Guo and Krishnamoorthy [3] proposed a novel method
to analyze the reliability of the stress–strength model using unknown parameters when
the stress and strength variables have a normal distribution. Khan and Jan [4] studied the
reliability estimation of the model by assuming that the stress and strength variables obeyed
the two-parameter Lindley distribution. Kundu and Raqab [5] calculated the estimation
for R = P(Y < X), where both X and Y have generalized Rayleigh distributions. These
authors explained the influence of the mixed proportion parameters on the reliability of
the model.

In fact, various products have been developed as technology advances, ranging
from simple single-component systems to complex multicomponent subsystems. Multi-
component-system products are the mainstream in recent years. Therefore, studying the
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reliability of multicomponent systems in the stress–strength model (MSS) has become the
focus of reliability research. At present, the s-out-of-j system has gained extensive attention
in the fields of engineering and precision equipment design; we call it multicomponent sys-
tem in reliability analysis research. The system comprises j components, and the strength of
each component X1, X2, . . . , Xj is independent and identical. Meanwhile, the system is sub-
jected to a stress Y. Such a system works when s (1 ≤ s ≤ j) or more components operate
simultaneously. The series system and parallel system are special cases of a multicom-
ponent system. Currently, greater attention is being paid to the multicomponent system,
which is capable of obtaining a high-reliability system using low-reliability components.
For instance, the solar power system includes j solar panels. The power generation system
would supply power only when at least s solar panels generate electricity normally. In
irrigation techniques in agriculture, if the storage capacity of the reservoir in one month of
the year exceeds that in the month of August of the previous year, it is considered that there
would be no drought in that year. Therefore, the storage capacity of the reservoir in the
month of August of the previous year is regarded as the stress, while the storage capacity of
the reservoir between January and June of the next year is regarded as strength. Therefore,
the stress–strength model of the 1-out-of-6 system may be used for analyzing the problem.
The reliability analysis for the MSS model under exponential distributions was studied
by Kunchur and Munoli [6]. Rao [7–9], on the other hand, studied the reliability of the
MSS model when the random stress and strength variables have generalized exponential
distributions, Burr-XII distributions, and two-parameter exponentiated Weibull distribu-
tions. Khan [10] and Liu [11] studied a stress–strength model for the n-component-standby
system. Eryilmaz [12] reported certain conclusions regarding the modeling of multi-state
systems. In mechanical engineering and automation, since multicomponent systems in-
volve multiple components, some of the precision components are too expensive and must
be tested through censoring life experiments.

Censoring samples may be particularly difficult for statistical analysis work. If the
sample is not accounted for and processed, the analytical results would be erroneous. In
this context, different statistical techniques are employed to deal with the corresponding
censoring methods. Using progressive type-II censored samples and the MSS model, Vali-
ollahi et al. [13], Rezaei et al. [14], and Baratpour [15] analyzed the reliability estimation
for the Weibull distribution, generalized Pareto distribution, and proportional hazard
models, respectively. Recently, Shi [16,17] analyzed product-life reliability, based on the
adaptive progressive type-II hybrid censoring scheme and progressive first-failure censor-
ing. Under hybrid censoring schemes, Asgharzadeh [18] estimated the reliability of the
MSS model when X and Y obey two independent Weibull distributions. Mirjalili et al. [19]
discussed the stress–strength reliability for exponential distributions. Furthermore, based
on a progressive hybrid censoring scheme, Bai [20] derived the reliability of the dependent
stress–strength model using maximum likelihood and bootstrap methods.

Most of the systems stated above assume that the stress and strength variables have the
same distribution; accordingly, the characteristics of the stress–strength model are analyzed.
However, as stated in [12,20], stress and strength variables are independent and could have
different distributions. Therefore, analyzing the reliability of MSS models with different
distributions is meaningful work. In terms of the cost, testing duration, and accuracy of the
reliability estimates, popular censoring schemes such as hybrid censoring and progressive
hybrid censoring offer higher test efficiencies, compared with the traditional type-I and
type-II censoring schemes. The GPHC scheme is the extension of progressive hybrid
censoring. This scheme improves test efficiency by allowing experimenters to observe a
sample with a pre-specified number of failure units prior to the final termination point.
However, literature on MSS models based on the censoring scheme is scarce.

In the present study, to reduce the cost and time as much as possible, a stress–strength
model of a multicomponent system with wider application and more accurate reliability
estimation is obtained. On the one hand, the stress and strength variables were assumed to
have different distributions based on the GPHC scheme. On the other hand, the estimated
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values of the model parameters and reliability were obtained using the mathematical-
statistical method. Specifically, the following issues were studied:

(1) Comparison between MLE and BE, in terms of the reliability estimation of the
MSS model;

(2) Influence of the GPHC scheme on the reliability estimation of the MSS model;
(3) Theoretical basis for the exact interval of the model parameters and a comparison

between the ECI, ACI, and HPDCI, in terms of AIL and CP.

The remaining portion of the paper is organized as follows. In Section 2, the model
description and the reliability R of the MSS model, determined under the GPHC scheme,
are discussed. The derivation of the MLEs, ACIs, ECIs, BEs, and HPDCI for the parameters
and the R of the MSS model are presented in Section 3. Section 4 presents the numerical
experiment based on Monte Carlo simulations and real data analysis. The conclusions are
provided in Section 5.

2. Model

Gompertz [21] was the first to introduce the Gompertz distribution to fit tumor growth.
The probability density function (PDF) and cumulative distribution function (CDF) are
given by:

g(x; α, η) = αeηxe−
α
η (e

ηx−1), x > 0 (1)

and:
G(x; α, η) = 1− e−

α
η (e

ηx−1), x > 0, (2)

where η > 0 and α > 0 are the scale and shape parameters, respectively. In the paper, the
Gompertz distribution with scale parameter η > 0 and shape parameter α > 0 is expressed
as G(η, α). Recent research, such as El-Gohary [22], has shown that this distribution is
widely used in modeling survival time, human mortality, and actuarial tables.

Chen [23] proposed a novel lifetime distribution with a flexible failure rate function.
The PDF and CDF of the distribution are:

f (y; θ, β) = θβyβ−1 exp{θ(1− eyβ
) + yβ}, y > 0 (3)

and:
F(y; θ, β) = 1− exp{θ(1− eyβ

)}, y > 0, (4)

respectively, where θ > 0 and β > 0 are shape parameters. We recorded the Chen
distribution as Ch(θ, β), where θ and β are shape parameters. If θ = 1, this distribution
simplifies an exponential power distribution. One could also mention Singh et al. [24] and
other references, where a few recent works on the Chen distribution are cited.

Tian [25] proposed a GPHC life test scheme; we consider a life test involving n units.
We assumed X1, X2, . . . , Xn as the life of each unit. Before the life test, the following steps
must be taken:

(1) Setting the fixed integer c, m to satisfy the relationship c < m < n. This could save
costs. Because of the life test, if all units fail, it will cause a certain cost loss;

(2) Setting the censoring scheme to R = (R1, R2, . . . , Rm), with the relationship R1 +
R2 + . . . + Rm + m = n. This ensures that the samples we obtain are both failed and
non-failed, which increases the richness of the samples and helps to improve the
accuracy of statistical inference;

(3) Setting time T. It is the test time limit and a bounded integer;
(4) Calculating T∗ = max{Xc:m:n, min{Xm:m:n, T}}. As metioned in [25], T∗ is the end of

the experiment. By combining the expression of T∗ and setting R = (R1, R2, . . . , Rm),
we can obtain rich samples (including failure and non-failure) in a shorter time.

Based on these preparations, the life tests are carried out as follows: the failure time of
the first observation is X1:m:n, and R1 is randomly removed from n1 − 1; the failure time
of the second observation X2:m:n is tested, and R2 is randomly removed from the survival
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units, and so on. When the experiment reaches T∗, the experiment ends, and all remaining
test units are removed. Therefore, the observation samples under this censoring scheme
and the expression of T∗ are in the following three cases:

Case I : {X1:m:n, . . . , Xc:m;n}, T < Xc:m;n < Xm:m:n

Case II : {X1:m:n, . . . , Xc:m;n, . . . , XJ:m;n}, Xc:m;n < T < Xm:m:n

Case III : {X1:m:n, X2:m;n, . . . , Xm:m;n}, Xc:m;n < Xm:m:n < T

where J is the number of failures before T, and XJ:m:n < T < XJ+1:m:n. In case III, it
corresponds to progressive II censoring scheme. We obtain a flexible s-out of -j system:
the G system. Due to that, the sample size in the GPHC scheme is random. Basing on the
scheme, the likelihood function is:

L(Ω) =
J∗

∏
i=1

[ f (xi:m:n) · (1− F(xi:m:n))
Ri ] · [1− F(T∗)]R

∗
J∗ (5)

where:

CaseI : J∗ = c, T∗ = xc:m:n, R∗J∗ = R∗c = ∑m
i=c+1(Ri + 1)

CaseII : J∗ = J, T∗ = T, R∗J∗ = R∗J = n−∑J
i=1 Ri − J

CaseIII : J∗ = m, T∗ = xm:m:n, R∗J∗ = R∗m = 0

Bhattacharyya and Johnson [26] developed the stress–strength model for multicompo-
nent systems. The reliability of a stress–strength model corresponding to multicomponent
systems can be written as P(Xj−s+1:j > Y), where X1, X2, . . . , Xj are the strength of the
component from the G(η, α), and Y is the common random stress, following Ch(θ, β).

Furthermore, Xj−s+1:j is the (j− s + 1)-th order statistic of (X1, X2, . . . , Xj). Therefore,
the reliability of a multicomponent stress–strength model is given by:

Rs,j =P(at least s of the (X1, X2, . . . , Xj) exceed Y)

=
j

∑
i=s

(
j
i

) ∫ ∞

0
(1− G(y; η, α))i(G(y; η, α))j−idF(y; θ, β)

=
j

∑
i=s

(
j
i

) ∫ ∞

0
e−

αi
η (eηy−1)(1− e−

α
η (e

ηy−1))j−i
θβyβ−1eθ(1−eyβ

)+yβ
dy

(6)

According to the binomial theorem:

(
1− e−

α
η (e

ηy−1))j−i
=

j−i

∑
k=0

(
j− i

k

)
(−1)ke−

α
η (e

ηy−1)k

Equation (6) can be reduced to:

Rs,j =
j

∑
i=s

(
j
i

) j−i

∑
k=0

(−1)k
(

j− i
k

)∫ ∞

0
θβyβ−1exp{−α

η
(eηy − 1)(i + k)+θ(1−eyβ

)+yβ}dy (7)

3. Estimation of Parameters and Reliability
3.1. Maximum Likelihood Estimation

To derive the maximum likelihood estimation (MLE) of Rs,j, we first obtain the MLE
of α, η, β, θ. Suppose N identical systems are placed in a life testing experiment, each with
K components. These components are independently and identically distributed, and
their strength comes from G(η, α). Correspondingly, the stress on each system comes from
Ch(θ, β). As explained in Section 2, GPHC life tests are performed in two stages to obtain
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the stress and strength GPHC samples, respectively. The stress censoring samples are
acquired by the system for the first time, and the strength censoring samples are acquired
twice by each component in the system. Tests were performed on the stress of N systems
and the strength of K components in each system. First, we set the censoring scheme,
{n2, T2, c2, m2, S1, S2, . . . , Sm2}, and calculated B∗ = max{Yc2 :m2 :n2 , min{Ym2 :m2 :n2 , T2}} to
obtain the observed sample of stress. During the life testing experiment, when the first
system fails, its corresponding stress is denoted as Y1, S1 systems are removed from
the remaining unfailed systems, and so on. When the time reaches B∗, the test ends,
and all remain systems are removed. We recorded the the stress observation sample as
Y1, Y2, . . . , YM∗ from Ch(θ, β). Secondly, for the above M∗ systems, under censoring scheme
{n1, T1, c1, m1, R1, R2, . . . , Rm1}, we obtained T∗ = max{Xic1 :m1 :n1 , min{Xim1 :m1 :n1 , T1}}.
Analogously, when the first component fails, its strength is denoted as Xi1, then R1 systems
are removed from the remaining unfailed component, and so on. When the time reaches T∗,
the test is terminated, and all remain components are removed. So, the observed samples
of strength are Xi1, Xi2, . . . , Xi J∗ , i = 1, 2, . . . , M∗ from G(η, α). In this case, the sample can
be constructed as follows: X11 X12 . . . X1J∗

...
...

...
...

XM∗1 XM∗2 . . . XM∗ J∗


 Y1

...
YM∗


This is a MSS system, and the likelihood function is given by:

L(α, η, θ, β|x, y) =
M∗

∏
i=1

J∗

∏
t=1

g(xit)(1−G(xit))
Rt [1−G(T∗)]R

∗
J∗ f (yi)(1−F(yi))

Si [1−F(B∗)]S
∗
M∗

=
M∗

∏
i=1

J∗

∏
t=1

αθβyβ−1
i exp[ηxit − α

η (e
ηxit − 1)(Rt + 1)− α

η (e
ηT∗ − 1)R∗J∗ ]

× exp{θ(1− eyβ
i )(Si + 1) + yβ

i } exp(θS∗M∗(1− eB∗β
))

where xit:m1 :n1 and yi:m2 :n2 are the observed samples of strength and stress under the GPHC
scheme and MSS model, and are expressed as xit and yi. So, the log-likelihood function is:

l(α, η, θ, β|x, y) =
M∗

∑
i=1

{ J∗

∑
t=1

log(αθβ) + (β− 1) log(yi) + ηxit −
α

η
(eηxit − 1)(Rt + 1)

−α

η
(eηT∗ − 1)R∗J∗ + θ(1− eyβ

i )(Si + 1) + yβ
i
}
+ θS∗M∗(1− eB∗β

)

Thus, the likelihood equations are:

∂l
∂α

=
M∗

∑
i=1

J∗

∑
t=1

1
α
− (Rt + 1)(eηxit − 1)

η
−

R∗J∗(e
ηT∗ − 1)

η
= 0

∂l
∂η

=
M∗

∑
i=1

J∗

∑
t=1

xit − (Rt + 1)[
α

η

2
(1− eηxit) + αeηxit ]− R∗J∗ [

α

η

2
(1− eηT∗) + αeηT∗ ] = 0

∂l
∂θ

=
M∗

∑
i=1

1
θ
+ (1− eyβ

i )(Si + 1) + yβ
i + (1− eB∗β

)S∗M∗ = 0

∂l
∂β

=
M∗

∑
i=1

1
β
+ log yi − θ(Si + 1)yieyβ

i + yβ
i log yi − θS∗M∗B

∗eM∗β
= 0

(8)

Since Equation (8) is complicated, there is no explicit solution. We need to use the Newton–
Raphson method to calculate the MLEs of α, η, θ, β. Their maximum likelihood estimates
are recorded as α̂, η̂, θ̂, and β̂. The MLE of Rs,j is recorded as R̂s,j, and its mathematical
expression is:
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R̂s,j =
j

∑
i=s

(
j
i

) j−i

∑
k=0

(−1)k
(

j−i
k

)∫ ∞

0
θ̂ β̂yβ̂−1 exp{−α̂

η̂
(eη̂y − 1)(i+k)+θ̂(1−eyβ̂

)+yβ̂}dy (9)

Further, the variance–covariance matrix is expressed as:
Var(α̂) Cov(α̂, η̂) Cov(α̂, θ̂) Cov(α̂, β̂)

Var(η̂) Cov(η̂, θ̂) Cov(θ̂, β̂)
Var(θ̂) Cov(θ̂, β̂)

Var(β̂)


which was obtained by inverting the observed Fisher information matrix I(α, η, θ, β) at
α̂, η̂, θ̂, β̂, where:

I = −


∂2l
∂α2

∂2l
∂α∂η

∂2l
∂α∂θ

∂2l
∂µ∂β

∂2l
∂α∂η

∂2l
∂η2

∂2l
∂η∂θ

∂2l
∂η∂β

∂2l
∂α∂θ

∂2l
∂α∂η

∂2l
∂θ2

∂2l
∂θ∂β

∂2l
∂α∂β

∂2l
∂η∂β

∂2l
∂θ∂β

∂2l
∂β2

 (10)

The 100(1− τ)% ACI of the parameter Ω is given by:(
Ω̂− zτ/2

√
Var(Ω̂), Ω̂ + zτ/2

√
Var(Ω̂)

)
where Ω = α, η, θ, or β, and zτ/2 is the τ/2-th upper percentile of the standard nor-
mal distribution.

To obtain the ACI of the reliability Rs,j of the MSS model, we have two lemmas: As
M∗ → ∞, we have:

Lemma 1.
√

M∗
(
(α̂− α), (η̂ − η), (θ̂ − θ), (β̂− β)

)
→ N

(
0, C−1(α, η, θ, β)

)
where C−1(α, η, θ, β) = 1

M∗ I.

Corollary 1. Let ε=(α, η, θ, β), and denote ϕ(ε) = Rs,j as M∗ → ∞; then:

√
M∗(R̂s,j − R)→ N(0, B∗)

where B∗ = bTC−1b, b = ( ∂ϕ(ε)
∂α , ∂ϕ(ε)

∂η , ∂ϕ(ε)
∂θ , ∂ϕ(ε)

∂β )T , its mathematical expression is in the
Appendix A.

Proof of Corollary 1. Using the delta method [27] and the Taylor series expansion, ϕ(ε̂)
can be expressed as:

ϕ(ε̂) = ϕ(ε) + [ϕ′(ε)]T(ε̂− ε) + (ε̂− ε)T ϕ
′′
(ε∗)(ε̂− ε)/2

≈ ϕ(ε) + [ϕ′(ε)]T(ε̂− ε)

where ϕ′(ε) and ϕ
′′
(ε) are matrices of the first and second partial derivatives, and ε∗ is

some value between ε̂ and ε. So:
√

M∗[ϕ(ε̂)− ϕ(ε)] ≈
√

M∗[ϕ′(ε)]T(ε̂− ε).

Using Lemma 1, M∗ → ∞; then, ε̂→ ε, and ϕ(ε̂)→ ϕ(ε). The variance of ϕ(ε) is:
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Var(ϕ(ε̂)) ≈ Var(ϕ(ε) + [ϕ′(ε)]T ε̂− [ϕ′(ε)]Tε)

= Var([ϕ′(ε)]T ε̂)

= [ϕ′(ε)]TVar(ε̂)ϕ′(ε)

= [ϕ′(ε)]T(C−1/M∗)ϕ′(ε)

According to the central limit theorem, ϕ(ε̂)→ N(ϕ(ε), [ϕ′(ε)]T(C−1/M∗)ϕ′(ε)).

The ACI of Rs,j can be obtained by replacing α, η, θ, β in B∗ with their corresponding
values, α̂, η̂, θ̂, β̂. Thus, the 100(1− τ) % ACI for Rs,j is:[

R̂s,j − zτ/2

√
B̂∗/M∗, R̂s,j + zτ/2

√
B̂∗/M∗

]
3.2. Exact Interval Estimation

Based on the assumption in Section 3.1, let Vi:m2 :n2 = θ(eYβ
i:m2:n2 − 1):

V∗1 = n2V1:m2 :n2

V∗2 = (n2 − S1 − 1)(V2:m2 :n2 −V1:m2 :n2)
...
V∗M∗ = (n− S1 − S2 − . . .− S∗M∗−1 −M∗ + 1)(VM∗ :m2 :n2 −VM∗−1:m2 :n2).

Then, the generalized spacings V∗1 , V∗2 , . . . , V∗M∗ are independent and identically distributed
as an exponential distribution with a mean of 1. Let:

C = 2V∗1 = 2n2V1:m2 :n2

and:

D = 2
M∗

∑
j=2

V∗j = 2
M∗

∑
j=1

(Sj + 1)(Vj:m2 :n2 −V1:m2 :n2).

Then, C obeys a χ2 distribution with two degrees of freedom and is expressed as χ2(2). D
follows a χ2(2M∗ − 2) distribution, and the C and D are independent. Then, we define:

B1 =
D

(M∗ − 1)C
=

∑M∗
j=1(Sj + 1)(Vj:m2 :n2 −V1:m2 :n2)

n2(M∗ − 1)V1:m2 :n2

(11)

=
1

n2(M∗ − 1)

M∗

∑
j=1

(Sj + 1)
eyβ

j:m2:n2 − 1

eyβ
1:m2:n2 − 1

− 1
(M∗ − 1)

and:

B2 = C + D = 2
M∗

∑
i=1

(Si + 1)Vi:m2 :n2 . (12)

It can be easily found that for B1 ∼ F(2M∗ − 2, 2), B2 ∼ χ2(2M∗), B1 and B2 are independent.

Lemma 2. For any 0 < b1 < b2, q(β) = ebβ
2−1

ebβ
1−1

is a strictly increasing function for β 6= 0.

Lemma 3. Let:

B1(β) =
1

n2(M∗ − 1)

M∗

∑
j=1

(Sj + 1)
eyβ

j:m2:n2 − 1

eyβ
1:m2:n2 − 1

− 1
(M∗ − 1)

.
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Then, B1(β) is strictly increasing in β for any β 6= 0.

Corollary 2. If w ≥ ∑M∗
j=1(Sj+1) log yj:m2:n2

−n2 log y1:m2:n2
n2(M∗−1) log y1:m2:n2

, the equation B1(β) = w has a unique

solution for any β 6= 0.

Proof of Corollary 2. By Lemma 3, it is easy to show that B1(β) is a strictly increasing
function of β. Moreover,limβ→−∞ B1(β) = 0, limβ→+∞ B1(β) = ∞, and:

lim
β→0

B1(β) =
∑M∗

j=1(Sj + 1) log yj:m2 :n2 − n2 log y1:m2 :n2

n2(M∗ − 1) log y1:m2 :n2

Therefore, if:

w ≥
∑M∗

j=1(Sj + 1) log yj:m2 :n2 − n2 log y1:m2 :n2

n2(M∗ − 1) log y1:m2 :n2

,

then B1(β) = w has a unique solution for any β 6= 0.

Theorem 1. Suppose that Yj, j = 1, 2, . . . , M∗ are GPHC samples from a sample of size n2 from
Chen (θ,β), with censoring scheme n2, T2, c2, m2, S1, S2, . . . , Sm2 . Then, the 100(1− τ) % ECI for
β is: (

v(Y1, Y2, . . . , YM∗ , F1− τ
2
(2M∗ − 2, 2)), v(Y1, Y2, . . . , YM∗ , Fτ

2
(2M∗ − 2, 2)

)
where 0 < τ < 1, and v(Y1, Y2, . . . , YM∗ , w) is the solution of β for the equation:

∑M∗
j=1(Sj + 1)eYβ

i − n2eYβ
1

n2(M∗ − 1)(eYβ
1 − 1)

= w

Proof of Theorem 1.

B1 =
∑M∗

j=1(Sj + 1)(Vj:m2 :n2 −V1:m2 :n2)

n2(M∗ − 1)V1:m2 :n2

=
∑M∗

j=1(Sj + 1)Vj:m2 :n2 − n2V1:m2 :n2

n2(M∗ − 1)V1:m2 :n2

=
∑M∗

j=1(Sj + 1)(eYβ
i − 1)− n2(eYβ

1 − 1)

n2(M∗ − 1)(eYβ
1 − 1)

obeys a nF distribution with 2M∗ − 2 and two degrees of freedom. Thus, for 0 < τ < 1:

1− τ = P(F1− τ
2
(2M∗ − 2, 2) <

∑M∗
j=1(Sj+1)(eYβ

i −1)−n2(e
Yβ

1 −1)

n2(M∗−1)(eYβ
1 −1)

< Fτ
2
(2M∗ − 2, 2))

= P(F1− τ
2
(2M∗ − 2, 2) <

∑M∗
j=1(Sj+1)eYβ

i −n2eYβ
1

n2(M∗−1)(eYβ
1 −1)

< Fτ
2
(2M∗ − 2, 2))

= P
(
v(Y1, Y2, . . . , YM∗ , F1− τ

2
(2M∗ − 2, 2)) < β < v(Y1, Y2, . . . , YM∗ , Fτ

2
(2M∗ − 2, 2)

)

Theorem 2. Based on the assumption of Theorem 1, a 100(1− τ) % joint ECI for β and θ is
determined by the following inequalities:
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v(Y1, Y2, . . . , Y∗M, Fτ1(2M∗ − 2, 2)) < β < v(Y1, Y2, . . . , Y∗M, Fτ2(2M∗ − 2, 2))

χ2
τ1
(2M∗)

2 ∑M∗
i=1(Si+1)(e

Yβ
i:m2:n2−1)

< θ <
χ2

τ2
(2M∗)

2 ∑M∗
i=1(Si+1)(e

Yβ
i:m2:n2−1)

(13)

where 0 < τ < 1, τ1 = 1+
√

1−τ
2 and τ2 = 1−

√
1−τ

2 , and v(Y1, Y2, . . . , YM∗ , w) is the solution of
β for the equation:

∑M∗
j=1(Sj + 1)eYβ

i − n2eYβ
1

n2(M∗ − 1)(eYβ
1 − 1)

= w.

Proof of Theorem 2. From Equation (12), we know that:

B2 = 2
M∗

∑
j=1

(Sj + 1)Vj = 2
M∗

∑
j=1

θ(Sj + 1)(eYβ
i:m2:n2 − 1)

follows χ2(2M∗), and that it is independent of B1. Then, for 0 < τ < 1:

1−τ = P
(

Fτ1(2M∗ − 2, 2) < B1<Fτ2(2M∗ − 2, 2)
)
×P
(
χ2

τ1
(2M∗)B2<χ2

τ2
(2M∗)

)
= P

(
v
(
Y1, Y2, . . ., YM∗ , Fτ1(2M∗−2, 2)

)
<β<v

(
Y1, Y2, . . ., YM∗ , Fτ2(2M∗−2, 2)

))
× P

(
χ2

τ1
(2M∗)<2

M∗

∑
j=1

θ(Sj+1)(eYβ
i:m2:n2 − 1)<χ2

τ2
(2M∗)

)
= P

(
v
(
Y1, Y2, . . ., YM∗ , Fτ1(2M∗−2, 2)

)
<β<v

(
Y1, Y2, . . ., YM∗ , Fτ2(2M∗−2, 2)

)
,

χ2
τ1
(2M∗)

2 ∑M∗
i=1(Si + 1)(eYβ

i:m2:n2 − 1)
< θ <

χ2
τ2
(2M∗)

2 ∑M∗
i=1(Si + 1)(eYβ

i:m2:n2 − 1)

)

Let Uit = α
η (e

ηxit − 1), t = 1, 2, . . . , J∗. It can be seen that Ui1 < Ui2 < . . . < Ui J∗ ,
i = 1, 2, . . . , M∗ are the GPHC samples from the exponential distribution with a mean of 1.
Considering the following transformation:

U∗i1 = n1Ui1

U∗i2 = (n1 − R1 − 1)(Ui2 −Ui1)

. . .
U∗i J∗ = (n1 − R1 − R2 − . . .− RJ∗−1 − J∗ + 1)(UJ∗ −UJ∗−1),

the generalized spacings U∗i1, U∗i2, . . . , U∗i J∗ , and i = 1, 2, . . . , M∗ are independent and identi-
cal exponential distributions with a mean of 1. Let:

Z = 2
M∗

∑
i=1

U∗i1

and:

Q = 2
M∗

∑
i=1

J∗

∑
t=2

U∗ij = 2
M∗

∑
i=1

J∗

∑
t=1

(Rt + 1)(Uit −Ui1);

then, the random variable Z has a χ2(2M∗) distribution, Q has a χ2(2M∗(J∗ − 1)) distribu-
tion, and the Z and Q are independent. We define:
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T1 =
Q

(J∗ − 1)Z
=

∑M∗
i=1 ∑J∗

t=1(Rt + 1)(Uit −Ui1)

(J∗ − 1)∑M∗
i=1 U∗i1

=
∑M∗

i=1 ∑J∗
t=1(Rt + 1)(eηxit − 1)

n1(J∗ − 1)∑M∗
i=1(e

ηxi1 − 1)
− 1

J∗ − 1

(14)

and:

T2 = Z + Q = 2
M∗

∑
i=1

J∗

∑
t=1

(Rt + 1)Uit (15)

So, T1 ∼ F(2M∗(J∗ − 1), 2M∗), T2 ∼ χ2(2M∗ J∗), and T1 and T2 are independent. In order
to obtain the joint ECI for η and α, we need the following lemmas.

Lemma 4. For any 0 < a1 < a2, g∗(η) = eηa2−1
eηa1−1 is a strict increasing function of η for any

η 6= 0.

Lemma 5. Let:

T1(η) =
1
n1

M∗

∑
i=1

J∗

∑
t=1

(Rt + 1)
eηxit − 1
eηxi1 − 1

− 1
J∗ − 1

.

Then, T1(η) is strictly increasing in η for any η 6= 0.

Corollary 3. If:

q∗ ≥ 1
n1

M∗

∑
i=1

J∗

∑
t=1

(Rt + 1)
xit
xi1
− 1

J∗ − 1
,

then the equation T1(η) = q∗ has a unique solution for any η 6= 0.

Proof of Corollary 3. By Lemma 5, it is easy to show that T1(η) is a strict increasing func-
tion of η. Moreover, limη→−∞ T1(η) = 0, limη→+∞ T1(η) = ∞, and:

lim
η→−0

T1(η) =
1
n1

M∗

∑
i=1

J∗

∑
t=1

(Rt + 1)
xit
xi1
− 1

J∗ − 1
. (16)

Hence, when:

q∗ ≥ 1
n1

M∗

∑
i=1

J∗

∑
t=1

(Rt + 1)
xit
xi1
− 1

J∗ − 1

the equation T1(η) = q∗ has a unique solution.

Theorem 3. Suppose that Xi1, Xi2, . . . , Xi J∗ , i = 1, . . . , M∗ are the GPHC samples which have
a density function (Equation (1)) under the censoring scheme {n1, T1, c1, m1, R1, R2, . . . , Rm1}.
Then, the 100(1− τ) % ECI for η is:(

Ψ
(
DataX , F1− α

2
(2M∗(J∗ − 1), 2M∗)

)
, Ψ
(
DataX , Fα

2
(2M∗(J∗ − 1), 2M∗)

))
where 0 < τ < 1, DataX = c(X11, . . . , X1J∗ , . . . , XM∗1, . . . , XM∗ J∗), and Ψ

(
DataX, q∗

)
is the

solution of η for the equation:

q∗ =
∑M∗

i=1 ∑J∗
t=1(Rt + 1)(eηxit − 1)

n1(J∗ − 1)∑M∗
i=1(e

ηxi1 − 1)
− 1

J∗ − 1
.
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Proof of Theorem 3. From Equation (14), we know that:

T1 =
∑M∗

i=1 ∑J∗
t=1(Rt + 1)(eηxit − 1)

n1(J∗ − 1)∑M∗
i=1(e

ηxi1 − 1)
− 1

J∗ − 1

follows an F distribution with 2M∗(J∗ − 1) and 2M∗ degrees of freedom. Thus, for 0 <
τ < 1:

P
(

F1− τ
2
(2M∗(J∗−1), 2M∗)<

∑M∗
i=1 ∑J∗

t=1(Rt + 1)(eηxit−1)

n1(J∗−1)∑M∗
i=1(e

ηxi1 − 1)
− 1

J∗−1
<Fτ

2
(2M∗(J∗−1), 2M∗)

)
=P
(

Ψ
(
DataX , F1− τ

2
(2M∗(J∗−1), 2M∗)

)
, Ψ
(
DataX , Fτ

2
(2M∗(J∗−1), 2M∗)

))
=1− τ

Theorem 4. Suppose that Xi1, Xi2, . . . , Xi J∗ , i = 1, 2, . . . , M∗ are the GPHC samples which have
a density function (Equation (1)) under the censoring scheme {n1, T1, c1, m1, R1, R2, . . . , Rm1};
then, the 100(1− τ) % joint ECI for η and α is:Ψ

(
DataX , Fτ1(2M∗(J∗−1), 2M∗)

)
< η < Ψ

(
DataX , Fτ2(2M∗(J∗−1), 2M∗)

)
ηχ2

τ1
(2M∗ J∗)

2 ∑M∗
i=1 ∑J∗

t=1(Rt+1)(eηxit−1)
< α <

ηχ2
τ2
(2M∗ J∗)

2 ∑M∗
i=1 ∑J∗

t=1(Rt+1)(eηxit−1)

(17)

where τ1 and τ2 are the same as Theorem 2.

Proof of Theorem 4. From Equation (15), we know that:

T2 = 2
M∗

∑
i=1

J∗

∑
t=1

(Rt + 1)
α

η
(eηxit − 1)

obeys a χ2 distribution with 2M∗ J∗ degrees of freedom, and that it is independent of T1.
Then, for 0 < τ < 1:

1− τ = (
√

1− τ)2

= P
(

Fτ1(2M∗(J∗−1), 2M∗)<T1<Fτ2(2M∗(J∗−1), 2M∗)
)

P
(
χ2

τ1
(2M∗ J∗)<T2<χ2

τ2
(2M∗ J∗)

)
= P

(
Fτ1(2M∗(J∗−1), 2M∗)<

∑M∗
i=1 ∑J∗

t=1(Rt + 1)(eηxit−1)

n1(J∗−1)∑M∗
i=1(e

ηxi1−1)
− 1

J∗−1
<Fτ2(2M∗(J∗−1), 2M∗),

χ2
τ1
(2M∗ J∗) < 2

M∗

∑
i=1

J∗

∑
t=1

(Rt + 1)
α

η
(eηxit − 1) < χ2

τ1
(2M∗ J∗)

)
= P

(
Ψ
(
DataX , Fτ1(2M∗(J∗−1), 2M∗)

)
< η < Ψ

(
DataX , Fτ2(2M∗(J∗−1), 2M∗)

)
,

ηχ2
τ1
(2M∗ J∗)

2 ∑M∗
i=1 ∑J∗

t=1(Rt + 1)(eηxit − 1)
< α <

ηχ2
τ2
(2M∗ J∗)

2 ∑M∗
i=1 ∑J∗

t=1(Rt + 1)(eηxit − 1)

)

3.3. Bayesian Estimation

In this section, we consider the BEs of unknown parameters from G(η,α) and Ch(θ,β)
based on a GPHC sample. Assume that α, η, θ, β have independent gamma priors with
the PDFs:

α ∼ π1(α) =
ba1

1 αa1−1e−b1α

Γ(a1)
; α > 0, a1 > 0, b1 > 0
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η ∼ π2(η) =
ba2

2 ηa2−1e−b2η

Γ(a2)
; η > 0, a2 > 0, b2 > 0

θ ∼ π3(θ) =
ba3

3 θa3−1e−b3θ

Γ(a3)
; θ > 0, a3 > 0, b3 > 0

β ∼ π4(β) =
ba4

4 βa4−1e−b4β

Γ(a4)
; β > 0, a4 > 0, b4 > 0,

respectively. Then, the joint prior distribution is:

ω(α, η, θ, β) ∝ αa1−1ηa2−1θa3−1βa4−1e−b1α−b2η−b3θ−b4β; α, η, θ, β > 0

In the statistical decision inference of Bayesian analysis, the loss function can not be
ignored. Under the squared error loss function (SELF), the BE of the parameters is the
posterior mean. Therefore, the BE of any function φ(α, η, θ, β) of α, η, θ and β under SELF is
given by:

φ̂(α, η, θ, β)=E(φ(α, η, θ, β)|x, y)=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 φ(α, η, θ, β)π(α, η, θ, β|x, y)dαdηdθdβ∫ ∞

0

∫ ∞
0

∫ ∞
0

∫ ∞
0 π(α, η, θ, β|x, y)dαdηdθdβ

(18)

The joint posterior distribution of α, η, θ, and β is written as:

π(α, η, θ, β|x, y) ∝ ω(α, η, θ, β)L(α, η, θ, β|x, y) (19)

∝
M∗

∏
i=1

{ J∗

∏
t=1

αθβyβ−1
i exp[ηxit−

α

η
(eηxit−1)(Rt+1)− α

η
(eηT∗−1)R∗J∗ ]

× exp(θ(1− eyβ
i )(Si + 1) + yβ

i )
}

exp(θS∗M∗(1− eB∗β
))

× αa1−1ηa2−1θa3−1βa4−1e−b1α−b2η−b3θ−b4β (20)

The conditional posterior distributions of α, η, θ, and β are given by:

π1(α, |η, θ, β, x) ∝ αA1−1e−αA2 (21)

where A1 = M∗ J∗ + a1, A2 = ∑M∗
i=1 ∑J∗

t=1
1
η (e

ηxit − 1)(Rt + 1) + ( 1
η (e

ηT∗ − 1)RJ∗) + b1

π2(η|α, θ, β, x) ∝ ηa2−1
M∗

∏
i=1

J∗

∏
t=1

eηxit exp[−α

η
(eηxit−1)(Rt+1)]exp[−α

η
(eηT∗−1)RJ∗ ]−b2η (22)

π3(θ|α, η, β, y) ∝ θA3−1e−θA4 (23)

where A3 = a3 + M∗, A4 = b3 −∑M∗
i=1(1− eyβ

i )(Si + 1)− S∗M∗(1− eB∗β
)

π4(β|α, η, θ, y) ∝ βa4+M∗−1
M∗

∏
i=1

yβ−1
i exp(−θeyβ

i (Si + 1) + yβ
i ) exp(−θS∗M∗e

B∗β
− b4β) (24)

It can be seen that π1(α, |η, θ, β, x, y) and π3(θ|α, η, β, x, y) have gamma PDFs; thus, a sam-
ple of α and θ can be generated using the gamma distribution. However, π2(η|α, θ, β, x, y)
and π4(β|α, η, θ, x, y) cannot be reduced to draw the sample directly by standard methods
because their plots are similar to a normal distribution. We adopted the Metropolis–
Hastings (MH) algorithm with a normal proposal distribution to generate η and β.



Entropy 2022, 24, 619 13 of 22

Below is a hybrid algorithm with Gibbs sampling steps for updating the parameters α
and θ, and MH steps for updating η and θ. The steps of the algorithm are as follows:

(1) Start with initial values of η0 and β0. Set t = 1;
(2) Generate αt from Gamma (A1,A2), and θt from Gamma (A3, A4);
(3) Using the MH method, generate η from π2(η|α, θ, β, x) with N(ηt−1, Vη), and generate

β from π4(β|α, η, θ, y) with N(βt−1, Vβ);

(4) Calculate R(t)
s,j (α

(t), η(t), θ(t), β(t));

(5) Repeat steps 2 to 4 N times, and obtain αt, ηt, θt and βt, t = 1, 2, . . . , N.

The BEs of φ(α, η, θ, β) under the SELF are given by:

φ̂BS =
1

N −M

N

∑
j=M+1

φj

where M is the burn-in period.

4. Data Analysis and Comparison Study

In this section, we show some results through numerical experiments and real data in
order to compare the performance of the different methods described in the previous section.

4.1. Numerical Experiments

In this subsection, the performances of the MLEs and BEs under different GPHC
schemes are investigated by a Monte Carlo simulation. For this purpose, the different
estimates are compared in terms of bias and mean square errors (expressed as MLE-bias,
BE-bias, MSE-MLE, BE-MSE, and MSE, respectively). In addition, the different confidence
intervals, namely, the ACI, ECI, and HPDCI, are compared in terms of AIL and the CP. The
censoring schemes are given in Table 1, and we consider s = 1, j = 6.

In the simulation study, we set the parameter values as follows: α = 0.0061,
η = 0.009, β = 0.2922, θ = 0.009. According to Equation (7), R1,6 = 0.5180. Mean-
while, according to the method of [25], GPHC samples subject to the Gompertz and Chen
distributions can be generated by the following method:

Step 1. Generate independent and identical random variables D1, D2, . . . , Dm from
the standard uniform distribution U(0, 1);

Step 2. Let Zi = − log(1− Di), let Z1, Z2, . . . , Zm be independent and identical, and
follow the standard exponential distribution;

Step 3. According to the scheme n, m, R = (R1, R2, . . . , Rm), let:

Q1 =
Z1

m

Qi = Qi−1 +
Zi

(n−∑i−1
j=1 Rj − i + 1)

; i = 2, 3, . . . , m;

then, the Q1, Q2, . . . , Qm is a GPHC sample from the standard exponential distribution;
Step 4. Let Wi = 1 − exp(−Qi); the W1, W2, . . . , Wm is a GPHC sample from the

standard uniform distribution;
Step 5. Let Xi:m:n = F−1(Wi), where F(x) is the CDF of the Gompertz distribution

and the Chen distribution, respectively;
Step 6. Under the GPHC sample, there are three cases:

(i) Case I: T < Xc:m;n < Xm:m:n; {X1:m:n, . . . , Xc:m;n};
(ii) Case II: Xc:m;n < T < Xm:m:n; {X1:m:n, . . . , Xc:m;n, . . . , XJ:m;n};
(iii) Case III: Xc:m;n < Xm:m:n < T; {X1:m:n, X2:m;n, . . . , Xm:m;n}.
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Based on the above method and the MSS model, and using the censoring scheme
in Tables 1 and 2, the observed stress sample and the corresponding strength sample are
generated.

Table 1. Censoring scheme n1 = 8, n2 = 10.

Scheme m1 T1 c1 m2 T2 c2 Censoring Scheme

I 6 500 4 5 130 3 R = (0, 0, . . . , n1 −m1); S = (0, 0, . . . , n2 −m2)
II R = (n1 −m1, 0, . . . , 0); S = (n2 −m2, 0, . . . , 0)
III R = (0, . . . , 0, n1 −m1, . . . , 0); S = (0, . . . , 0, n2 −m2, . . . , 0)

IV 5 200 3 6 500 4 R = (0, 0, . . . , n1 −m1); S = (0, 0, . . . , n2 −m2)
V R = (n1 −m1, 0, . . . , 0); S = (n2 −m2, 0, . . . , 0)
VI R = (0, . . . , 0, n1 −m1, . . . , 0); S = (0, . . . , 0, n2 −m2, . . . , 0)

VII 6 180 3 7 200 5 R = (0, 0, . . . , n1 −m1); S = (0, 0, . . . , n2 −m2)
VIII R = (0, 0, . . . , n1 −m1); S = (0, 0, . . . , n2 −m2)
IX R = (0, . . . , 0, n1 −m1, . . . , 0); S = (0, . . . , 0, n2 −m2, . . . , 0)

Table 2. Censoring scheme n1 = 8, n2 = 10.

Scheme m1 T1 c1 m2 T2 c2 Censoring Scheme

I 12 500 8 15 130 13 R = (0, 0, . . . , n1 −m1); S = (0, 0, . . . , n2 −m2)
II R = (n1 −m1, 0, . . . , 0); S = (n2 −m2, 0, . . . , 0)
III R = (0, . . . , 0, n1 −m1, . . . , 0); S = (0, . . . , 0, n2 −m2, . . . , 0)
IV 10 500 8 18 130 15 R = (0, 0, . . . , n1 −m1); S = (0, 0, . . . , n2 −m2)
V R = (n1 −m1, 0, . . . , 0); S = (n2 −m2, 0, . . . , 0)
VI R = (0, . . . , 0, n1 −m1, . . . , 0); S = (0, . . . , 0, n2 −m2, . . . , 0)
VII 9 200 8 18 200 15 R = (0, 0, . . . , n1 −m1); S = (0, 0, . . . , n2 −m2)
VIII R = (0, 0, . . . , n1 −m1); S = (0, 0, . . . , n2 −m2)
IX R = (0, . . . , 0, n1 −m1, . . . , 0); S = (0, . . . , 0, n2 −m2, . . . , 0)

We obtain the BEs based on 4000 MCMC samples and discard the burn period. We
repeat the process 2000 times in each scheme, and then obtain the MLEs and BEs of the
parameters according to the method described in Sections 3.1–3.3. Finally, the BEs and MSEs
of the point estimation and AILs, and the corresponding CPs of the interval estimation
(95% ACI and HPDCI, ECI) for the parameters and the reliability, based on the simulation,
are listed in Tables 3 and 4.
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Table 3. Bias, MSEs of MLE and BE, and length and CP of ACI, HPD, and ECI when n1 = 10, n2 = 8.

Scheme Parameter and
Reliability MLE-Bias MLE-MSE ACI-AIL ACI-CP BE-Bias BE-MSE HPDCI-AIL HPDCI-CP ECI-AIL ECI-CP

I α 0.00207 6.34 × 10−6 0.00827 0.793 0.0083 8.44 × 10−5 0.009932 0.69 5.32 × 10−4 0.82
η 0.00582 2.07 × 10−5 0.02306 0.903 0.00889 7.91 × 10−7 1.92 × 10−4 0.817 1.86 × 10−4 0.709
β 0.0957 0.0134 0.2791 0.744 0.0548 0.00438 0.2458 0.98 0.0245 0.83
θ 0.0089 1.49 × 10−4 0.0302 0.759 0.01553 0.00476 0.0702 0.96 0.00897 0.93

R1,6 5.51 × 10−6 3.32 × 10−7 1.7784 0.869 0.192 4.58 × 10−4 0.521 0.76

II α 0.0112 4.182 × 10−6 0.00399 0.757 0.00987 7.969 × 10−5 1.476 × 10−3 0.57 1.43 × 10−3 0.67
η 0.00536 1.001 × 10−5 0.0106 0.508 0.00748 8.25 × 10−4 0.432 0.83 0.00113 0.62
β 0.05498 0.00871 0.1123 0.577 0.105 0.0927 0.107 0.9 0.0856 0.767
θ 0.00421 9.463 × 10−5 0.01098 0.327 0.0347 0.00769 0.5947 0.86 0.01123 0.97

R1,6 6.7 × 10−6 4.54 × 10−6 0.766 0.722 0.1835 8.37 × 10−4 0.0176 0.84

III α 0.00256 8.89 × 10−6 0.00698 0.622 0.0103 8.49 × 10−5 0.0824 0.79 0.00476 0.675
η 0.01323 2.78 × 10−5 0.0235 0.737 0.00765 7.761 × 10−5 1.946 × 10−4 0.85 0.00123 0.61
β 0.11708 0.0186 0.2549 0.571 0.0572 0.00849 0.3794 0.58 0.2067 0.77
θ 0.00844 1.53 × 10−4 0.0204 0.364 0.0984 0.00498 0.69443 0.84 0.0215 0.404

R1,6 3.27 × 10−7 4.85 × 10−8 1.384 0.717 0.198 9.54 × 10−4 0.541 0.93

IV α 0.00107 3.107 × 10−6 0.00311 0.667 0.0107 8.56 × 10−7 0.00465 0.65 0.00577 0.9
η 0.00332 1.22 × 10−5 0.0109 0.828 0.197 8.49 × 10−7 0.06701 0.75 0.10972 0.819
β 0.0335 0.00358 0.114 0.872 0.497 4.37 × 10−5 0.097 0.74 0.0991 0.67
θ 0.00418 7.50 × 10−5 0.0156 0.536 0.00976 3.21 × 10−4 0.0843 0.87 0.0985 0.92

R1,6 7.92 × 10−5 3.67 × 10−6 0.727 0.922 0.0859 2.85 × 10−3 0.0946 0.89

V α 1.14 × 10−3 3.66 × 10−6 3.23 × 10−3 0.64 0.274 8.95 × 10−4 0.9647 0.87 0.0143 0.77
η 0.00789 1.21 × 10−5 0.0107 0.585 0.967 3.47 × 10−6 0.529 0.695 0.0198 0.533
β 0.05081 0.00682 0.1008 0.531 0.08421 8.79 × 10−4 0.0796 0.59 0.0935 0.67
θ 0.00471 1.003 × 10−4 0.01315 0.741 0.354 0.00627 0.894 0.48 0.156 0.69

R1,6 4.55 × 10−5 3.62 × 10−6 0.789 0.856 0.265 0.00439 0.0845 0.86

VI α 0.00245 4.77 × 10−6 0.00785 0.607 0.367 7.45 × 10−7 0,854 0.82 0.00977 0.66
η 0.00789 1.211 × 10−5 0.0107 0.528 0.967 3.475 × 10−6 0.106 0.73 0.00989 0.576
β 0.0512 0.0085 0.1186 0.674 0.095 4.31 × 10−4 0.0894 0.573 0.1187 0.56
θ 0.00613 1.443 × 10−4 0.01142 0.776 0.385 0.00747 0.886 0.94 0.00986 0.89

R1,6 8.76 × 10−7 5.21 × 10−8 0.887 0.857 0.134 0.00578 0.0845 0.85



Entropy 2022, 24, 619 16 of 22

Table 3. Cont.

Scheme Parameter and
Reliability MLE-Bias MLE-MSE ACI-AIL ACI-CP BE-Bias BE-MSE HPDCI-AIL HPDCI-CP ECI-AIL ECI-CP

VII α 8.13 × 10−4 1.91 × 10−6 0.00304 0.806 0.0085 4.77 × 10−4 0.00875 0.61 0.00478 0.872
η 0.00214 8.92 × 10−6 0.00810 0.89 0.00475 2.89 × 10−5 0.00875 0.61 0.00478 0.872
β 0.03012 0.00283 0.0998 0.83 0.10927 0.0543 0.1734 0.87 0.0854 0.91
θ 0.00429 1.077 × 10−3 0.0185 0.66 0.0747 0.00654 0.604 0.88 0.1374 0.87

R1,6 6.77 × 10−6 2.31 × 10−7 0.8223 0.994 0.253 4.36 × 10−4 0.176 0.845

VIII α 8.97 × 10−4 12.39 × 10−6 0.003145 0.776 0.00625 2.89 × 10−5 0.00875 0.675 0.00978 0.94
η 0.00510 8.79 × 10−6 0.00803 0.83 0.0784 8.27 × 10−4 0.875 0.89 0.102 0.85
β 0.0436 0.005118 0.0916 0.618 0.145 0.157 0.365 0.989 0.189 0.779
θ 0.00457 9.15 × 10−5 0.0163 0.646 0.0214 0.00645 0.604 0.878 0.189 0.929

R1,6 5.84 × 10−5 2.37 × 10−6 0.9298 0.982 0.2431 5.36 × 10−5 -.7894 0.889

IX α 0.00104 2.86 × 10−6 2.61 × 10−3 0.604 0.00857 4.32 × 10−5 8.78 × 10−3 0.72 4.57 × 10−3 0.92
η 0.00571 1.21 × 10−5 0.00825 0.822 0.0949 3.19 × 10−5 0.275 0.67 0.118 0.92
β 0.0489 0.00633 0.0928 0.678 0.195 0.0957 0.365 0.929 0.177 0.827
θ 0.00406 6.28 × 10−5 0.0123 0.0846 0.00214 0.0645 0.619 0.817 0.0189 0.819

R1,6 5.32 × 10−6 2.09 × 10−6 0.788 0.915 0.946 0.188 7.89 × 10−3 0.0889

Table 4. Bias, MSEs of MLE and BE, and AIL and CP of ACI, HPD, and ECI when n1 = 15, n2 = 20.

Scheme Parameter and
Reliability MLE-Bias MLE-MSE ACI-AIL ACI-CP BE-Bias BE-MSE HPDCI-AIL HPDCI-CP ECI-AIL ECI-CP

I α 7.957 × 10−4 9.41 × 10−7 0.00345 0.892 7.95 × 10−5 2.95 × 10−5 0.003369 0.74 0.00276 0.891
η 1.769 × 10−3 1.167 × 10−5 0.00783 0.918 9.41 × 10−4 3.87 × 10−5 6.77 × 10−5 0.58 0.000798 0.898
β 0.0343 1.94 × 10−3 0.136 0.881 8.19 × 10−3 4.67 × 10−5 0.1132 0.92 0.009962 0.918
θ 0.00621 7.196 × 10−5 0.0271 0.733 1.19 × 10−4 2.89 × 10−6 0.0339 0.92 0.02798 0.787

R1,6 5.41 × 10−7 5.33 × 10−6 0.9182 0.992 0.0222 9.26 × 10−3 0.3079 0.68

II α 9.05 × 10−3 1.244 × 10−6 0.00356 0.84 2.49 × 10−4 4.88 × 10−5 0.030396 0.79 0.00458 0.91
η 0.00786 1.151 × 10−5 0.00801 0.527 7.71 × 10−4 8.37 × 10−5 8.57 × 10−5 0.52 0.00708 0.928
β 0.03605 0.00207 0.1303 0.849 4.56 × 10−3 7.27 × 10−5 0.09986 0.9 0.01062 0.91
θ 0.00563 4.767 × 10−5 0.0224 0.689 1.08 × 10−4 3.57 × 10−6 0.0993 0.9 0.08789 0.792

R1,6 2.34 × 10−7 1.87 × 10−6 0.8384 0.923 0.0860 7.98 × 10−3 0.5079 0.76

III α 7.32 × 10−4 8.141 × 10−7 0.00312 0.887 2.05 × 10−5 3.37 × 10−5 0.009336 0.78 0.00376 0.981
η 1.31 × 10−3 1.12 × 10−5 0.00571 0.919 2.07 × 10−5 4.96 × 10−6 5.89 × 10−4 0.67 0.00719 0.98
β 0.0298 0.00141 0.1174 0.885 8.19 × 10−3 4.67 × 10−5 0.1132 0.92 0.009962 0.918
θ 0.00534 4.75 × 10−5 0.0236 0.747 2.42 × 10−5 6.77 × 10−6 0.0457 0.98 0.037796 0.87

R1,6 1.79 × 10−7 9.17 × 10−6 0.819 0.929 0.0879 1.34 × 10−3 0.2522 0.65
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Table 4. Cont.

Scheme Parameter and
Reliability MLE-Bias MLE-MSE ACI-AIL ACI-CP BE-Bias BE-MSE HPDCI-AIL HPDCI-CP ECI-AIL ECI-CP

IV α 0.00105 1.59 × 10−6 0.00331 0.74 8.79 × 10−4 1.58 × 10−4 0.00874 0.74 0.00302 0.815
η 0.002726 1.47 × 10−5 0.00951 0.836 9.41 × 10−4 3.87 × 10−5 6.77 × 10−5 0.58 0.000798 0.898
β 0.0274 0.00121 0.1187 0.919 6.69 × 10−3 5.21 × 10−5 0.1067 0.98 0.01099 0.908
θ 5.64 × 10−3 5.96 × 10−5 0.0271 0.8 8.15 × 10−4 7.98 × 10−6 0.0839 0.97 0.003589 0.87

R1,6 7.19 × 10−6 9.87 × 10−7 0.836 0.927 0.0892 7.56 × 10−3 0.2097 0.728

V α 9.72 × 10−4 1.335 × 10−6 0.0031 0.761 9.85 × 10−4 2.55 × 10−4 0.008369 0.77 0.00306 0.898
η 0.00161 1.418 × 10−5 0.00562 0.842 7.74 × 10−5 6.37 × 10−5 2.17 × 10−5 0.42 0.000598 0.792
β 0.0261 0.00112 0.1121 0.908 2.89 × 10−4 5.76 × 10−5 0.1032 0.91 0.1099 0.918
θ 0.00536 4.88 × 10−5 0.0257 0.794 1.19 × 10−4 2.89 × 10−6 0.0339 0.92 0.02798 0.787

R1,6 7.72 × 10−5 9.17 × 10−6 0.805 0.921 0.0222 9.26 × 10−3 0.3079 0.68

VI α 1.31 × 10−4 1.74 × 10−7 0.0003904 0.744 8.92 × 10−5 1.36 × 10−5 0.003062 0.77 0.00376 0.802
η 2.36 × 10−4 1.96 × 10−6 7.944 × 10−4 0.864 3.24 × 10−5 5.77 × 10−5 2.62 × 10−5 0.62 0.000298 0.898
β 0.00376 1.701 × 10−4 0.01567 0.883 2.09 × 10−4 3.57 × 10−5 0.0924 0.9 0.01098 0.898
θ 7.29 × 10−3 6.71 × 10−6 0.00354 0.773 3.52 × 10−3 2.99 × 10−6 0.0339 0.92 0.00298 0.827

R1,6 2.76 × 10−4 5.23 × 10−6 0.1121 0.9854 1.43 × 10−4 9.26 × 10−5 0.2085 0.68

VII α 0.00129 2.24 × 10−6 0.00326 0.646 1.82 × 10−3 2.95 × 10−5 0.003069 0.64 0.00376 0.891
η 0.00359 1.75 × 10−5 0.0108 0.788 2.41 × 10−3 3.87 × 10−5 6.07 × 10−5 0.682 0.00798 0.778
β 0.0272 0.001185 0.1189 0.913 8.52 × 10−2 4.67 × 10−3 0.1587 0.92 0.09678 0.918
θ 0.00538 5.19 × 10−5 0.0253 0.786 1.19 × 10−3 7.72 × 10−5 0.0579 0.767 0.10253 0.987

R1,6 4.71 × 10−6 1.21 × 10−7 0.8244 0.914 2.02 × 10−7 8.46 × 10−7 0.1064 0.69

VIII α 0.00155 2.975 × 10−6 0.00295 0.756 8.054 × 10−3 1.74 × 10−6 0.00797 0.62 0.00278 0.878
η 0.00461 2.095 × 10−5 0.00683 0.832 0.00475 2.89 × 10−6 0.00875 0.813 0.00478 0.882
β 0.0252 0.00102 0.1117 0.92 0.10927 0.0544 0.1734 0.83 0.0927 0.91
θ 0.00532 5.144 × 10−5 0.0261 0.807 0.00489 1.297 × 10−3 0.0485 0.69 0.00747 0.854

R1,6 5.64 × 10−5 1.31 × 10−6 0.8004 0.908 0.0860 6.24 × 10−5 0.9279 0.9604

IX α 6.27 × 10−4 1.12 × 10−6 1.25 × 10−3 0.604 8.77 × 10−4 1.56 × 10−5 9.98 × 10−3 0.71 4.57 × 10−3 0.92
η 0.00193 8.39 × 10−6 0.00308 0.792 0.0877 2.31 × 10−6 0.0275 0.74 0.00118 0.857
β 0.0115 0.00489 0.0507 0.915 0.195 0.0957 0.278 0.959 0.197 0.998
θ 0.00252 2.94 × 10−5 0.0118 0.801 0.00845 0.0645 0.627 0.717 0.0189 0.819

R1,6 7.91 × 10−5 1.65 × 10−6 0.358 0.975 9.46 × 10−5 1.88 × 10−6 7.89 × 10−3 0.0889
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From Table 3, we can see that the MLE-bias and BE-bias of the parameters are very
small. However, the MLE has more superiority because the MSEs and the bias of the MLEs
are generally lower than the BEs. For the interval estimation, it is observed that the CPs of
the exact interval for the parameters and reliability are close to the HPDCI, which is better
than the ACIs with respect to the AILs and CPs. Comparing Table 3 with Table 4, when
(n1, n2) increases, the MSEs for the MLEs and BEs of the parameters decrease, and the AILs
of the HPDCIs, ACIs, and ECIs become shorter. In terms of AILs, there is little difference
between the ACI, HPDCI, and ECI in terms of parameters and reliability, but the ECIs are
better than the ACIs and HPDCIs in terms of CPs.

4.2. Data Analysis

Here, we analyze a dataset that was first published in Musa [28] and discussed
Kayal [29]. As mentioned in Section 1, in order to avoid drought in a certain area, the water
storage capacity of the reservoir in any month from January to June needs to be greater
than that in August of the previous year. So, we consider s = 1, j = 6, which suggests that
it is a 1-out-of-6 system. The data (X, Y) are as follows:

277 437 437 596 757 2230
277 363 405 522 535 613
213 298 821 1300 1601 1620

5 149 618 1034 2441 2640
437 565 714 927 1119 4462




135
340
277
874
460


We first verify that the Chen distribution and the Gompertz distribution can be fitted to the
given dataset. Based on the method described in Sections 3.1–3.3, we obtain the MLEs of
unknown parameters and compare them with the other two lifetime distributions, including
inverse Weibull and exponential distributions. In Table 5, we record the Kolmogorov–
Smirnov (K-S) statistics along with their corresponding p-values. From this table, we
observe that, compared with other distributions, the Chen distribution and the Gompertz
distribution provide a pretty good fitting for a given dataset.

Table 5. K-S distances and p-values for parameters and reliability, based on different distributions.

Distribution
Data X

Distribution
Data Y

α η K-S p-Value β θ K-S p-Value

Gompertz 0.0010 1.960 × 10−5 0.1502 0.5077 Chen 0.2922 0.0021 0.2130 0.9389
IW 0.5705 25.8900 0.2516 0.04 IW 1.7360 15157 0.2181 0.90

Exponential 0.0010 0.1536 0.15 Exponential 0.0024 0.2852 0.70

• Scheme 1: T1 = 1350; n1 = 6, m1 = 4, c1 = 2, R = (1, 0, 0, 1); T2 = 200; n2 = 5,
m2 = 3, c2 = 2, S = (0, 2, 0).

• Scheme 2: T1 = 1700; n1 = 6, m1 = 5, c1 = 2, R = (1, 0, 0, 0, 0); T2 = 300; n2 = 5,
m2 = 4, c2 = 3, S = (1, 0, 0, 0).

To obtain the censoring sample from X and Y, we first censor some elements from
the Y by the method explained in Section 2. For any censoring data of Y, we remove the
same row of the X sample. In the remaining sample of X, we apply the censoring scheme
for each row. Comparing Table 6 with Table 7, we can see that the MLEs and BEs of the
parameters are very close to the complete sample with respect to bias and MSE. However,
the BE is not affected by the initial value; it has more advantages, and the MSE of the BE is
generally less than the MLE.
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Table 6. MLEs, BEs, AILs, and HPDs for parameters based on the complete data.

Parameter and
Reliability MLE ACI BE HPDCI

α 0.0010 (4.34 × 10−4, 1.63 × 10−3) 0.00096 (6.40 × 10−4, 1.31 × 10−3)
η 1.96 × 10−5 (6.40 × 10−4, 1.31 × 10−3) 0.00014 (1.41 × 10−4, 1.47 × 10−4)
β 0.2922 (0.221, 0.362) 0.2956 (0.2916, 0.2928)
θ 0.0021 (−4.712 × 10−3, 9.10 × 10−3) 0.00484 (0.00185, 0.00253)

R1,6 0.991 (0.7709942, 1.211296) 0.9760 (0.9046621, 1.0003050)

Table 7. MLEs, BEs, AILs, and HPDCIs for parameters based on the censoring data.

Scheme Parameter and
Reliability

MLE ACI BE HPDCI ECI

α 5.55 × 10−4 (−0.189, 0.190) 0.00107 (2.41 × 10−4, 1.67 × 10−3) (6.42 × 10−6, 3.50 × 10−5)
η 6.87 × 10−4 (−6.03 × 10−4, 1.96 × 10−3) 0.00087 (6.08 × 10−5, 2.02 × 10−3) (−5.6 × 10−3, 5.08 × 10−3)

I β 0.3742 (0.271, 1.356) 0.258132 (0.054, 0.424) (0.217, 0.493)
θ 0.000142 (−0.0032, 0.0033) 0.0216 (2.98 × 10−8, 1.29 × 10−1) (4.88 × 10−3, 1.33 × 10−7)
R1,6 0.9837 (0.542, 1.424) 0.9878 (0.347, 0.998)
α 7.08 × 10−4 (−7.36 × 10−4, 2.15 × 10−3) 2.73 × 10−4 (−3.24 × 10−4, 1.25 × 10−3) (5.77 × 10−6, 3.14 × 10−5)
η 1.08 × 10−3 (−1.47 × 10−3, 3.63 × 10−3) 3.46 × 10−4 (−1.07 × 10−3, 1.96 × 10−3) (−3.83 × 10−4, 6.09 × 10−3)

II β 0.3851 (−0.1663, 0.937) 0.0921 (0.0017, 0.3448) (0.162, 0.495)
θ 7.69 × 10−5 (−0.0020, 0.0022) 7.43 × 10−3 (−1.42 × 10−3, 3.05 × 10−2) (1.82 × 10−7, 4.05 × 10−3)
R1,6 0.985 (0.378, 1.592) 0.993 (0.364, 0.994)

For interval estimation, it is observed that the CPs of the exact interval and HPDCI
for the parameters are close. Comparing scheme I with scheme II, T1 and T2 in the scheme
have a great effect. In scheme II, due to the large setting of T1 and T2, the results are closer
to complete samples. The HPDCIs are better than the ACIs in terms of the AILs and CPs,
the MSEs for the MLE and the BEs of the parameters decrease, and the AILs of the HPDCIs
and ACIs become shorter.

5. Conclusions

Industrial safety accidents occur frequently, mainly because the accuracy of reliability
estimations of industrial system equipment are unable to meet the specific requirements.
Therefore, it is of great significance to select appropriate estimation methods, progressive
censoring life tests, and estimation evaluation criteria to improve the accuracy of system re-
liability estimation in existing industrial systems. The present study utilized the extensively
used multicomponent system stress–strength model (also referred to as the s-out-of-j sys-
tem) and the GPHC scheme, along with two point-estimation methods, namely, maximum
likelihood and Bayesian methods, and three interval-estimation methods, namely, ACI,
HPDCI, and ECI. Repeated numerical simulation tests were performed, which, together
with a set of reservoir storage data, revealed that the GPHC scheme could ensure the
accuracy of the reliability estimation of the MSS model. Moreover, limiting the distribution
types of the stress and strength variables was not required in the setting of the model,
and a further accurate reliability estimation value of the model could be obtained within
a short life test duration and at a reduced cost. In addition, numerical experiments were
conducted, the results of which indicated that the CPs of the ECI for the parameters were
close to the HPDCI, and the HPDCI was better than the ACIs of the MSS model parameters
and reliability, in terms of the AILs and CPs. In terms of AIL, there was little difference
among the ACI, HPD, and ECI of the parameters, although the ECIs were better than the
ACIs and HPDCIs in terms of CPs. In addition, T1 and T2 in the scheme greatly affected
the reliability of the MSS model. In practice, setting T2 greater than T1 would enable the
reliability estimation GPHC sample to be closer to that under the complete sample, which
would reduce costs.

The GPHC scheme is similar to the progressive type-II censoring scheme in a special
case. This scheme is a generalization of the progressive and hybrid censoring schemes,
due to which the results could be further extended. On the other hand, as the distribution
types of the model variables were not limited in the present study, the reliability of the
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MSS model has complex forms, and there is no relevant mathematical and statistical theory
support; thusm the ECI of the MSS model reliability could not be obtained. In the present
study, the multicomponent system was limited to a non-repairable system, while industrial
production often involves repairable multicomponent systems. Therefore, further research
could involve the combination of the multicomponent repairable stress–strength model
and a censoring scheme.

Author Contributions: Methodology and writing, H.M.; supervision, Z.Y. and J.J. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of China (No.11861049), the
Natural Science Foundation of Inner Mongolia (2020LH01002, 2020MS01001), and Inner Mongolia
Autonomous Region graduate Scientific research innovation project (BZ2020035).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available from the corresponding author upon request.

Acknowledgments: The authors would like to thank the Associate Editor, Editor, and the anonymous
reviewers for carefully reading the paper and for their comments, which greatly improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GPHC Generalized progressive hybrid censoring
MSS Multicomponent stress–strength
MLE Maximum likelihood estimation
ACI Asymptotic confidence interval
BE Bayesian estimation
HPDCI High posterior density credible interval
ECI Exact confidence interval
AIL Average interval length
CP Coverage probability
MH Metropolis–Hastings
SELF Squared error loss function
MSE mean squares errors
MLE-bias Bias of MLE
BE-bias Bias of BE
MLE-MSE MSE of MLE
BE-MSE MSE of BE
ACI-AIL AIL of ACI
ACI-CP CP of ACI
HPDCI-AIL AIL of HPDCI
HPDCI-CP CP of HPDCI
ECI-AIL AIL of ECI
ECI-CP CP of ECI
MCMC Markov chain Monte Carlo

Appendix A

∂Rs,j

∂α
=

j

∑
i=s

(
j
i

) j−i

∑
k=0

(−1)k+1
(

j− i
k

) ∫ ∞

0

θβ

η
(eηy − 1)(i + k)yβ−1 × exp{−α

η
(eηy − 1)(i + k) + θ(1− eyβ

) + yβ}dy

∂Rs,j

∂η
=

j

∑
i=s

(
j
i

) i

∑
k=0

(−1)k+1
∫ ∞

0
θβα(i + k)yβ−1 (e

ηy(ηy− 1) + 1)
η2 × exp{−α

η
(eηy − 1)(i + k) + θ(1− eyβ

) + yβ}dy



Entropy 2022, 24, 619 21 of 22

∂Rs,j

∂θ
=

j

∑
i=s

(
j
i

) i

∑
k=0

(−1)k
∫ ∞

0
βyβ−1[1 + θ(1− eyβ

)]× exp{−α

η
(eηy − 1)(i + k) + θ(1− eyβ

) + yβ}dy

∂Rs,j

∂β
=

j

∑
i=s

(
j
i

) i

∑
k=0

(−1)k
∫ ∞

0
θyβ−1[1 + β log y + βyβ log y(1− θeyβ

)]× exp{−α

η
(eηy − 1)(i + k) + θ(1− eyβ

) + yβ}dy

References
1. Birnbaum, Z.W. On a use of the Mann-Whitney statistic. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics

and Probability; University of California Press: Berkeley, CA, USA, 1956; Volume 1, pp. 13–17.
2. Church, J.D.; Harris, B. The Estimation of Reliability from stress-strength Relationships. In Proceedings of the Third Berkeley

Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; Volume 4, pp. 1–13.
3. Guo, H.; Krishnamoorthy, K. New Approximate Inferential Methods for the Reliability Parameter in a stress-strength Model: The

Normal. Commun. Stat.-Theory Methods 2005, 33, 1715–1731. [CrossRef]
4. Khan, A.H.; Jan, T.R. Estimation of Stress-Strength Reliability Model Using Finite Mixture of Two Parameter Lindley Distributions.

Stat. Appl. Probab. 2015, 4, 147–159.
5. Kundu, D.; Raqab, M.Z. Estimation of P(Y < X) for three parameters generalized Rayleigh distribution. Stat. Comput. Simul.

2015, 85, 725–739.
6. Kunchur, S.H.; Munoli, S.B. Estimation of reliability for a multicomponent survival stress-strength model based on exponential

distributions. Commun. Stat.-Theory Methods 1993, 22, 769–779. [CrossRef]
7. Rao, G.S. Estimation of reliability in multicomponent stress-strength based on generalized exponential distribution. J. Stat. Adv.

Theory Appl. 2013, 9, 19–35.
8. Rao, G.S.; Aslam, M.; Kundu, D. Burr-XII distribution parametric estimation and estimation of reliability of multicomponent

stress-strength. Commun. Stat.-Theory Methods 2015, 44, 4953–4961. [CrossRef]
9. Rao, G.S.; Aslam, M.; Arif, O.H. Estimation of reliability in multicomponent stress-strength based on two parameter exponentiated

Weibull distribution. Commun. Stat.-Theory Methods 2016, 46, 7495–7502.
10. Khan, A.H.; Jan, T.R. Estimation of multi-component systems reliability in stress-strength models. J. Modern Appl. Stat. Methods

2014, 13, 389–398. [CrossRef]
11. Liu, Y.M.; Shi, Y.M.; Bai, X.C.; Zhan, P. Reliability estimation of a N-M-cold-standby redundancy system in a multicomponent

stress-strength model with generalized half-logistic distribution. Phys. A Stat. Mech. Its Appl. 2018, 13, 1–24. [CrossRef]
12. Eryßlmaz, S. A new perspective to stress-strength models. Ann. Inst. Stat. Math. 2011, 63, 101–115. [CrossRef]
13. Valiollahi, R.; Asgharzadeh, A.; Raqab, M.Z. Estimation of P(Y < X) for Weibull distribution under progressive Type-II censoring,

Commun. Stat.-Theory Methods 2013, 42, 4476–4498.
14. Rezaei, S.; Noughabi, R.A.; Nadarajah, S. Estimation of stress-strength reliability for the generalized Pareto distribution based on

progressive censored samples. Ann. Data Sci. 2015, 2, 83–101. [CrossRef]
15. Baratpour, S. Statistical inferences for stress-strength in the proportional hazard models based on progressive Type-II censored

samples. J. Stat. Comput. Simul. 2015, 85, 431–449.
16. Shi, X.; Shi, Y.; Zhou, K. Estimation for Entropy and Parameters of Generalized Bilal Distribution under Adaptive Type II

Progressive Hybrid Censoring Scheme. Entropy 2021, 23, 206. [CrossRef]
17. Shi, X.; Shi, Y. Inference for inverse power Lomax distribution with progressive first-failure censoring. Entropy 2021, 23, 1099.

[CrossRef] [PubMed]
18. Asgharzadeh, A.; Kazemi, M.; Kundu, D. Estimation of P(Y < X) for Weibull distribution based on hybrid censored samples. Int.

J. Syst. Assur. Eng. Manag.2015,8,1–10.
19. Mirjalili, S.M.; Torabi, H.; Nadeb, H. Stress-strength reliability of exponential distribution based on Type-I progressive hybrid

censored samples. J. Stat. Res. Iran. 2016, 13, 89–105.
20. Bai, X.C.; Shi, Y.M.; Liu, Y.M.; Liu, B. Reliability estimation of multicomponent stress-strength model based on copula function

under progressive hybrid censoring. J. Comput. Appl. Math. 2018, 5, 100–114. [CrossRef]
21. Gompertz, B. On the nature of the function expressive of the law of human mortality. Math. Demogr. 1977, 6, 279–282.
22. El-Gohary, A.; Alshamrani, A.; Al-Otaibi, A.N. The generalized Gompertz distribution. Appl. Math. Model. 2013, 37, 13–24.

[CrossRef]
23. Chen, Z.M. A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat. Probab. Lett.

2008, 49, 155–161. [CrossRef]
24. Singh, D.P.; Tripathi, Y.M.; Manoj, K.; Dabral, N. Estimation and prediction for a Burr type-III distribution with progressive

censoring. Commun. Stat.-Theory Methods 2017, 46, 9591–9613. [CrossRef]
25. Tian, Y.Z.; Qiu, X.P.; Tian, Z.M. Parameters inference generalized exponential distribution based on generalized progressive

hybrid censoring scheme Chin. J. Appl. Probab. Stat. 2017, 33, 191–202. (In Chinese)

http://doi.org/10.1081/STA-120037269
http://dx.doi.org/10.1080/03610929308831054
http://dx.doi.org/10.1080/03610926.2013.821490
http://dx.doi.org/10.22237/jmasm/1414815600
http://dx.doi.org/10.1016/j.physa.2017.08.028
http://dx.doi.org/10.1007/s10463-008-0211-3
http://dx.doi.org/10.1007/s40745-015-0033-0
http://dx.doi.org/10.3390/e23020206
http://dx.doi.org/10.3390/e23091099
http://www.ncbi.nlm.nih.gov/pubmed/34573724
http://dx.doi.org/10.1016/j.cam.2018.04.066
http://dx.doi.org/10.1016/j.apm.2011.05.017
http://dx.doi.org/10.1016/S0167-7152(00)00044-4
http://dx.doi.org/10.1080/03610926.2016.1213290


Entropy 2022, 24, 619 22 of 22

26. Bhattacharyya, G.K.; Johnson, R.A. Estimation of reliability in multicomponent stress-strength model. J. Am. Stat. Assoc. 1974, 69,
966–970. [CrossRef]

27. Oehlert, G.W. A Note on the Delta Method. Am. Stat. 1992, 46, 27–29.
28. Musa, J.D. Software Reliability Data; Technical Report; Data and Analysis Center for Software, Rome Air Development Center:

Rome, NY, USA, 1979; Volume 1, pp. 1–27.
29. Kayal, T.; Tripathi, Y.M.; Dey, S.; Wu, S.J. On estimating the reliability in a multicomponent stress-strength model based on Chen

distribution. Commun. Stat.-Theory Methods 2020, 49, 2429–2447. [CrossRef]

http://dx.doi.org/10.1080/01621459.1974.10480238
http://dx.doi.org/10.1080/03610926.2019.1576886

	Introduction
	Model
	Estimation of Parameters and Reliability
	Maximum Likelihood Estimation
	Exact Interval Estimation
	Bayesian Estimation

	Data Analysis and Comparison Study
	Numerical Experiments
	Data Analysis

	Conclusions
	Appendix
	References

