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Abstract

Background: The development of high-throughput sequencing and genotyping methodologies has enabled the
identification of thousands of genomic regions associated with several complex traits. The integration of multiple sources
of biological information is a crucial step required to better understand patterns regulating the development of these traits.
Findings: Genomic Annotation in Livestock for positional candidate LOci (GALLO) is an R package developed for the
accurate annotation of genes and quantitative trait loci (QTLs) located in regions identified in common genomic analyses
performed in livestock, such as genome-wide association studies and transcriptomics using RNA sequencing. Moreover,
GALLO allows the graphical visualization of gene and QTL annotation results, data comparison among different grouping
factors (e.g., methods, breeds, tissues, statistical models, studies), and QTL enrichment in different livestock species such
as cattle, pigs, sheep, and chickens. Conclusions: Consequently, GALLO is a useful package for annotation, identification of
hidden patterns across datasets, and data mining previously reported associations, as well as the efficient examination of
the genetic architecture of complex traits in livestock.
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Background

The identification of quantitative trait loci (QTLs), genomic re-
gions linked to complex traits through association tests using
genetic markers and phenotypic traits, is a crucial step in the
improvement of genomic selection and economic profitability
in livestock [1–4]. The development of high-throughput method-
ologies (e.g., genome-wide association studies [GWAS], tran-
scriptomics, metabolomics, proteomics) for the study of the ge-
netic architecture of complex traits allows for the identification

of potential candidate genes associated with economically rel-
evant traits in livestock. Taken together, these technologies can
substantially improve the accuracy of detection of candidate re-
gions associated with economically important traits across the
genome in livestock species [5]. Consequently, the number of
QTLs identified across the genome in livestock species has in-
creased substantially in the past few years. As of October 2020,
the Animal Quantitative Trait Loci Database (Animal QTLdb) can
retrieve information about QTLs previously identified in cattle
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(159,844), chickens (12,508), horses (2,451), pigs (30,871), rainbow
trout (584), and sheep (3,411) [6]. The proper integration of re-
sults obtained from different methodologies and technologies
is a crucial step for the accurate identification of the biological
processes regulating complex traits, as well as the identification
of potential functional candidate genes for each trait or those
shared among traits [5, 7–9]. The integration of both structural
and functional data can help scrutinize the genetic architecture
of economically relevant traits and, consequently, help to better
elucidate complex biological patterns regulating the expression
of these traits, such as pleiotropic effects, epistasis, and genetic
hitchhiking, among others.

Despite the potential to improve the identification of func-
tional candidate genes and/or QTLs through the integration of
multiple data sources, the current process poses limitations in
the pipelines and algorithms implemented in the tools avail-
able for livestock. Currently, there are several tools that imple-
ment functions for gene (i.e., Biomart and BEDTools) and QTL
annotation (Animal QTLdb) [6, 10, 11]. However, these tools have
limitations regarding the automatization process to analyze re-
sults from multiple candidate regions (Biomart web application
and the R package and Animal QTLdb) or for the visualization of
the results. Moreover, although automatization is possible, there
is no direct link between the candidate regions and/or mark-
ers with the annotated genes and QTLs. Consequently, this gap
forces the user to back-solve the overlap between the input and
output files in order to perform the proper association between
the candidate region and/or markers and the annotated genes
and/or positional co-localized QTLs. In addition, there is still
a need for customized QTL enrichment analyses in the avail-
able software and databases. Genomic Annotation in Livestock
for positional candidate LOci (GALLO) is an R package designed
to provide an automatized and a straightforward environment
for gene and QTL annotation in multiple candidate regions, as
well as the integration of data from multiple sources. Addition-
ally, the QTL enrichment analysis can be performed directly by
GALLO using the output obtained from the QTL annotation step.
GALLO also provides a set of functions for graphical visualiza-
tion of the annotation, comparison, integration, and QTL enrich-
ment results. In this context, the GALLO package was developed
as an alternative tool (i) to allow the integration and simulta-
neous annotation of multiple datasets for genes and QTLs, (ii)
to provide graphical visualization tools to visually integrate the
annotation and similarity against datasets, and (iii) to perform
QTL enrichment analysis for the positional candidate genomic
regions and/or markers associated with economically relevant
traits in livestock.

Implementation

The GALLO package was written in the R language [12]. The
stable release is available as an R package on CRAN [13]. The
code was extensively tested with several datasets from different
sources and methodologies and reviewed to ensure that it meets
the package’s high quality standards. Additionally, the vignettes
were created to be comprehensive and to present practical ex-
amples to provide a user-friendly tutorial.

The GALLO package provides a useful set of functions that
gives a straightforward approach to data integration, compari-
son, gene and QTL annotation, and visualization of several data
sources and methodologies, such as variants from GWAS, RNA
sequencing, whole-genome sequencing, and so forth (Fig. 1 and
Table 1). The main advantage to performing an automated anal-
ysis from multiple datasets is the ability to handle the output

using different subsets (e.g., traits, populations, models) in the
same environment without generating multiple intermediate
output files.

Case study—Candidate regions for scrotal
circumference and fertility in cattle

The dataset used to present the basic usage and advantages of
the GALLO package is composed by the markers significantly as-
sociated with scrotal circumference in the Canchim breed [14]
and noncompensatory fertility in Holstein cattle [15]. These 2
studies were previously analyzed together in a systematic re-
view regarding male fertility in cattle [8]. Therefore, the data
used herein comprise a multi-study and multi-breed analysis.
These candidate markers (527 single-nucleotide polymorphisms
[SNPs]) are available in Supplementary Table S1. In addition to
the candidate markers, we present, as Supplementary Files S1
and S2, the annotation gff file containing the QTL database in-
formation for cattle (obtained from the Animal QTLdb) [16] and
the gtf file containing the genes annotated in the cattle genome
obtained from Ensembl [17]. The genomic coordinates of both
files were based on the bovine reference genome version UMD
3.1 due to the original coordinates used to report the location of
the candidate markers in the original studies. Here, the analysis
performed follows the same logical order to the one presented
in the GALLO vignette [18]. However, the dataset used in the user
practical tutorial is a subset of the data presented here, aiming to
reduce the computational demand for the user. The script with
all the commands used to perform the analysis presented here is
available in Supplementary File S3. All the tests were performed
using a desktop with an Intel Core i5 2.4 GHz processor with 8
GB of RAM.

Importing datasets and annotating genes and QTLs
around candidate markers

The first step in the pipeline consists of importing the databases
that will be used for the analysis with the import gff gtf() func-
tion. In our specific example, we imported both cattle gene an-
notation (gtf) and QTL (gff) databases. The import gff gtf() func-
tion receives the database file (db file) and the file type (file type
= “gff” or “gtf”) as arguments and creates a dataframe with the
respective information from each file. The system time taken
to import the gtf and gff files was 0.045 and 0.311 seconds, re-
spectively, indicating an efficient importing process. The file
containing the candidate markers can be imported using any
available function in the R environment such as read.table() and
read.csv().

The main function of GALLO, find genes qtls
around markers(), performs the annotation of genes and/or
co-localized QTLs within or nearby candidate markers or
genomic regions (using the user’s defined interval/window).
This function uses the information provided in the .gtf file
(for gene annotation) or .gff (for QTL annotation) to retrieve
the requested information. The output combines the infor-
mation available in the input file provided by the user with
the information available for the genes and QTLs mapped
in the candidate genomic regions. For example, for an input
file composed of 3 genomic coordinates where 4 genes are
annotated in each of the intervals determined by the user, the
output file of find genes qtls around markers() will contain 12
rows. The minimum information necessary for the gene and
QTL annotation procedures is a dataframe with 2 columns
containing the chromosome (CHR) and position in base pairs
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Figure 1: Workflow explaining the main functions implemented on GALLO. The grey rectangles represent the functions, while the rounded, sharp rectangles and
parallelograms represent the main goal of that respective function, its input and outputs, respectively.

Table 1: Description of the functions implemented in the GALLO package

Function Description Output

Gene and QTL annotation
import gff gtf Import the gff and gtf files used for QTL

and gene annotation, respectively
A dataframe composed by the information present in the gtf
and gff files

find genes qtls around markers Annotation of genes and QTLs around
candidate regions

A dataframe composed of the columns present in the input
file and the genes or QTLs mapped within or around (if
interval provided) the candidate regions

Data visualization
overlapping among groups Overlap between grouping factors (e.g.,

different traits, statistical models,
populations, studies)

A list with 3 matrices: (i) a matrix with the number of
overlapping data, (ii) a matrix with the percentage of overlap,
and (iii) a matrix with the combination of (i) and (ii)

plot overlapping Plot overlap between data and grouping
factors

A heat map with the overlap between groups

plot qtl info Plot QTL information from the gene or
QTL annotation output

A pie chart (if QTL class is chosen) or a bar plot (if trait name
is chosen) for the annotated QTLs

relationship plot Plot the relationship among the
candidate regions or grouping factors
with the annotated genes and QTLs

A chord plot linking a grouping factor (e.g., genomic regions,
traits, populations) with the annotated genes or QTLs

QTL enrichment
qtl enrich Performs a QTL enrichment analysis

based on a bootstrap simulation for each
QTL class or trait

A dataframe composed of the enrichment results for QTL
classes or traits present in the input file: (i) QTL: the QTL
class or trait used for the enrichment; (ii) CHR: the
chromosome for that specific QTL or trait (if the option
“chromosome” is informed to the argument enrich type); (iii)
N QTLs: number of observed QTLs or traits in the dataset; (iv)
N QTLs db: number of each annotated QTL in the qTL
database; (v) Total annotated QTLs: total number of
annotated QTLs; (vi) Total QTLs db: total number of QTLs in
the QTL database; (vii) pvalue: P-value for the enrichment
analysis; (viii) adj.pval: the adjusted P-value based on the
multiple test correction selected by the user; (ix) QTL type:
the QTL type for each annotated trait

QTLenrich plot Creates a bubble plot with the QTL
enrichment results

A plot with the QTL enrichment results
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(BP) in the case of the candidate SNPs input file. In the case of
the candidate haplotypes, windows, copy number variations
(CNVs), or candidate regions, the input file is composed by 3
columns corresponding to the chromosome (CHR), the start
position in base pairs (BP1), and the end position in base pairs
(BP2). Data examples for the candidate markers and windows
input files can be obtained using the data(“QTLmarkers”) and
data(“QTLwindows”) commands in R. Additionally, examples
of QTL and gene annotation results are accessible through the
data(“gtfGenes”) and data(“gffQTLs”) commands, respectively.
These outputs can be easily handled by summary functions
in R, such as table(), to obtain information such as the total
number of genes and QTLs and the number of genes and
QTLs annotated per variant. The gene annotation process
was compared with the getBM() function from the biomaRt
package. The gene annotation process on GALLO needed 0.424
seconds to completely annotate the genes in a 200-kb interval
(upstream and downstream) from candidate markers, while the
biomaRt function required 0.019 seconds. The QTL annotation
on GALLO was compared with the Bedtools -wao -C command,
resulting in 0.851 and 0.12 seconds required for each approach,
respectively. It is important to highlight that for both gene and
QTL annotation using biomaRt and Bedtools, respectively, a
posterior processing of the output file is required in order to
match the candidate markers and the genes and QTLs mapped
within the candidate intervals. On the other hand, the output
file from the find genes qtls around markers() function was
designed to allow this match in an intuitive way, combining
the rows of both candidate marker filse and database files
(gff and gtf). Additionally, GALLO allows the user to perform
both annotations for genes and QTLs with a single software
package and programming language. Consequently, GALLO
obtains a more elaborate and informative output without sub-
stantially compromising the computational demand required
for the analysis. The output files obtained in the gene and QTL
annotation are available in Supplementary Tables S2 and S3,
respectively.

Comparing and visualizing the overlapping of genes
and QTLs annotated within the candidate regions

The output file generated by the find genes qtls
around markers() function can be used as an input file for
the other set of GALLO functions. An advantage from the
output of the find genes qtls around markers() function is that
any additional information present in the input file will be
retained in the output file. Consequently, this information can
be used to compare the retrieved information between groups
of population, methodologies, statistical models, and so forth.
For example, the functions overlapping among groups() and
plot overlapping() can be used to create matrices with the
overlapping values among groups and to visualize this overlap.
Figure 2 shows the genes and QTLs overlapping between the
positional markers obtained in the 2 selected studies from the
dataset of markers analyzed, Feugang et al. [15] and Buzanskas
et al. [14]. It is important to highlight that the overlapping
matrix informing the percentage of shared records is not
symmetrical. The percentages of genes from Study A shared
with Study B, and vice versa, are calculated as a function of the
total number of genes in A or B, respectively. Briefly, this matrix
is not symmetrical because GALLO calculates the percentage
of records shared as a function of the total number of records
for each group. For example, Groups A and B shared 5 records,
where Group A has 10 records in total and Group B has 5

records. Consequently, the percentage of shared records in A is
50% while the percentage of shared records in B is 100%. In the
present example, it can be noted that only a small percentage of
the positional candidate genes were shared between the stud-
ies. However, the analyses of overlapping QTLs (using the trait
name as reference ID) indicated a higher similarity between the
studies: 46% of the QTLs annotated in the candidate regions
from Feugang et al. [15] were also present in Buzanskas et al.
[14] and 93% of the QTLs annotated in the candidate regions
from Buzanskas et al. were also present in Feugang et al.

Understanding the QTL context of the candidate
regions

A more precise investigation of the QTL representativeness and
diversity can help to better elucidate the genomic context of the
candidate regions. The recurrent association of particular ge-
nomic regions with multiple traits might suggest the presence
of complex genetic mechanisms regulating that region, such as
pleiotropy, epistasis, or hitchhiking effect, among others [19, 20].
The plot qtl info() function from GALLO allows for the graph-
ical visualization of the summary of QTL types and traits an-
notated. The percentage of each QTL type for cattle (i.e., milk,
meat and carcass, health, production, reproduction, and exte-
rior) annotated within the candidate regions is presented in a pie
chart through the use of the argument qtl plot = ”qtl type,” while
the percentage of each trait associated with a specific QTL type
can be plotted using the argument qtl plot = ”qtl name” and in-
forming the additional argument qtl class (that must receive the
name of the QTL class to be plotted). Fig. 3 shows that for Feu-
gang et al. [15] the 2 most frequent QTL types were milk (50.42%)
and reproduction (16.97%), while for Buzanskas et al. [14] the
most frequent QTL types were reproduction (87.06%) and meat
and carcass (5.03%). An in-depth analyses can be performed for
each QTL type in order to observe the frequency of each trait
associated with a specific QTL type. The most frequent traits re-
lated to reproduction QTLs were calving ease (>3%) and scro-
tal circumference (>60%) for Feugang et al. and Buzanskas et al.
[14, 15], respectively (Fig. 3). The comparison between the fre-
quency of traits related to reproduction QTLs annotated in Feu-
gang et al. and Buzanskas et al. [14, 15] indicated that among
the top 10 most frequent QTLs, calving ease, inhibin levels, still-
birth, interval to first estrus after calving, and birth index were
shared between the studies. The combined analysis (not filter-
ing by study) indicated that the reproduction and milk QTL types
were the 2 most frequent classes, with 76.99% and 10.62% of all
QTL types, respectively. In addition, scrotal circumference, in-
hibin level, and calving ease were the most frequent reproduc-
tion QTL–related traits in the combined analysis.

QTL enrichment analysis

In some cases, the biases produced with more research in cer-
tain areas/traits of higher relevance to animal production (such
as milk production–related traits in the QTL database for cat-
tle) may result in a larger proportion of records for these traits
in the QTL database. Consequently, the simple investigation of
the proportion of each QTL type might not be totally useful. The
GALLO package allows the user to perform a QTL enrichment
analysis to test the significance of the QTL representativeness.
The QTL enrichment analysis function in the GALLO package is
based on a hypergeometric test approach, where the number
of QTLs annotated within the candidate regions for each QTL
type or trait is compared with the observed number of QTLs in
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Figure 2: Overlapping between genes (A) and QTLs (B) annotated within the candidate regions (100 kb downstream and upstream from the significant markers) from
Feugang et al. and Buzanskas et al. [14, 15]. The darker the color within the squares, the higher the percentage of shared genes or QTLs.

the reference database. Briefly, using an enrichment for individ-
ual traits in a chromosome-wide approach as an example, the
number of traits per chromosome annotated within the candi-
date regions and the total number of each individual trait in the
QTL database are computed. Subsequently, this information is
integrated into a hypergeometric test to estimate whether the
number of observed records, for a specific trait, in a chromosome
is larger than expected by chance. The qtl enrich() function al-
lows the user to perform the QTL enrichment analysis for both
QTL types and traits (qtl type = “QTL type” or “Name”), for the
whole genome or chromosome-wide (enrich type = “genome”
or “chromosome”), and for all the annotated chromosomes or a
subset (chr.subset = NULL or the object with the subset of chro-
mosomes). The use of a chromosome-wide enrichment analy-
sis might help to detect specific regions across the genome with
a high number of QTLs for a specific trait, e.g., BTA14 in cat-
tle for milk production [21]. A total of 161 unique pairs of traits
and chromosomes were tested for the enrichment using the an-
notated QTLs from both studies. The system time required to
perform the enrichment analysis was 5.32 seconds, suggesting
efficient processing. The top 10 enriched QTLs (false discovery
rate [FDR] < 0.05) for the combined analysis are reported in Ta-
ble 2 and the enrichment results for all the annotated QTLs are
presented in Supplementary Table S4. Additionally, GALLO also
allows the user to obtain a graphical visualization, in a bubble
plot, of the enrichment results using the QTLenrich plot() func-
tion. This function receives the enriched table obtained from
qtl enrich(), the name of the column with the trait names to
be plotted, and the name of the column with the P-values to
be plotted as arguments. A total of 28 pairs of traits and chro-
mosomes were found to be enriched in the combined analysis,
with scrotal circumference (BTA 5, 18, 9, and 21), milk glycosy-
lated κ-casein percentage (BTA 6 and 16), inhibin level (BTA 5),
triglyceride level (BTA 5), milk κ-casein percentage (BTA 6), and
milk iron content (BTA 23) in the list of top 10 most enriched
traits. Fig. 4 shows the top 5 enriched QTLs identified in this
analysis.

Relationship between studies and enriched QTLs

An interesting functionality of GALLO is the graphical visualiza-
tion of the relationship between groups using a chord plot. The
relationship plot() function receives as arguments a dataframe
(it can use the gene or QTL annotation results, the QTL enrich-
ment, or any other table with 2 groups of information to be com-
pared), the 2 groups to be compared (arguments x and y), and the
graphical arguments to set the size, color, and gap between the
sectors in the chord plot. Fig. 5 shows the chord plot obtained
using a subset of the QTL annotation dataframe composed only
by the top 10 enriched traits and the studies from which these
traits were annotated. This plot indicates that only inhibin levels
and scrotal circumference on BTA5 are shared between Feugang
et al. and Buzanskas et al. [14, 15]. Additionally, milk glycosy-
lated κ-casein percentage (BTA 6 and 16), milk κ-casein percent-
age (BTA 6), and milk iron content (BTA 23) were annotated only
in Feugang et al. [15] and scrotal circumference (BTA 9, 18, 21)
and triglyceride level (BTA 5) were annotated only in Buzanskas
et al. [14]. Inhibin is produced by the Sertoli cells and can be used
as a biomarker for sexual development [22]. In addition, the in-
hibin levels were already associated with both scrotal circumfer-
ence and sperm quality traits in several studies, suggesting an
important role in male fertility [23–27]. The results obtained here
through the integration of the GWAS results from 2 independent
studies followed by QTL annotation reinforce this association.
Additionally, QTLs not associated with reproductive phenotypes
were identified in the enrichment analysis, suggesting the pres-
ence of complex biological mechanisms such as a pleiotropic ef-
fect, epistasis, and genetic hitchhiking effect. Previous studies
have highlighted the possible role of genomic regions with these
kinds of processes in the cattle genome [28, 29]. An additional
integration of the QTL annotation and enrichment analysis per-
formed here with the gene annotation and prospection for func-
tional candidate genes can be a powerful tool to better reveal
the genetic architecture and the relationship among complex
traits.
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Figure 3: Percentage of QTL type (pie chart) and trait related to peproduction QTLs (barplots) for the QTL annotation results obtained for (A) Feugang et al. [15], (B)

Buzanskas et al. [14], and (C) the combined analysis (using both studies).

Discussion

The GALLO package is composed of a group of functions de-
signed to perform an efficient and direct downstream analysis
for the gene and QTL annotation for candidate markers/SNPs,
haplotypes, genomic windows, runs of homozygosity, CNVs, and
so forth. The functions implemented in GALLO were designed
to allow the integration of multiple datasets simultaneously. A
brief summary of these functions is provided in Table 1. For ex-

ample, GWAS results from multiple traits and/or populations or
breeds can be analyzed together and compared or individually
analyzed in the downstream analysis. This can be easily per-
formed by adding an extra column in the input file with the
grouping factors to classify each dataset. These input files can
be easily adapted from the output of software packages that are
commonly used to analyze high-throughput genomic data, such
as PLINK, BLUPF90, and DESeq2 [30–32]. In addition, GALLO pro-
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Table 2: Top 10 enriched QTLs for the combined analysis performed with the candidate regions from the 2 studies, Feugang et al. [15] and
Buzanskas et al. [14], used in the example dataset

QTL CHR
No.

QTLs
No. QTLs

db Total No. QTLs
Total No. QTLs

db P-value FDR QTL type

Scrotal circumference 5 132 134 347 5,942 1.56E−171 4.98E−169 Reproduction
Scrotal circumference 18 11 13 41 2,147 2.20E−18 3.52E−16 Reproduction
Scrotal circumference 9 11 14 30 1,395 2.04E−17 2.18E−15 Reproduction
Milk glycosylated κ-casein
percentage

6 71 1,607 204 12,158 1.86E−15 1.49E−13 Milk

Inhibin level 5 47 285 347 5,942 3.38E−11 2.16E−09 Reproduction
Scrotal circumference 21 4 5 12 3,606 3.51E−10 1.87E−08 Reproduction
Milk κ-casein percentage 6 76 2,637 204 12,158 2.39E−07 1.01E−05 Milk
Triglyceride level 5 6 7 347 5,942 2.53E−07 1.01E−05 Health
Milk glycosylated κ-casein
percentage

16 7 44 21 1,440 1.29E−06 4.58E−05 Milk

Milk iron content 23 4 8 19 1,159 3.48E−06 0.000111329 Milk

Figure 4: Bubble plot displaying the enrichment results for the top 5 enriched QTLs identified using the QTLs annotated within the candidate regions from Feugang
et al. [15] and Buzanskas et al. [14]. The darker the red shade in the circles, the more significant the enrichment. The area of the circles is proportional to the number
of QTLs. The x-axis shows a richness factor obtained by the ratio of the number of QTLs annotated in the candidate regions and the total number of each QTL (and
chromosome in the case of this plot) in the reference database.

vides a set of functions designed for the visualization of the an-
notation results, overlap among groups, relationship between
groups (e.g., markers and candidate genes, datasets and QTLs,
models and positional candidate genes), and QTL enrichment
results. This set of functions provides the capability of inte-
grating several results from multiple sources including different
methodologies (e.g., GWAS, RNA sequencing, proteomics), pop-
ulations (e.g., breeds, time points), traits, or the different combi-
nation of these groups or others. Taken together, this set of func-
tions provide the possibility to perform all the steps of gene/QTL
annotation, comparison, and summary in the same environ-
ment. Additionally, the output obtained using GALLO was de-
signed to allow a direct connection between the candidate ge-
nomic regions and the genes/QTLs that overlap those regions.
Therefore, compared with outputs provided by other tools, such
as biomaRt and Bedtools, the interpretation of the output pro-
vided by GALLO is straightforward and easy to handle. Finally,
the QTL enrichment analysis available with GALLO is a useful
and new approach that has the potential to better elucidate the
relationship between candidate genomic regions and the target

phenotype. It is important to highlight that despite the fact that
GALLO was primarily designed for livestock species, the pack-
age can perform gene annotation and data comparison for any
other species without any additional alterations to the input
files. Regarding the QTL annotation and the respective graphical
visualization, the user should provide the gff file from the QTL
database in a format matching the gff files available on Animal
QTLdb.

A summary of use examples and output descrip-
tions for all the functions available on GALLO can be
found in the reference manual (https://cran.r-project.
org/web/packages/GALLO/GALLO.pdf). It is important to
highlight that the 2 studies used as an example here are
also part of the bovine QTL database. Consequently, the re-
sults obtained here for annotation and enrichment would
be expected, once the candidate regions from the example
file are present in the database used for the annotation. This
approach was used as a proof of concept of the method-
ology and indicates a precise annotation of the candidate
regions.
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Figure 5: Chord plot showing the relationship between the top 10 enriched QTLs
(scrotal circumference [SCRCIR], inhibin level [INHIB], triglyceride level [TRIGLY],

milk glycosylated κ-casein percentage [MGKCASP], milk iron content [MFE], milk
κ-casein percentage [MKCASP]) and the studies (Feugang et al. [15] in purple and
Buzanskas et al. [14] in pink).

Conclusion

The integration of multiple datasets for gene and QTL an-
notation is one of the major bottlenecks for the automatiza-
tion of functional analysis of the results obtained using high-
throughput methodologies. The GALLO package provides a user-
friendly and straightforward environment to perform gene and
QTL annotation, visualization, data comparison, and QTL en-
richment for functional studies in livestock species. Conse-
quently, the use of GALLO in the analyses of data generated
from high-throughput methodologies may improve the iden-
tification of hidden patterns across datasets and data mining
of previously reported associations, as well as efficiency in the
examination of the genetic architecture of complex traits in
livestock.

Availability of Source Code and Requirements

Project name: Genomic Annotation in Livestock for positional
candidate LOci (GALLO)
Project home page: https://github.com/pablobio/GALLO
Operating system(s): Platform independent
Programming language: R
Other requirements: Depends: R (≥3.5.0)
License: GPL-3
RRID:SCR 019212
Bio.tools: biotools: genomic annotation in livestock for posi-
tional candidate loci gallo

Data Availability

All of the data analyzed in the present study can be accessed in
the public repository hosting the R package [33]. The input files
and results used as examples in the text are available in Supple-
mentary Tables S1–S4. A manual including use examples and
output descriptions for all the functions available on GALLO can
be found in the package vignette [34]. An archival copy of the
code and supporting data is available via the GigaScience reposi-
tory, GigaDB [32].

Additional Files

Supplementary Table S1. Genomic coordinates of the 527 mark-
ers used in the analysis for gene and QTL annotation.
Supplementary Table S2. Output from GALLO for gene annota-
tion.
Supplementary Table S3. Output from GALLO for QTL annota-
tion.
Supplementary Table S4. QTL enrichment results obtained using
GALLO.
Supplementary File S1. Example of gff file used for QTL annota-
tion on GALLO.
Supplementary File S2. Example of gtf file used for gene annota-
tion on GALLO.
Supplementary File S3. R script with the commands used to pro-
duce the QTL and gene annotations, plots and enrichment anal-
ysis presented in the manuscri
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