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The Th2 immune response, culminating in eosinophilia and IgE production, is not only
characteristic of allergy but also of infection by parasitic worms (helminths). Anti-parasite
IgE has been associated with immunity against a range of helminth infections and many
believe that IgE and its receptors evolved to help counter metazoan parasites. Allergens
(IgE-antigens) are present in only a small minority of protein families and known IgE targets
in helminths belong to these same families (e.g., EF-hand proteins, tropomyosin, and PR-1
proteins). During some helminth infection, especially with the well adapted hookworm,
the Th2 response is moderated by parasite-expressed molecules. This has been associ-
ated with reduced allergy in helminth endemic areas and worm infection or products have
been proposed as treatments for allergic conditions. However, some infections (especially
Ascaris) are associated with increased allergy and this has been linked to cross-reactivity
between worm proteins (e.g., tropomyosins) and highly similar molecules in dust-mites and
insects. The overlap between allergy and helminth infection is best illustrated in Anisakis
simplex, a nematode that when consumed in under-cooked fish can be both an infective
helminth and a food allergen. Nearly 20 molecular allergens have been isolated from this
species, including tropomyosin (Ani s 3) and the EF-hand protein, Ani s troponin. In this
review, we highlight aspects of the biology and biochemistry of helminths that may have
influenced the evolution of the IgE response.We compare dominant IgE-antigens in worms
with clinically important environmental allergens and suggest that arrays of such molecules
will provide important information on anti-worm immunity as well as allergy.
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THE IgE RESPONSE IS A PHYSIOLOGICAL IMMUNE
RESPONSE TO HELMINTH INFECTION
The parallels between allergy and the immune response to parasitic
worms (helminths) have been noted for some time. Unlike most
other inflammatory/infectious conditions, allergy, and helminths
induce strongly Th2-skewed responses associated with cytokines
such as IL-4, IL-5, and IL-13, with mastocytosis, eosinophilia, and
antibody class-switching to produce IgE [reviewed in Ref. (1)].
This normally rare, tightly controlled antibody isotype is greatly
elevated in helminth infection. It is widely accepted that IgE, its
receptors and distinctive cellular responses did not evolve to tar-
get harmless molecules occurring in plant pollen, dust-mites, or
animal dander. Instead many believe that the IgE axis evolved
to counter metazoan parasites (worms and parasitic arthropods)
which are too large to be phagocytosed, and that allergy is a mis-
directed anti-parasite response in hypersensitive people (2). The
symptoms of allergic responses; lachrymation, rhinitis, coughing,
increased mucus production, and itching in response to histamine
release are all responses likely to dislodge, trap, or flush out large
parasites from skin or mucosa, e.g., by scratching.

There are however critical differences between the two condi-
tions. Allergy occurs in people with atopy; defined as “a genetic
predisposition toward the development of immediate hypersensi-
tivity reactions against common environmental antigens” (3). It is

a polygenic disorder linked to polymorphisms in genes of cytokine,
cytokine receptors, and transcription factors associated with Th2
immune responses and with the expression of IgE and its receptors
(4–7). In contrast, the elevated Th2 cytokines, IgE and eosinophilia
during helminth infection are normal physiological responses to
these pathogens. Furthermore, helminths actively moderate the
inflammatory Th2 response of the host, inducing regulatory T
and B cells, alternatively activated macrophages and production
of immunoregulatory cytokines, such as IL-10 and TGFß, as well
as IgG4 antibodies that counteract IgE [reviewed in Ref. (8)].

Recently Medzhitov and colleagues (9) re-appraised the toxin
hypothesis of allergy (10), proposing that the IgE-mediated hyper-
sensitivity response evolved to counter venoms and other noxious
substances rather than macro-parasites. They argued that (1)
immediate hypersensitivity is very rapid and worms are slow, (2)
IgE is not required for worm immunity in mice, and (3) aller-
gens do not have any obvious relationship with worms. Instead
they proposed that it is toxins and venoms that need to be rapidly
neutralized and that unpleasant allergic symptoms provoke toxin-
avoidance behavior. This “toxin hypothesis” of allergy can in fact
be traced back to the original discovery of anaphylaxis by Portier
and Richet (11) [reviewed in (12)]. However, we would argue
that (1) defense against invading helminth larvae also requires
very fast responses – as elegantly demonstrated in the film of
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Schistosoma mansoni cercariae penetrating and moving rapidly
through skin tissue (13). Most recently, work by Obata-Ninomiya
in Karasuyama’s group (14) has demonstrated the importance of
IgE (via ablation of the high affinity receptor) on basophils (but
not mast cells) in trapping invading Nippostrongylus brasiliensis
larvae in the skin of mice.

While it can be shown that IgE is not strictly necessary for
anti-worm immunity in mice [argument (2) above], it needs to
be stressed that there are other immunity mechanisms operat-
ing as well; IgE is a late mammalian additional mechanism to
the Th2-mediated mechanisms of lower vertebrates (which are
nonetheless still present in mammals), thus IgE-immunity is not
the only mechanism of immunity against metazoan parasites avail-
able to mammals. This is exemplified by the occurrence of Th2-like
immune responses to helminth infection in avian hosts in the
absence of IgE (15). Finally [argument (3) above], we propose
here that nearly all known allergens have equivalents (of widely
varying structure) in metazoan parasites.

Most of the evidence relating IgE to anti-helminth immu-
nity comes from epidemiological data. In a number of studies
on human schistosomiasis, levels of anti-parasite IgE have been
correlated with resistance to infection (16–22). Anti-parasite IgE
responses have also been associated with immunity in human
infections with hookworms (23, 24), Trichuris (25), and Ascaris
(26, 27). Human experimental infection with a single, low
dose of Necator americanus larvae in the context of helminth
immunotherapy trials has shown that peripheral blood basophils
become sensitized to parasitic allergens within 6 weeks of expo-
sure, and remain fully responsive to stimulation with hookworm
allergens years after this single infection (28). Thus, it appears that
helminths are indeed powerful inducers of an IgE response, but
how does this response relate to allergy?

EFFECTS OF HELMINTHS ON ALLERGY
Paradoxically, the global increase in allergy especially in urban
areas (29) has led researchers to propose a modified hygiene
hypothesis in which the decline in helminth infections is associ-
ated with an increase in allergic diseases (30). A number of studies
show that communities with helminth infections have reduced
rates of allergy (31–33) and the evidence that people with hook-
worm have less asthma (34–36) has inspired researchers to use
experimental infections on asthma patients (37). It is proposed
that the active suppression of Th2 responses by helminths has a
bystander effect on concurrent allergic responses [reviewed in Ref.
(8)]. In a study on Gabonese children, van den Biggelaar et al. (31)
showed that the increased IL-10 levels induced by schistosome
infection were negatively correlated with dust-mite sensitivity.
The other side of these phenomena is that anti-helminth treat-
ment programs risk increased rates of allergic disease and this has
already been demonstrated in a number of intervention studies
(38–40).

Under some circumstances helminth infection can actually
increase prevalence of atopic disease and asthma (41, 42). A meta-
analysis of 30 clinical studies on intestinal nematodes, concluded
that while hookworm reduced the incidence of asthma, Ascaris
lumbricoides increased the risk (34). It is likely that cross-reactivity
between Ascaris and environmental allergens is involved.

The concept of cross-reactivity between helminth and environ-
mental allergens is central to this review. We suggest that most if
not all environmental allergens can be related to helminth counter-
parts and that the IgE response against these allergens is associated
with host protection.

ARE ALL ALLERGENS PROTEINS WITH HOMOLOGS IN
METAZOAN PARASITES?
Work in the allergy field has shown that very few protein fam-
ilies contain allergens (43) and importantly, the molecules tar-
geted by IgE in helminths appear to be in these known allergen
families (see Tables 1 and 2). Certain domains are highly rep-
resented in the list of known molecular allergens with the 10
most common allergen families containing approximately 40%
of all know allergens. In the following section, we review the
relationship between known helminth allergens and the struc-
tural allergen classification in the allergen database AllFam (http:
//www.meduniwien.ac.at/allergens/allfam).

For example, the muscle protein tropomyosin (AllFam code
AF054) is an important IgE target in a number of nematode
infections; Onchocerca volvulus (76, 77); Ascaris lumbricoides (78);
Anisakis simplex [Ani s 3, (46)]; and tropomyosin from the
blood fluke Schistosoma mansoni is also a human IgE antigen
(Fitzsimmons, unpublished data). Tropomyosin is highly con-
served across many invertebrates and is responsible for much of the
IgE cross-reactivity between Ascaris and dust-mites (63). Cock-
roach tropomyosin is a major allergen (Bla g 7) that also shows
strong IgE cross-reactivity with the highly similar Ascaris mole-
cule (78). Santiago and co-authors (77) showed that tropomyosin
from filarial nematodes is recognized by IgE against dust-mite
tropomyosin (Der p 10), which can be absorbed completely using
the nematode molecule. More importantly, they showed that the
IgE response to Der p 10 was stronger in filarial-infected than in
uninfected individuals.

Paramyosin is another allergen family (AF100) from inverte-
brate muscle targeted in IgE responses against Schistosoma japon-
icum (20), Ascaris lumbricoides (79), Anisakis simplex [Ani s 2 (45,
80)], and Onchocerca volvulus (81). There is evidence that Ascaris
paramyosin shows IgE cross-reactivity with the tropical dust-mite
paramyosin and allergen Blo t 11 (79). Cross-reactivity between
helminths and environmental allergens has clear implications. Not
only may some helminth infections increase sensitivity to mites
and insects, but also high degrees of homology between para-
site and allergic orthologs could lead to false diagnosis. Human
helminth infections are not restricted to tropical regions (82).
Ani s 2 and Ani s 3 are thought to be responsible for much
of the cross-reactivity between Anisakis and other invertebrate
species (83).

The helminth venom-allergen-like (VAL) proteins are another
family targeted by IgE. Hookworms secrete a VAL-like molecule,
called Ancylostoma Secreted Protein-2 (ASP-2), which was shown
to be a potent IgE antigen in human studies in China and Brazil
(24, 84). An IgE response to this molecule has been correlated with
immunity (24). ASP-2 belongs to the Pathogen related-1 (PR-
1) allergen family (AF044) characterized by the presence of the
SCP/TAPS domain (Pfam, PF00188). The family contains group
3 and 5 insect venom allergens and VAL molecules from filarial
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Table 1 | Summary of helminthic allergens.

Helminth

allergen

Common name Gene ontology

(biological

process)

Related

common

allergen

Conserved

domains

UniProt

accession

number

AllFam Reference

Anisakis simplex (HERRING WORM)

Ani s 1 Serine protease

inhibitor (Kunitz type)

Serine protease

inhibitor

Aprotinin BPTI/Kunitz family

of serine protease

inhibitor cd00109

L7V3Q3 AF003 Moneo et al. (44)

Ani s 2 Paramyosin Motor activity Panallergen Myosin tail

PF01576

L7V1I9 AF100 Pérez-Pérez et al.

(45)

Ani s 3 Tropomyosin Troponin T binding Panallergen Tropomyosin

PF00261

Q9NAS5 AF054 Asturias et al. (46)

Ani s 4 Cystatin Cysteine type

endoprotein type

inhibitor

Minor cat allergen

(Fel d3)

Cystatin-like

domain cd00042

Q14QT4 AF005 Moneo et al. (47)

Ani s 5 SXP/RAL-2 Unknown Unknown PF02520/DUF148 A1IKL2 AF137 Kobayashi et al. (48)

Ani s 6 Trypsin inhibitor like

cysteine rich domain

Trypsin inhibitor like

cysteine rich domain

Minor latex

allergen (Hev b

SPI)

Trypsin inhibitor

like cysteine rich

domain PF01826

A1IKL3 n/a Kobayashi et al. (48)

Ani s 7 n/a Unknown Unknown None A9XBJ8 n/a Rodríguez et al. (49)

Ani s 8 SXP/RAL-2 Unknown Unknown DUF148 PF02520 A7M6S9 AF137 Kobayashi et al. (48)

Ani s 9 SXP/RAL-2 Unknown Unknown (As14

ascaris allergen)

DUF148 PF02520 B2XCP1 AF137 Rodriguez-Perez

et al. (50)

Ani s 10 Unknown Unknown Unknown Unknown D2K835 n/a Caballero et al. (51)

Ani s 11 Unknown Unknown Unknown Unknown E9RFF3 n/a Kobayashi et al. (52)

Ani s 12 Unknown Unknown Unknown Unknown L7V0K0 n/a Kobayashi et al. (52)

Ani s

CCOS3

Cytochrome c oxidase

subunit 3

Aerobic electron

transport chain

Bermuda grass

pollen allergen

46 kDa (Cyn d

Bd46k)

Cytochrome c

oxidase subunit

III cd01665

Q1×6K9 n/a López and Pardo (53)

Ani s Cyt B Cytochrome b Aerobic electron

transport chain

Unknown Cytochrome b (N-

terminus)/b6/petB

cd00284

Q1×6L0 n/a López and Pardo (53)

Ani s FBPP Fructose

1,6-bisphosphatase

Phosphatase activity Unknown n/a n/a n/a López and Pardo (53)

Ani s

NADHDS4L

NADH dehydrogenase

subunit 4L

NADH dehydrogenase Unknown ND4L cl10160 Q1×6K2 n/a López and Pardo (53)

Ani s

NARaS

Nicotinic acetylcholine

receptor alpha-subunit

Unknown (nicotinic

acetylcholine receptor)

Unknown n/a n/a n/a López and Pardo (53)

Ani s PEPB (Phosphatidyl-

ethanolamine-binding

Protein)

Unknown

(phosphatidyl-

ethanolamine-binding)

Unknown n/a n/a n/a López and Pardo (53)

Ani s

Troponin

Troponin C Calcium ion binding German

cockroach

allergen (Bla g 6)

EF-hand Ca2+

binding motif

PF00036

Q9U3U5 AF007 Arrieta et al. (54)

(Continued)
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Table 1 | Continued

Helminth

allergen

Common name Gene ontology

(biological

process)

Related

common

allergen

Conserved

domains

UniProt

accession

number

AllFam Reference

Schistosoma mansoni (BLOOD FLUKE)

Sch ma PM Paramyosin Motor activity Panallergen Myosin tail,

PF01576

P06198 AF100 Webster et al. (55)

Sch ma

Sm20

CBP, Sm20.8, Sm20 Calcium ion binding Unknown EF-hand Ca2+

binding motif,

PF00036

P91804 n/a Fitzsimmons et al.

(56)

Sch ma

Sm21

SmTAL2, Sm21.7 Calcium ion binding Unknown EF-hand Ca2+

binding motif

PF00036

P32070 n/a Fitzsimmons et al.

(56)

Sch ma

Sm22

SmTAL1, CBP Calcium ion binding Unknown EF-hand Ca2+

binding motif,

PF00036

P14202 n/a Webster et al. (57)

Sch ma

Sm31

Sm31, SmCB1,

cathepsin B-like

cysteine proteinase

Proteolysis, regulation

of catalytic activity

Papain Papain family

cysteine

protease,

PF00112

P25792,

Q8MNY2,

G4V5C2,

Q8MNY1,

G4V5C1,

G4V5D0

n/a de Oliveira Fraga

et al. (58)

Kappa-5 k-5 Unknown Unknown Unknown AAX83114.1 n/a Schramm et al. (59)

Necator americanus (HOOKWORM)

Nec a

ASP-2

ASP-2 Unknown Unknown SCP-like

extracellular

protein domain,

cd00168

Q7Z1H1 n/a Zhan et al. (60)

Nec a

calreticulin

Calreticulin Calcium ion binding Unknown Calreticulin

superfamily,

PF00262

O76961 n/a Pritchard et al. (61)

Ascaris suum (PIG ROUNDWORM) AND Ascaris lumbricoides (HUMAN ROUNDWORM)

Asc s 1 ABA-1, nematode

polyprotein allergens

Fatty acid and retinoid

binding

Unknown n/a Q06811 n/a Christie et al. (62)

Asc s3 Tropomyosin Troponin T binding Panallergen Tropomyosin,

PF00261

F1L5K1,

F1L3V2,

F1KVZ5,

F1L218

n/a Acevedo et al. (63)

GSTA Glutathione

S-transferase 1

Transferase Dust-mite

allergen, Der p 8

GST_C_Sigma_

like, cd03039,

PF13417,

GST_N_Sigma_

like, cd03192,

PF02798

P46436 n/a Acevedo et al. (64)

Echinococcus granulosus (DOGTAPEWORM)

AgB Antigen B n/a Unknown n/a n/a

(multigene

family)

n/a Vuitton, (65)

(Continued)
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Table 1 | Continued

Helminth

allergen

Common name Gene ontology

(biological

process)

Related

common

allergen

Conserved

domains

UniProt

accession

number

AllFam Reference

Ag5 Antigen 5 Proteolysis Unknown Trypsin-like serine

protease,

PF00089,

cd00190

A2MJI2,

I1WXU1

n/a Khabiri et al. (66)

EA21 Cyclophilin Protein folding Malassezia furfur

allergen, Mal f 6

Cyclophilin_ABH_

like, cd01926

P14088 AF038 Ortona et al. (67)

HSP70 Heat shock protein 70 Response to stress Dust-mite

allergen Hsp70

Hsp70 PF00012 Q24789 AF002 Ortona et al. (68)

EF-1

beta/delta

EF-1 Translation elongation

factor

Unknown Elongation factor

1 beta (EF1B)

guanine

nucleotide

exchange domain

Q9U8D5,

Q9NGP3,

Q0PWC5

n/a Ortona et al. (69)

Brugia malayi (MALAYAN FILARIA)

Bru m 3 Tropomyosin Troponin T binding Panallergen Tropomyosin,

PF00261

A8NGJ2 n/a Sereda et al. (70)

Bru m 13 GST, glutathione

S-transferase

Metabolic process House dust-mite

allergen Der p 8

GST_N family

cd03076, GST

C-terminal

domain family

cd03210

A8PTL9,

O02636

n/a Rathaur et al. (71)

Bru m

Bm33

Aspartic protease

inhibitor, Bm33

Unknown Unknown Ascaris pepsin

inhibitor-3 (API3)

cl11634

A8Q4E4 n/a Krushna et al. (72)

This table was compiled mainly from data extracted from the Allergome database (73) in combination with published literature. Conserved domain annotation is from

conserved domain database (CDD) (74) and Pfam (PF; DUF, domain of unknown function) (75). AllFam numbers (AF) are from the database of allergen families AllFam

(43). As can be seen from this table, not all helminth allergens currently have related common (non-helminthic) allergens. For example, there are currently no known

common environmental allergens structurally related to the nematode polyprotein allergens.

nematodes, Onchocerca volvulus (85), and Brugia malayi (86),
as well as trematodes S. mansoni (87) and S. japonicum (88).
Furthermore, the presence of VAL molecules is also predicted in
tapeworms (89). One of the S. mansoni homologs (SmVAL4) has
been recently shown to be an IgE antigen in mice (90), but requires
confirmation in the natural human host.

The tegumental allergen-like (TAL) proteins are some of the
most dominant IgE-antigens in S. mansoni and an IgE response to
some members of the TAL family has been associated with resis-
tance to re-infection with the parasite (18, 19, 22). These molecules
are EF-hand proteins (see Figure 1A), one of the biggest groups
of molecular allergens (AF007). Other known allergenic helminth
EF-hand proteins include Anisakis simplex troponin C (54) and
the Fasciola calcium-binding protein, FgCaBP (91).

The glutathione S-transferase (GST) is another source of IgE
cross-reactivity. GST of nematode species is targeted by IgE during
infection (92). This enzyme is homologous with other mem-
bers of the GST allergen family (AllFam, AF010) including major

allergens in dust-mite (Der p 8) and cockroach (Bla g 5) as well as
IgE-antigens in grass and fungi. GST from the filarial nematode
Wuchereria bancrofti binds IgE against Bla g 5 (77).

Probably, the most potent helminth allergens are the nematode-
polyprotein-antigens (NPA). These are large multimeric proteins
that are cleaved into smaller fatty acid binding subunits (93) with
functional but not structural similarity to the lipocalin allergens
(AF015). The best characterized example is the ABA-1 protein
from Ascaris species. Highly abundant in the body fluid of the
adult worm, it provokes a strong IgE response in many infected
individuals (93) and this has been associated with resistance to
infection (27). The filarial nematode NPA termed gp15/400 has
also been shown to be an IgE antigen (94). Interestingly, the
non-NPA lipocalin-like fatty acid binding protein from filarial
nematodes, BmA1.1, is an IgE antigen which can induce wheal
and flare response in sensitized dogs (95).

While some of the Top 10 allergen families (tropomyosins, EF-
hand proteins, PR-1, and lipocalins) have members in helminth
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Table 2 | Examples of known allergens, compiled from AllFam (43) and published literature, illustrating that nearly all families of allergens in

animals, plants, or fungi have corresponding allergens in helminths.

Structural motif (AllFam Acc.) Parasite allergens Plant allergens Animal allergens

(non-helminth)

Fungal allergens

Tropomyosin (AF054) Ani s 3, Asc s 3, Bru m 3, Onc

v 3, Onc o 3

– Bla g 7, Blo t 10 –

Paramyosin (AF100) Ani s 2, Sch j PM, Sch ma PM – Blo t 11, Der f 11, Der p 11 –

CRISP/PR-1/venom group 5

(AF044)

Na ASP-2, SmVAL4 (?) Art v 2, Cyn d 24 Dol a 5, Pol a 5, Pol d 5,

Ves g 5, Vesp m 5

–

EF-hand (AF007) Sm TAL1, Ani s Troponin Bet v 3, Bet v 4, Art v 5,

Par j 4, Phl p 7

Cyp c 1, Gad m 1, Sal s 1,

Thu a 1

–

Glutathione S-transferase

(AF010)

Wb GSTa, Bru m 13, Onc v 13,

Asc l 13, Asc s 13

Tri a GST Bla g 5, Der p 8, Blo t 8 Asp f GST, Pen c 24

Nematode Polyproteins (n/a) ABA-1 (Asc s 1) Gp 15/400 – – –

Cyclophilin (AF038) EA21 (E. granulosus) Bet v 7, Cat r 1 – Asp f 11, Mala s 6

Hsp70 (AF002) Hsp70 (E. granulosus) Cor a 10 Der f HSP70 Alt a 3, Cla h HSP70

Calreticulin (AF055) Na Calreticulin – – Pen ch 31

Kunitz Trypsin inhibitor

(AF003)

Ani s 1 Gly m TI, Sola t2, Sola

t3, Sola t4

Bos d 3, Bos dTI (aprotinin) –

As can be seen from this table, there currently appear to be no known non-helminth allergens corresponding to the nematode polyprotein family, although similar

biological lipid binding functions are found, e.g., in the lipocalin allergen family (AF015).
aN-terminal domain similar to C-terminal domain of glutathione S-transferase (AF010).

FIGURE 1 | (A) Homology modeling of the structure of the dominant SmTAL1
allergen in S. mansoni generated using protein homology/analogy recognition
engine 2 (PHYRE2) (132), showing the two helix-loop-helix Ca2+-binding
motifs within the EF-hand domain. (B) Transverse section of male S. mansoni
worm stained for the surface protein SmCD59 (green) and under that in the

tegument layer, the EF-hand protein SmTAL1 (red) (courtesy of Prof. Alan
Wilson University of York). The walls of the gut also stain for SmTAL1. The
location illustrates how this sub-surface allergen in inaccessible to host IgE,
unless the tegument layer is damaged, but its physiological function and role
in host protection remain to be elucidated.
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species that are known to be targeted by IgE during infection,
other common allergen families (profilin, trypsin-like serine pro-
teases, and lipocalin) have been identified in helminths, but their
IgE binding has not yet been tested (96). Furthermore, the plant
prolamins (AF050) and expansins (AF093 and AF094) are Top
10 allergen families that do not contain helminth equivalents.
However, this assessment is made on sequence alignment and it
is possible that these plant proteins share conformational motifs
formed by non-homologous sequences (mimetopes) in un-related
proteins from metazoan parasites. There is some evidence for this
in that the plant expansin Php p 1 has no sequence homology
with the mite allergen Der p 2, but Phl p 1, and Der p 2 have
domains that share function (carbohydrate-binding) and close 3D
conformational homology (97). While dust-mites are not meta-
zoan parasites, they have close relatives that are (e.g., the scabies
mite, Sarcoptes scabiei). Interestingly, the IgE response to Sar-
coptes scabiei is thought to be involved in protection against repeat
infestation (98).

WHAT MAKES AN ANTIGEN AN ALLERGEN?
Perhaps the greatest unanswered question in allergy is why only
a small minority of antigens has allergenic properties. As stated
previously, most proteins are not allergens. Thus, there are cur-
rently almost 15,000 protein domain families in the Pfam database
(http://pfam.sanger.ac.uk/) of which only 255 have been identified
in allergens (http://www.meduniwien.ac.at/allergens/allfam). The
debate about which functional and molecular properties make a
protein an allergen has continued for some time (99–101). Some
functional properties give environmental and food proteins, a
greater chance of sensitizing susceptible individuals. For example,
high thermal stability allows allergens to persist in the environ-
ment or survive cooking and digestion. This is well illustrated
by the example of plant chitinases, which are members of the
pathogenesis-related family of proteins 4 (PR-4). Plant chitinases
(AF041) have been described as panallergens in latex-fruit syn-
drome and are contained in a multitude of plants, such as Heveine
[in latex, (102), kiwi fruit (103), in avocado (Pers a1, (104)] or
grapes (105) and are related to dust-mite allergens Der p 15 and
Der p 18 (106). Consistently with the hypothesis of thermal stabil-
ity, despite the ubiquitousness of such PR-4 group proteins across
the plant kingdom, allergenicity is only reported in foods that are
consumed uncooked, as type I chitinases are inactivated by heating
(107). While chitinases are also well represented in non-parasitic
as well as parasitic helminths, to the best of our knowledge, no
helminthic chitinases have yet been reported as allergens. The
reasons for this are not understood.

In relation to food allergens and cooking, the special case of
Anisakis simplex (A. simplex) deserves to be mentioned. Anisakis
is the only currently known case of an organism being both
a helminth parasite and a food allergen. The L3 larvae of the
marine nematode A. simplex infect fish and cephalopods and con-
sequently people that consume under-cooked seafood, however
humans are a non-permissive host and the parasites cannot con-
tinue their life-cycle in man. Exposure to this helminth through
food has been associated with allergic symptoms; asthma, rhinitis,
dermatitis, and conjunctivitis (80), and in the case of uncooked

fish,epigastric pain,erythema wheals, and pruritus (“gastroallergic
anisakiasis”). It is not clear whether initial sensitization requires
live parasite infection (anisakiasis) but it has been shown that sen-
sitized patients can respond to heated or frozen Anisakis antigens
in their food (108) or to small quantities by other exposure routes
(109), such as skin contact, inhalation, or during skin prick test-
ing. That the immune system responds to Anisakis as an invading
helminth and as an allergen suggests that these are two aspects of
the same response.

A feature of a relatively small subset of allergens is their prote-
olytic activity, which may permit penetration of mucosal barriers
(110), for example, by cleaving proteins involved in tight junction
formation (111). Many helminthic parasites rely on production
of proteases during tissue migration, and we have previously
argued that such proteases may be a factor underlying the parasites’
intrinsic allergenicity (112).

However, such biological properties are not always present in
allergens and the small percentage of protein domains that are
targeted by IgE overall, in the absence of common biological activi-
ties, suggests they contain structures that are inherently allergenic.
These structures vary widely and appear to have little in com-
mon overall. Given the probable evolution of the IgE system, we
have proposed that proteins have inherent allergenicity because
they have structural similarity to dominant antigens in metazoan
parasites (96). However, it still remains unclear how such intrinsic
structural features selectively enable a subset of antigens to induce,
or become the object of, an IgE response.

Another consideration seems necessary. Many of the allergen
families described above are also present in humans, but are not
the target of an IgE response. Following in silico analysis of animal
food proteins and their IgE responses, Jenkins and colleagues pro-
posed that proteins with a sequence identity to a human homolog
of >62% were rarely allergenic (113). We believe the IgE system
evolved to target Th2 responses at large multi-cellular parasites,
organisms that are much more closely related to us that bacter-
ial, fungal, or viral pathogens. This means the evolved molecular
targets had to be restricted if foreign metazoan antigens were to
be targeted without inducing tolerance or risking auto-reactivity,
and that non-parasitic proteins are allergenic because of their
homology with metazoan parasites.

The hypothesis was examined by Santiago et al. (114). Using a
bioinformatic approach, they compared the sequences of 499 aller-
gens against the predicted proteomes of four helminths (including
Schistosoma mansoni), four bacterial, and three fungal species.
Their analysis supported previous work by Emanuelsson and
Spangfort (115) finding little homology between bacterial pro-
teins and allergens and the work by Jenkins et al. (113) who
showed a drop in allergenicity as homology with human equiv-
alents increased. While they reported that over 200 allergens
had homologs in helminths, this was the minority, and indeed
those with the greatest homology were the least allergenic. They
concluded that allergenicity does not depend on similarity with
parasite proteins, but on dissimilarity with human proteins. It
should be remembered however, that most IgE epitopes are prob-
ably conformational (discontinuous) (116, 117) and would not be
identified in such primary sequence comparisons.
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LIFE-CYCLE EXPRESSION OF HELMINTH ALLERGENS AND
THE HOST RESPONSE
Clinically important helminths often have complex life-cycles.
Many involve a definitive host (man) and one or more intermediate
hosts. The life-cycle expression profile of allergen-like molecules
influences the host response. For example, trematodes (flukes)
such as schistosomes undergo asexual reproduction in snail species
before releasing larvae that infect humans, which then develop
into adult worms that produce eggs following sexual reproduction.
Some of the schistosome allergen-like TAL proteins are develop-
mentally transcribed (22). SmTAL1 is sequestered inside the adult
worms (Figure 1B) and is only exposed on the rare occasions
when the adults die (56). Typically, S. mansoni worms live for 7–
9 years (118). As individuals are usually infected more than once,
resulting in asynchronous development and death of the parasite,
this resembles seasonal allergen stimulation and infected people in
areas endemic for S. mansoni have high levels of IgE to SmTAL1.
SmTAL2 is expressed in schistosome eggs. In chronic infection
hundreds of parasite eggs are trapped and die in the tissue every
day. In a process that resembles specific allergen immunother-
apy (SIT), the IgE response to allergen-like SmTAL2 appears to be
desensitized by the continuous exposure to small doses of the anti-
gen, while the specific IgG4 response becomes pronounced (56).
SmTAL6 is only expressed in the snail stage and has no effect on
the human response (119).

Adult tapeworms live in the lumen of the gut shedding eggs for
excretion. If these eggs are ingested by a secondary host, they hatch
and larvae encyst in the soft tissue. The contents of these struc-
tures are highly allergenic and can cause anaphylaxis if they burst.
People carrying cysts of Echinococcus granulosus (echinococco-
sis) have IgE to parasite antigens AgB, a protease inhibitor, Ag5,
a serine protease, and EA21 (65, 67). EA21 is a cyclophilin that
shares close homology with allergenic yeast cyclophilin (Mal f 6)
and may be cross-reactive with allergenic birch cyclophilin Bet v
7 (65). Infected individuals also produce IgE to the C-terminal
region of E. granulosus Heat Shock Protein 70 an antigen with
close homology to the dust-mite allergen, Der f HSP70 (68).

Hookworm eggs hatch in the soil where the larvae undergo sev-
eral molts before becoming the infectious L3 form that penetrates
the skin of the foot. The larvae then migrate to the lung and are
coughed up, swallowed, and hence taken to their niche in the small
intestine. It is the skin-penetrating L3 form that expresses and
secretes the VAL protein ASP-2 (120). Since an antibody response
to the molecule was associated with reduced infection ASP-2 has
been tested as a vaccine candidate (24). Unfortunately, clinical tri-
als in a hookworm endemic region of Brazil had to be stopped
when vaccinated volunteers with a probable previous history of
infection (as judged by the levels of pre-vaccination parasite-
specific IgE) developed symptoms of generalized urticaria (84).
The relationship between the protective effects of parasite-specific
IgE and the hazards of vaccinating a sensitized population with an
allergen present a major conundrum which is currently hampering
the development of anti-helminthic vaccinations.

These three examples were chosen to illustrate the concept
that allergen expression in helminth parasites is not a general-
ized feature of parasitic worms but a specific property of distinct

developmental phases in the human host which is tightly linked to
host protective mechanisms. Anti-protein IgE responses and host
defense are two sides of the same coin which in our opinion are
inseparable from each other.

However, while the link between the presence of parasite-
specific IgE and resistance to infection is well supported by epi-
demiological and experimental evidence, the detailed molecular
basis underlying such resistance is less well understood.

Specifically, one of the great unanswered questions is whether
the presence of IgE on FcεRI-carrying cells (mainly basophils, mast
cells, eosinophils) and subsequent receptor cross-linking by par-
asitic allergens is needed for host protection. Is the activation of
basophils, mast cells, and other IgE-bearing effector cells necessary
for protection?

It is well know that activation of mast cells and eosinophils
can release proteases and toxic proteins (chymase, tryptase, major
basic protein, eosinophil-derived neurotoxin, eosinophils cationic
protein, etc.), some of which have been shown to directly kill larval
stages of parasites (121).

Similarly, it could be speculated that IgE-dependent activation
of basophils, which can result in the release of preformed or de novo
produced highly toxic polypeptides such as Granzyme B (122) and
possibly defensins (Falcone, unpublished data), also may result in
parasite killing. While host-derived defensins have been shown
to be effective against several unicellular parasites such as Plas-
modium (123), Toxoplasma (124), Babesia (125), or Trypanosoma
(126), their role in anti-helminthic immunity has only recently
begun to be explored (127).

A LOOK INTO THE FUTURE: “MOLECULE-BASED” ANALYSIS
OF ANTI-PARASITE HOST IMMUNE RESPONSES?
Traditionally, immunoparasitological research has relied on the
use of complex antigenic mixtures such as somatic extracts of
larval or adult stages, of eggs or of the tegument, or excre-
tory/secretory materials collected in vitro, which all contain a mul-
titude of antigens, allergens, and other un-related components.
This can result in a low signal to noise ratio, for example caused
by the presence of highly cross-reactive carbohydrate moieties,
masking specific interactions at the individual protein level.

Due to the widespread use of complex water-soluble extracts
obtained from parasitic materials in the past decades of parasitol-
ogy research, several questions still remain to be answered. What
are the individual molecular targets of the protective IgE response?
Are certain patterns of IgE reactivity (rather than against a single
determinant) associated with host protection? Do different IgE
reactivity patterns correlate with various degrees of resistance to
infection or post treatment re-infection?

This is reminiscent of the situation previously encountered
in allergy research, which relied on water-soluble extracts which
are difficult to standardize for diagnostic purposes (128), and
may contain interfering components. Major impulses in the past
years have come from introducing component resolved diagno-
sis (CRD) to the study of human allergy. In CRD, individual
recombinant or purified allergens are used for measurement of
immunoglobulin responses in allergic individuals (129). This fre-
quently takes advantage of the availability of protein microarrays
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(130). One of the key advantages of CRD is that it may enable
distinction between genuine IgE reactivity and cross-reactive
IgE (131).

While the use of CRD in allergy diagnosis is conceptually
slightly different (it is used to identify the allergen source when
cross-reactive allergen components are present), we suggest that
a similar “molecule-based” approach would allow a better under-
standing of host resistance against helminths at the molecular level
and, from a practical point of view, point the way to safer or more
effective multi-target anti-helminthic vaccinations.

CONCLUDING REMARKS
If the IgE axis evolved to protect mammals against multi-cellular
parasites, studying host responses to these organisms may teach
us much about other IgE-mediated phenomena such as allergy.
For example, characterizing parasite structures targeted by IgE
may identify homologous molecules and potential allergens in
novel foods and genetically modified organisms. The relationship
between allergy and helminth infection brings costs and benefits.
Elucidation of the molecular mechanisms by which some parasites
moderate Th2 response in their hosts, may yield improved therapy
for allergic conditions. On the other hand, treatment for the same
worms in the developing world may inadvertently increase the
prevalence of atopic disease. Moreover as a consequence of cross-
reactivity between parasite and environmental allergens certain
helminths can actually sensitize and aggravate allergy. Parasitic
worm infections are a serious health problem in many countries
and high resolution molecular techniques developed in the allergy
field may help us to understand better the anti-parasite responses
that are associated with immunity.
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