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ABSTRACT
Bone remodeling is a continuous lifelong process in the repair of micro-damage 

to bone architecture and replacement of aging tissue in bone. A failure to such process 
leads to pathological destructive bone diseases such as osteoporosis, rheumatoid 
arthritis, and osteoarthritis. However, this active process is regulated by; osteoclasts, 
which are involved in the bone resorption process; osteoblasts, with involvement 
in the bone formation process and bone-derived endothelial cells, which promote 
angiogenesis. In the bone micro-environment, these cellular interactions are mediated 
by a complex interplay between cell types via direct interaction of cell secreted 
growth factors, such as cytokines. Recently, the discovery of exosomes (~ 40–100 
nm in size), has attracted more attention in the field of the bone remodeling process. 
Exosomes and microvesicles are derived from different types of bone cells such as 
mesenchymal stem cells, osteoblasts, osteoclasts and their precursors. They are also 
recognized to play pivotal roles in bone remodeling processes including osteogenesis, 
osteoclastogenesis, and angiogenesis. In this review, we especially emphasize the 
origin and biogenesis of exosomes and bone cell derived exosomes in the regulatory 
process of bone remodeling. Moreover, this review article also focuses on exosomal 
secreted proteins and microRNAs and their involvement in the regulation of bone 
remodeling.

INTRODUCTION

Age-related bone diseases such as osteoporosis, 
rheumatoid arthritis, and osteoarthritis are becoming the 
most universal and complex skeletal disorders worldwide 
[1-3]. They are characterized by disequilibrium between 
bone formation and bone loss upon aging and the 
inflammatory condition [3]. This imbalance of bone 
remodeling causes microarchitecture deterioration, 
bone fragility, and porosity as well as an increased risk 
of fracture [4, 5]. Thereby, the bone healing process 
is remarkably delayed, as evident from other studies in 
osteoporotic women and osteoporotic laboratory animals 
[6, 7]. Mechanistically, these skeletal defects are caused 
by a failure in the bone remodeling process through an 
imbalance in osteoclastic bone resorption and osteoblastic 
bone formation [1, 8]. Bone remodeling is a lifelong 
process, where mature bone tissue is replaced from the 

skeleton (by osteoclasts), called bone resorption and 
new bone tissue is then formed called ossification or 
new bone formation. These processes also control the 
reshaping or restoration of bone mass following injuries 
such as, fractures and skeletal inflammation but also 
micro-damage, which occurs during regular activity. This 
involves multiple and complex cellular and molecular 
events [9]. However, intercellular communication or 
paracrine signaling among these cell types are crucial for 
the establishment and maintenance of bone remodeling 
[10-12]. As osteoclasts play a pivotal role in pathological 
bone resorption; receptor activator of nuclear factor-κB 
ligand (RANKL) and macrophage colony‐stimulating 
factor (M‐CSF) are the key cytokines that induce 
osteoclastogenesis. Several master transcription factors, 
co-regulators, and morphogens play a pivotal role in 
regulating osteoblastogenesis. Several studies showed 
that factors such as Runx2, Osterix, Sox9, morphogens, 
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TGFβ/BMP and FGFs are responsible for the terminal 
differentiation of osteoblast to bone mass phenotype 
[13, 14]. The tight co-regulation of bone resorption and 
bone formation is mediated by several secreted coupling 
factors linking these two cellular processes together. 
Semaphorin 4D (Sema4D) also known as CD100, 
expressed by osteoclasts, acts as a negative regulator of 
bone formation. Consistent with an inhibitory role for 
Sema4D on osteoblast-lineage cells, Sema4D inhibits 
bone mineralization in vitro [14, 15]. Other soluble 
factors such as sphingosine-1-phosphate, ephrins, and 
semaphorinsEphrinB2 are shown to play an essential 
role in cellular communication between osteoclast and 
osteoblast in the bone micro-environment. 

Recent reports suggest that the cascade of the 
bone remodeling event is being regulated by critical 
factors that are packaged in lipid bilayered membrane 
vesicles called exosomes [16, 17]. Exosomes are 
small vesicles secreted by several cell types [18- 21] 
and are suggested to play as essential mediators of 
intercellular communication [22-25]. At the present 
time, attention has been paid to exosomes in different 
pathophysiological settings. Growing evidence 
suggests that balanced bidirectional signaling between 
osteoclasts and osteoblasts mediated by exosome-
transplantation overcomes bone loss due to pathological 
destructive bone diseases [17].

In bone milieu, exosomes regulate multiple 
cellular processes including bone cell differentiation and 
bone architecture maintenance via a paracrine manner 
[15]. Various studies have reported that bone cells [15, 
26-28] release exosomes in the bone microenvironment, 
which facilitates a diverse cascade of intracellular or 
intercellular signaling mechanisms either by targeting 
same cells or neighbouring cells or reaching distant 
organs through circulation. Exosomes are small vesicles 
of endocrine origin, ranging between 40–100 nm in 
diameter and are released from multivesicular bodies 
with potential pro-osteogenesis capabilities [16, 17]. 
Thus, they act through a novel way to stimulate bone 
formation from different pathophysiological settings. 
Exosomes are produced from all mammalian cell types, 
carrying various functional bio-molecules including 
proteins, mRNAs, microRNAs and lipids and also 
play a crucial role in intercellular communications. 
Importantly, exosomes do not express cell surface 
major histocompatibility complex (MHC-I and MHC-
II) proteins, and thereby overcome all the disadvantages 
over cell transplantation and therapy [25]. Exosomes 
can efficiently stimulate bone formation in vivo and 
in vitro [17]. In this review article, we highlight the 
role of bone-derived exosomes in the context of 
bone remodeling events by a coordinated balance of 
osteogenesis and osteoclastogenesis.  Our review article 
also focuses on the diverse character of the exosome 
in bone marrow angiogenesis, as well as the intriguing 

therapeutic application of exosomes in different 
pathological destructive bone diseases.

EXOSOME BIOGENESIS AND ITS 
COMPONENTS

It is well established that the content of exosomes 
varies from a diverse range of proteins, lipids, and 
nucleic acids. Understanding the intricacies of biogenesis 
and exosome trafficking and how crucial they are for 
intercellular communications and biological functions is 
the hot topic of current research. According to the study of 
Denzer et al. (2000), biogenesis of exosomes is initiated 
by inward invaginations of clathrin-coated microdomains 
on the cell membrane [45]. Following invagination, the 
invaginated vacuoles are converted into early endosomes 
(EE) that carry ubiquitinated cargos with the help of 
endosomal sorting complex required for transport 
(ESCRT). Then EEs, upon secondary invagination, 
form intraluminal vesicles (ILVs), which accumulate 
and mature inside the endosome that is now called large 
multivesicular bodies (MVBs) [30, 45, 46]. The mature 
MVBs now have two fates: either they can be processed 
to lysosomes for degradation or be fused with the plasma 
membrane (exocytic MVBs) for the release of ILVs into 
the extracellular space, [31] where they are then defined as 
exosomes (Figure 1).

Multiple studies have shown that the contents within 
exosomes are used as positive ‘markers’ for detection 
of exosomes from different origins. These proteins are 
membrane transport and fusion proteins (GTPases, 
flotillin, annexins), heat shock proteins (heat shock cognate 
(Hsc70) and (Hsp 90), tetraspanins (CD9, CD63, CD81 
and CD82), proteins involved in MVB biogenesis (Alix 
and TSG101), lipid-related proteins and phospholipases 
[46, 47, 48]. However, the most widely used markers 
include TSG101, Rab5b, Alix and flotillin which are 
detected by Western protein expression and ELISA to 
confirm the presence of exosomes in extracellular body 
fluids or culture medium. To date, 4,400 different proteins 
have been identified that are associated with exosomes 
by mass spectrometry/proteomics analysis that serve as 
mediators in cell-cell intercellular communications [46, 
48]. 

Exosomes are rich in a variety of lipids depending 
upon their cells of origin, and different types of exosomes 
have altered lipid composition. There is a variety of 
lipid compounds that are present in exosomes including 
phosphatidylcholine,phosphatidylethanolamine, 
phosphatidylserine (PS), lysophosphatidic acid, ceramide, 
cholesterol, and sphingomyelin [29]. Phosphatidylserine 
is involved in signal transduction and fusion to the plasma 
membrane by docking the outer proteins through its 
floppase, flippase and scramblase activities [49]. Lipids 
such as sphingomyelin and N-acetylneuraminic-galactosyl 
glucosylceramide (GM3) contribute different biophysical 
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properties to exosomes and determine their rigidity and 
delivery efficiency [50]. Exosomes also contain nucleic 
acids in the form of miRNA, mRNA, and other non-
coding RNAs apart from proteins and lipids [46, 51]. 
It is also reported that the RNA cargo of exosomes is 
different from that of the parent cell [46, 52]. However, 
cancer cells contain the same miRNA content as their 
parent cells which can be used as biomarkers [46, 50, 
53]. The mRNAs enriched exosomes can be translated 
and cause mediation of biological functions in the 
recipient cells, while the miRNA and ncRNAs may 
activate transcriptional regulation of gene expression. 
The work of Koppers-Lalic et al. 2013, described that 
the functional RNAs present in exosomes are critical 

in the regulation of cell commitment, differentiation and 
activity [54]. In general, exosomes are generated from a 
wide range of cells and contain essential bio-molecules 
from their parent cells. Thus, exosomes serve as a 
shuttling transporter from their parent cells to target cells 
and mediate intercellular communication between cells. 
Observing the contents and considering major candidates 
can give credential to the bone remodeling potential of 
exosomes in bone disease. The main characteristics of 
extracellular vesicles are summarized in Table 1.

ISOLATION AND PURIFICATION OF 
EXOSOMES

In the last decade, impressive research innovation 
has been made to isolate exosomes from biological 
tissues or fluids. To study the potential function 
of exosomes, the exosomes are specially isolated 
from cellular components. Various techniques are 
employed for isolation of exosomes such as differential 
ultracentrifugation, size-based isolation techniques (ultra-
filtration), zonal rate centrifugation, immunoaffinity 
capture-based techniques, exosomal precipitation, and 
microfluidics-based isolation techniques, etc. [55, 56]. 
The isolated exosomes are composed of 40–150 nm 
vesicles characterized by electron microscopy, and both 
immunoblotting and flow cytometry (FACS) analysis 
based on exosome markers expression (such as Alix, 
TSG101, HSP70, etc.). The proteomic profiling approach 
is used to characterize the protein composition of 
exosomes present in it, and label-free spectral counting, 
to evaluate the effectiveness of each method in exosome 
isolation [57]. However, the majority of studies use a 
differential ultracentrifugation technique as the gold 
standard of exosomes isolation. By the use of specific 
markers like CD13, CD29, CD44, CD73, and CD105, 
exosomes were isolated from mesenchymal stem cells 
(MSC) [22, 58]. Until now, about 1069 proteins were 
identified in osteoblast (MC3T3 cell line) derived 
exosomes from the MSC origin through the expression 
analysis of exosomes marker flotillin 2 [59]. A total 
of 786 proteins are present in the ExoCarta database. 
A manually created database on exosomal proteins, 
RNA and lipids is available at ExoCarta (http://www.
exocarta.org), which catalogs information from both 
published and unpublished exosomal studies.  Currently, 
ExoCarta database (Version 3.1) contains information 
on 11,261 protein entries, 2375 mRNA entries and 764 
miRNA entries that were obtained from 134 exosomal 
studies [60]. Exosomes from mature osteoclasts and its 
precursors are characterized by the presence of specific 
expression markers such as epithelial cell adhesion 
molecule 34 (EpCAM 34), tumor susceptibility gene 
(TSG) 101 and CD63 [61].

Figure 1: Biogenesis, secretion, and uptake of primary 
cell-derived exosomes in the target cells. Exosomes are 
initiated by inward invaginations of clathrin-coated micro-
domains on the plasma membrane and are converted into early 
endosomes (EE), carrying ubiquitinated cargos, facilitated by 
endosomal sorting complex required for transport (ESCRT). 
Then EEs, upon secondary invagination and maturation, convert 
into intraluminal vesicles (ILVs), which accumulate inside 
the endosomes called large multivesicular bodies (MVBs). 
The matured MVB can either be processed to lysosomes for 
degradation or fused with the plasma membrane (exocytic 
MVBs) for the release of ILVs into the extracellular space where 
it is called an exosome. Exosome secretion can be accelerated by 
various chemical, mechanical and environmental stimuli such 
as irradiation, low oxygen, and low PH. The exosomes secreted 
from primary cells will display various membrane components 
as their cells of origin. Following the release of exosomes, they 
may dock over the plasma membrane of recipient target cells. 
Furthermore, membrane-bound vesicles may either fuse with 
the plasma membrane directly or be endocytosed in the target 
cells. Upon endocytosis, exosomes may fuse with the delimiting 
membrane of an endocytic compartment and release its cargo 
contents, regulate the target cell gene expression, and finally 
cause cell commitment, differentiation, and activity.



Oncoscience184www.impactjournals.com/oncoscience

MOLECULAR UNDERSTANDING 
OF BONE REMODELING AND 
ITS PATHOPHYSIOLOGICAL 
CONSEQUENCE

Bone remodeling is a complex, well-orchestrated 
process that occurs throughout life [62]. This complex 
coordinated event requires synchronized activities of 
multiple cell types to ensure bone remodeling (both 
bone formation and resorption) occurs sequentially to 
maintain bone mass [63]. A typical bone remodeling 
process happens within bone remodeling cavities and is 
performed by clusters of bone-resorbing osteoclasts, bone-
forming osteoblasts and associated blood vessel-forming 
endothelial cells, which are arranged within temporary 
anatomical structures known as basic multicellular units 
(BMUs). These BMUs are covered by bone lining cells 
that form the bone remodeling compartment (BRC). 
Furthermore, BMC is interconnected with osteocyte 
lacunae, which is embedded in the bone matrix. This 
process begins with the initiation phase by bone-resorbing 
osteoclasts under the regulation of osteoclastogenic 

factors including RANKL and M-CSF, followed by bone-
forming osteoblasts. However, this cycle is under the 
regulation of osteocytes and bone lining cell types [64]. 
Several coupling factors are also involved in osteoclast-
mediated bone resorption, such as insulin-like growth 
factors (IGFs), transforming growth factor β (TGF-β), 
BMP, FGF and platelet-derived growth factor (PDGF) 
[4, 62]. To completely remove the damaged or infected 
bone, osteoclasts express a large family of glycoproteins 
sematophorin4D (Sema4D) that bind to Plexin-B1 receptors 
in osteoblasts and inhibits IGF-1 pathway dependent 
osteoblast differentiation [65]. This phenomenon suggests 
that osteoclasts suppress bone formation by expressing 
Sema4D. Likewise, bidirectional signaling of ephrinB2/
ephrinB4 promotes osteoblast differentiation and bone 
formation in the transition phase [66]. It has been 
reported that osteocytes act as orchestrators of the bone 
remodeling process despite osteoclasts and osteoblasts. 
Osteocytes release several factors such as sclerostin and 
DKK-1 that inhibit the osteoblast activity and stimulate 
local osteoclastogenesis [67, 68]. Sclerostin is a product 
of SOST and which antagonizes Lrp5, a vital receptor of 
the Wnt/β-catenin signaling pathway, in osteoblasts. For 

Characteristics Exosomes Microvesicles Apoptotic bodies
Size 40-100 nm 50-1000 nm 50-4000 nm
Morphology Homogeneous cup-shaped Heterogeneous irregular Heterogeneous irregular
Origin Endolysosomal pathway; 

multivesicular body
Cell surface; budding of cell 
membrane

Cell surface; blebbing of cell 
membrane

Morphology Homogeneous cup-shaped Heterogeneous irregular Heterogeneous irregular
Buoyant density 1.12-1.22 g/cm3 None 1.17-1.29 g/cm3

Isolation method Density gradient 
u l t r a c e n t r i f u g a t i o n 
(100,000-200,000 g) and 
by immunoprecipitation 
(ExoQuick-INVITROGEN)

ultracentrifugation (10,000-
80,000 g) 

No proper standardized 
protocol

Molecular cargo mRNA, miRNA, nc RNAs, 
mtDNAs

mRNA, miRNA, nc RNAs, 
mtDNAs

Nuclear fractions and cellular 
organelles

Possible markers Tetraspanins (CD9, CD63, 
CD81, CD82), Alix, 
TSG101, HSP 70, flotilin-1

Integrin, CD40 
metalloproteinase , Selectin, 
anexin V, flotilin-2

Phosphatidylserine and 
histones

Lipids Ceramide, cholesterol, 
sphingomyelin and 
lysophosphatidic acid

Cholesterol Phosphatidylserine

Biogenesis functions Exocytosis of MVBs 
via ESCRT complex or 
sphingomyelinase and 
release through Rab-GTPase 
and SNAREs proteins

Budding and fission of 
plasma membrane through 
intracellular calcium

Membrane outward blebbing 
mechanism

References [15, 17, 30-34, 134] [23, 28, 35-40] [41-44]

Table 1: Types of extracellular vesicles and their characteristics.
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instance, bones subjected to pathological consequence, 
promote an increase in osteoclastogenesis via osteocyte 
expression, high RANKL/OPG levels and monocyte 
chemoattractant protein-1 (CCL2) expression [69]. Also, 
endothelial cells from capillary vessels are associated with 
the bone remodeling process by stimulating osteoblast 
activity within the BMUs. Therefore, vasculature located 
at the centre of BMUs may determine the process of 
bone resorption and bone formation. For the cortical 
remodeling, the capillary is provided through Haversian 
canals. However, the capillary supply for the trabecular 
remodeling comes from the marrow space [70] . The 
recent work suggests that endothelial specific Notch 
signaling promotes capillary outgrowth within the BMUs 
of the long bone. Genetic disruption of Notch signaling 
in endothelium in mice impaired vessel outgrowth and 
reduced osteogenesis and bone mass [70, 71].

The therapeutic potential of exosomes has been 
well documented in various organs and tissues such as the 
heart, lung, brain, and skin [72, 73, 74, 75]. These studies 
have provided an inspiring foundation for exosomal 
research. Although the outcome of exosomal research is 
encouraging, the exact underlying molecular mechanism 
of bone remodeling remain elusive. Moreover, recent 
reports suggest that exosome treatment enhances bone 
remodeling in both in vivo and in vitro models.

ROLE OF EXOSOMES IN BONE 
PHYSIOLOGY

Osteoclast exosomes: mediators of the bone 
remodeling process

The recent work of Huynh et al., (2016) reported 
that osteoclast precursor‐derived exosomes stimulate the 
differentiation ability of osteoclasts into mature phenotypes 
with significantly higher numbers than in the absence of 
exosomes. However, exosomes from osteoclast precursors 
promoted vitamin D dependent osteoclast formation in 
BM cultures, and exosomes from osteoclast-enriched 
cultures inhibited osteoclastogenesis [76]. The RANK 
level was enriched in exosomes from osteoclast cultures. 
Depletion of RANK during culture conditioning inhibits 
the exosome mediated osteoclast formation in vitamin D 
stimulated marrow cultures [76]. Therefore, this suggests, 
osteoclast-derived exosomes are paracrine regulators 
of osteoclastogenesis [76]. Recent research revealed 
that bone-derived exosomal micro RNAs (miRNAs) are 
involved in regulation of the bone remodeling process 
(Table 1).  MicroRNAs (miRNAs) are small endogenous 
non-coding RNA molecules (containing ~22 nucleotides), 
that are the key post-transcriptional repressors of gene 
expression. The exosomal derived novel miRNAs can 
modulate the differentiation and activities of osteoblasts 

and osteoclasts, by interacting with signaling molecules to 
control these processes. [77]. Mechanistically, the 5′ ends 
of mature miRNAs contain the seed region (nucleotide 
positions 2–7 or 2–8), which has the ability to silence the 
transcription of mRNA by specifically binding to its target 
sequence (complementary bases of the 3′-UTR). There are 
several miRNAs that have been characterized that act as 
negative regulators of bone formation. Osteoclast-derived 
exosomal microRNAs (miRNAs) represent a novel class of 
osteoclast-released coupling factors that cause inhibition 
of osteoblast differentiation. Increased osteoclastic miR-
214-3p is associated with reduced bone formation in 
elderly women with fractures and ovariectomized mice 
[78]. Serum exosomal miR‐214 levels were also found 
to be significantly increased in osteoclast‐specific miR-
214 transgenic mice [79]. Administration of chemically 
engineered oligonucleotides against miR-214-3p rescue 
the low bone formation phenotype in mice and in an in 
vitro osteoblast-osteoclast co-culture experiment [15, 78]. 
The work of Sun et al., identified that miR-214 is elevated 
in osteoclast exosomes and inhibits osteoblast activity via 
targeting EphrinA2/EphA2 interaction through co-culture 
experiments [15]. Similarly, miR-214 targets ATF4 in 
osteoblasts to inhibit bone formation [78]. The work of 
Zhao et al., (2015) suggested that miR-214 promotes 
osteoclastogenesis through PI3K/Akt pathways in BM 
macrophages [80]. These reports indicated that miR-214 
containing exosomal osteoclasts mediate multifactorial 
effects that cause pathological destructive bone disease. 
Also, others have reported that exosomes secreted 
from monocytes (precursors to osteoclasts) stimulate 
osteogenic differentiation of MSCs [81, 82]. However, 
the molecular mechanism behind the osteoclast-mediated 
exosome activities that cause bone remodeling is a subject 
for future attention.

Osteoblast exosomes: mediators of the bone 
remodeling process

The work of Deng et al., (2015) demonstrated 
that exosomes released from osteoblasts (UAMS-32P 
cell lines) contain RANKL protein and activate RANK 
signaling in osteoclast precursors through receptor ligand 
(RANKL-RANK) interaction, leading to osteoclast 
formation [83]. Such exosomes-mediated intercellular 
communication between osteoblasts and osteoclasts 
may represent a novel mechanism of bone remodeling. 
Exosomes from BM stromal cells can activate the 
bone remodeling process by enhancing osteoblast 
differentiation and mineralization. Growth factors, bone 
morphogenetic protein 9 (BMP9) and transforming growth 
factor‐β1(TGF‐β1) present in BM cell exosomes activate 
osteogenic differentiation [84]. The work of Solberg et 
al. (2015), described that osteoblast-derived lysosomal 
membrane protein 1 (LAMP1) positive exosomes 
carry RANK ligand, osteoprotegerin (OPG) and TRAP 
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enzymes, which critically increase osteoclastogenesis 
[85]. Also, exosomes derived from mature osteoblasts 
also enhanced bone growth by up-regulating runt‐
related transcription factor 2 (RUNX2) and alkaline 
phosphatase, as well as enhanced matrix mineralization 
[86].  Cue et al. 2016, suggest that exosomal miRNAs 
are produced by mineralizing osteoblasts and promote 
osteogenic differentiation (ST2 cells). Osteo-miRNAs 
(miR-30d-5p, miR-133b-3p miR-140-3p, miR-335-
3p, miR-378b and miR-677-3p) are highly expressed 
which mediate bone remodeling events, by regulating 
osteoblast differentiation and function through 
Wnt signaling, insulin signaling, TGF-b signaling 
and calcium signaling [86]. Functional evidence 
suggests that miR-30d-5p and miR-133b-3p inhibit 
the runt-related transcription factor 2 (RUNX2) gene 
expression, thereby inhibiting osteoblast differentiation 
[86]. Others have shown that miR-140-3p diminishes 
osteoblast activity by suppressing BMP-2 expression 
[88]. miR-677-3p was found to increase axis inhibition 
protein 1 (AXIN1) and enhance MSC osteogenic 
differentiation [86]. miR-378 activates the glucose-
mediated osteogenic differentiation via the PI3K/Akt 
signaling pathway [89]. The prior reports also revealed 
that miR-335-5p increases osteoblast differentiation 
and mineralization via down-regulation of DKK-1 
expression [90].

The work of Xu et al. (2014), reported for the 
first time the presence of miRNA in exosomes during 
BMSCs osteogenic differentiation [91]. They found 
that let-7a, miR-199b, miR-218, miR-148a, miR-
135b, miR-203, miR-219, miR-299-5p and miR-302b 
were significantly upregulated in exosomes derived 
from BMSCs. However, miR-221, miR-155, miR-
885-5p, miR-181a and miR-320c were significantly 
down-regulated in exosome samples [91]. Mechanistic 
studies revealed that microRNA, let-7, was reported 
to enhance bone formation by repressing adipogenesis 
in human MSCs through regulating HMGA2 gene 
expression [92]. The miR-218 and Wnt/β-catenin signal 
was reported to promote human adipose tissue-derived 
stem cells osteogenic differentiation via a signal-
amplification circuit dependent manner [93]. miR-199b 
is also known to be involved in the control of osteoblast 
differentiation by Runx2 [92]. MicroRNA hsa-miR-
135b could increase the somatic cells differentiation 
towards to osteoblast lineage [93]. Down-regulation 
of miRNA-221 in exosomes was reported to trigger 
osteogenic differentiation in human unrestricted somatic 
stem cells [91]. Wnt5a, a classical noncanonical Wnt, 
was reported as a critical component of BMP2 mediated 
osteogenesis. MiR-885-5p expression negatively 
regulates BM2-induced osteoblast activity by repressing 
Runx2 [91]. miR-181a represses TGF-ß signaling 
molecules by inhibiting TßR-I/Alk5 (TGF-ß type I 
receptor) and accelerates osteoblast differentiation and 

mineralization [96]. Exosomal miRNAs are produced by 
osteoblasts and increase osteoclast activity via a paracrine 
mechanism. miR-148a was known to be upregulated 
in MSC exosomes, which further activates osteoclast 
differentiation and bone loss by targeting human V-maf 
musculoaponeurotic fibrosarcoma oncogene homolog 
B (MAFB) [97]. miR-503-3p from osteoblast-derived 
exosomes has been shown to inhibit RANK expression 
and RANKL-induced osteoclastogenesis [98]. In another 
study, human BMSC-derived extracellular vesicles are 
enriched with miR-196a which support bone formation 
in Sprague Dawley (SD) rats with calvarial defects 
[119]. Therefore, future research exploring the potential 
function of these exosomes-associated molecular 
factors and miRNAs, for example, paracrine/autocrine 
in communication between hBMSC/osteoblast or with 
other cell types in the field of bone remodeling, should 
bring new knowledge in this area. Collectively, the 
osteoblast-derived exosome and its molecular factors 
and miRNAs activate osteogenesis and bone remodeling 
by enhancing key osteoblast signaling molecules.

EXOSOMES: POTENT ANGIOGENIC 
FACTORS THAT PROMOTE 
ANGIOGENESIS

For a skeleton to sustain its bone mass growth and 
development, it has to obtain greater amounts of oxygen 
and nutrients through the formation of new blood vessels 
or angiogenesis. Angiogenesis refers to the formation of 
new capillaries or vessels from existing blood vessels 
mediated by an orchestra of a multistep process of cellular 
events [98, 100, 101]. Several studies reported that blood 
vessel development occurs through the active involvement 
of soluble growth factors [Fibroblast Growth Factor] 
(FGF) and Vascular Endothelial Growth Factor (VEGF) 
associated with endothelial cell growth and differentiation 
[99, 102], inhibiting factors (angiogenin) for proliferation 
and stimulating differentiation of endothelial cells [99, 
103] or extracellular cytokines (angiostatin and endostatin) 
[104]. Mass spectroscopy analysis of exosomes profiling 
revealed that MSCs derived exosomes contain soluble 
growth factors such as VEGF, TGFB1, interleukin-8 
(IL-8) and are rich in transcription factor (HGF), which 
accelerate the pro-angiogenic activity by stimulating both 
proliferation and migration of endothelial cells [105, 106]. 
Similarly, human T-cell factor 4 (TCF4) is a key effector 
of Wnt signaling, a canonical pathway that exerts a central 
role in vessel development [107]. Therefore, intercellular 
transmission of exosomes containing HGF, HES1 and 
TCF4 factors may have both proangiogenic and pro-
survival effects in organizing vascular phenotypes. Also, 
the work of Chen et al. (2010), reported that exosomes 
derived from MSCs contain miRNAs, including miR210, 
miR126, miR132, and miR21, which are shown to be 
involved in angiogenesis [106] and miR-6087 which  
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induces endothelial differentiation [108, 109]. A recent 
research report has shown that exosomes from MSCs 
successfully accelerated angiogenesis in different in vivo 
animal models. The work of Bian et al. (2014), reported 
that bone marrow MSCs derived exosomes promotes 
angiogenesis in the ischemic heart by reducing myocardial 
ischemic/reperfusion injury in rat models [22]. In another 
study, it was also revealed that umbilical cord derived-MSC 
exosomes attenuated hind-limb ischemia by promoting 
blood flow [28]. In another study, exosomes derived from 
bone marrow tumor cells (myeloid leukemia cell line 
K562) were enriched with a large amount of miR-92a 
that enhanced angiogenesis under normoxic and hypoxic 
conditions [110]. With chronic hypoxia, exosomes secreted 
by multiple myeloma cells also improve angiogenesis by 
targeting factor-inhibiting hypoxia-inducible factor-1 via 
miR-135b. Sahoo et al. (2011), reported that exosomes 
from mobilized human CD34+ cells are enriched with 
miR-126 and miR-130a which enhances endothelial tube 
formation in vitro. Moreover, in vivo studies showed that 
the CD34+-exosomes stimulated angiogenesis in Matrigel 
plug assays [111]. Exosomes secreted by HMSCs, 
attenuate hindlimb ischemia by promoting endothelial 
activity and angiogenesis in mice [112]. The most recent 
work of Qi et al. (2016), reported that exosomes from 
MSCs derived from human induced pluripotent stem cell 
(hiPS) could promote bone regeneration in critical size 
bone defects in an ovariectomized rat model by enhancing 
both bone formation and angiogenesis [113]. This study 
reveals that exosomes from hiPSC-MSC accelerate 
significantly more neovascularisation by increasing vessel 
area and vessel number by enhanced osteoblast alkaline 
phosphatase (ALP) activity and bone formation markers 
(RUNX2 and COL1). Therefore, angiogenesis is only one 
of many intriguing effects of cell derived exosomes which 
have been associated with vascular capillary network 
formation for tissue or organ regeneration. This suggests 
that exosomes may be novel mediators to be employed 
in the treatment of various diseases. The detailed 
mechanism by which exosomes modulate angiogenesis 
in the bone microenvironment remains incompletely 
understood. Therefore, more research is warranted to 
explore the exosome mediated blood vessel development 
or angiogenesis that leads to the development of novel 
treatment for pathological destructive bone disease 
and remodeling. The overall feature of bone cell-
derived exosomal secreted factors and miRNAs and its 
involvement in the bone remodeling process is depicted in 
Table 2. Moreover, the exosomal role in the regulation of 
bone development and vascularization has been illustrated 
in (Figure 2).

EXOSOMES: MEDIATORS OF 
SKELETAL MUSCLE REGENERATION

Mesenchymal stem cell (MSC) transplantation is 

widely used for the treatment of various disease models 
due to its paracrine effect in tissue regeneration. Recently, 
exosomes have attracted special attention as new players 
in cell-to-cell communication for tissue regeneration. 
The work of Nakamura et al. (2015) has reported that 
MSCs-derived exosomes can promote skeletal muscle 
regeneration by enhancing myogenesis and angiogenesis 
in a muscle injury model [116]. A cytokine antibody array 
revealed that significant amounts of angiogenic factors 
such as VEGF and IL-6 are present in the MSCs derived 
exosomes that contribute to the regeneration of skeletal 
muscle [114]. On the other hand, among others, miR-
494 is contained abundantly in MSC-exosomes, and the 
results have shown that miR-494 participates in C2C12 
muscle myogenesis and endothelial migration activity. 
miR-24 is involved in myogenesis via modulation of 
transforming growth factorβ, myogenin and MEF2 [115]. 
Furthermore, miR-181 is upregulated during muscle 
differentiation, which targets homeobox AII, a repressor 
of the differentiation process [116]. Thereby, it enhances 
muscle growth. Exosomes including both miRNAs 
and their secretion of cytokines or growth factors from 
MSCs may explain the mechanism of skeletal muscle 
regeneration during MSC transplantation and may be a 
new therapeutic tool.

ROLE OF EXOSOMES IN BONE 
FRACTURE

It has been reported that exosomes play as important 
mediators, which transfer genetic material (miRNA, 
mRNAs), proteins and lipids to target cells [41, 46]. Some 
studies have defined stem cells, or their precursor’s cells 
derived exosomes as being involved in a bone remodeling 
and repair mechanism [115, 118]. The work of J. Xu et 
al. (2014), reported for the first time that BMSC derived 
exosomes are enriched in let-7a, miR-199b, miR-218, 
miR-148a, miR-135b, miR-203, miR-219, miR-299-5p, 
and miR-302b, that are known to induce osteogenesis 
by regulating RNA degradation, the mRNA surveillance 
pathway, Wnt signalling pathway and RNA transport 
mechanism [91]. Similarly, Furuta et al. (2016), also 
supported the role of exosomal miRNA (miR-21, miR-
4532, miR-125b-5p and miR-338-3p) and bone repair 
related cytokines (MCP-1, -3, SDF-1 and angiogenic 
factors) in osteogenic bone formation in the CD9-/- 
mouse model [117]. These enhanced fracture-healing 
phenotypes with bone remodeling events are due to the 
well-orchestrated process of osteogenesis and vascular 
angiogenesis. J. Zhang et al. (2016), proposed that 
exosome/tricalcium phosphate (β-TCP) scaffold-mediated 
pro-osteogenesis effects on hBMSCs towards osteogenic 
lineage via pi3k-Akt signaling pathways [118]. They 
showed that naturally secreted nanocarriers-exosomes 
could act as biomaterials and potentially enhance bone 
repair and remodeling. In another study, BMSC-derived 
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Source Exosomes containing 
Secretary Factors/miRNAs

Biological functions References

Osteoclast RANK Stimulate osteoclasts and 
osteoblastic differentiation 
in bone

[74]

Osteoclast EphA2, B2 Osteoblast differentiation [76, 66]
Osteoclast IGF, Activate osteoblast migration [77]
Pre-osteoclast PDGF Promotes angiogenesis 

by specific endothelial 
(CD31+EMCN+) cell types

[78]

Osteoclast Cardiotropins-1 Accelerates osteoblast 
differentiation and 
mineralization

[79]

Osteoblast RANKL osteoclast formation and 
activity

[83]

Osteoblast OPG Inhibit the osteoclast 
differentiation through OPG-
RANKL interaction

[17, 83]

Osteoblast TRAP Increase the osteoclastgenesis [17, 85]
Osteoblast PP1C and PABP Regulate EIF2 signaling 

pathway in osteogenesis
[86, 87]

MSCs Undefined factors? Promotes osteogenesis and 
angiogenesis

[115]

Osteoclast MiRNA-214 inhibits the osteoblast 
activity via targeting 
EphrinA2/EphA2 interaction 
and also targets ATF4 to 
inhibit bone formation

[15, 78]

HBMSCs miR‐135b Inhibits osteoblast 
differentiation by targeting 
IBSP and Osterix

[94, 95]

HBMSCs miR‐885‐5p Inhibits osteogenic 
differentiation by targeting 
RUNX2

[91]

HBMSCs miR‐181a Increases osteoblast activity 
and mineralization through 
TGF‐BI regulation

[96]

HBMSCs miR‐218 Accelerates osteoblast 
differentiation and 
mineralization through Wnt 
signaling

[131]

HBMSCs miR‐196a Increases osteoblast 
differentiation and 
mineralization by targeting 
HOXC8

[119, 133]

Table 2: Bone cell-derived exosomal secreted factors, miRNAs, and their involvement in the bone 
remodeling process.
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exosomes were found to be enriched in osteogenic-related 
miRNAs, miR-196a, miR-27a and miR-206, which were 
highly upregulated. They further confirmed these findings 
with in vitro functional studies [119, 120].

ROLE OF EXOSOMES AS CLINICAL 
THERAPEUTICS IN BONE DISEASE

Due to several cellular and molecular traits like self-
renewal, vast differentiation and a variety of ECM protein 
secretion, MSCs have been proposed to be an important 
candidate for tissue repair, especially for mass bone 
restoration. However, several therapeutic findings of MSCs 
or its precursors-derived exosomes have been reported 
in the field of orthopaedics [121, 122, 123]. However, 
debilitating bone disease such as osteoporosis, rheumatoid 
arthritis (RA) and osteoarthritis brought significant 
attention in clinics to recover patients from inflammation, 
T-cell activation, and imbalanced bone remodeling, which 
lead to pain and deterioration of bone mass and joints. 
However, there is no direct study on the role of stem 
cell-derived exosomes that mitigate the imbalance in the 
remodeling process in the aforementioned destructive 
bone diseases. The work of Zhang et al. (2015), reported 
that exosomes released from human iPS-derived MSCs 
improve cutaneous wound healing in a murine model by 
enhancing collagen synthesis and angiogenesis [124]. In 
another study, ESC-derived exosomes improved cardiac 
function by strengthening myocardial neovascularization 
via a miRNA-290–295 dependent manner following 
myocardial infarction [125]. The work of Nakamura et al. 
(2015), also reported the emerging role of MSC-derived 
exosomes in being able to accelerate skeletal muscle 

regeneration via miRNA-494 in a skeletal muscle injury 
model [116]. Bone vascularization is essential for many 
physiological processes, such as bone development and 
growth, and bone remodeling. The work of Qi et al. 
(2016), also reported that MSCs derived exosomes from 
hiPS can promote bone formation and vascularization in 
critical size bone defects in an ovariectomized rat model 

Figure 2: Bone marrow-MSC derived exosomes 
enhance bone regeneration by orchestrating a 
coordinated regulation of osteogenesis, angiogenesis, 
and osteoclastogenesis. In the bone microenvironment, 
bone marrow-MSCs actively secrete exosomes, which are taken 
up by the surrounding cells including osteoblasts, osteoclasts, 
and endothelial cells. These activities result in a complex 
interplay of bone homeostasis by accelerating osteogenesis, 
osteoclastogenesis, and angiogenesis of which may promote 
vascularized bone development and regeneration.

HBMSCs miR‐148a Increases the osteoclast 
differentiation through 
by targeting V‐maf 
m u s c u l o a p o n e u r o t i c 
fibrosarcoma oncogene 
homolog B

[92, 97]

HBMSCs let‐7 Increase osteogenesis and 
bone formation by HMGA2

[92]

Osteoblast miR-503-3p A t t e n u a t i n g 
osteoclastgenesis by 
targeting RANK receptor

[98]

Osteoblast miR‐133b‐3p A t t e n u a t i n g 
osteoblastgenesis by 
targeting RUNX2

[132]

Osteoblast miR‐30d‐3p A t t e n u a t i n g 
osteoblastgenesis by 
targeting RUNX2

[87]

Osteoblast miR‐677‐3p Promotes MSC osteogenic 
differentiation via targeting 
AXIN1

[86]
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[115]. Interestingly, in a murine model of delayed-type 
hypersensitivity and collagen-induced arthritis, EVs 
containing adenovirus expressing viral IL-10 or bone 
marrow-derived DCs treated with recombinant murine 
IL-10 suppressed the inflammatory and autoimmune 
responses when injected particularly [126]. This may 
represent a novel, cell-free therapy for the treatment 
and has major applications in the field of osteobiology 
and orthopaedics. However, if such type of MSCs or 
BM-derived exosomes could be isolated on a large scale 
in clinical practice that could be a major therapeutic 
intervention in debilitating bone diseases, including 
osteoporosis, rheumatoid arthritis, and osteoarthritis.

THERAPEUTIC ADVANTAGE OF 
EXOSOMES TREATMENT AND 
FUTURE DIRECTIONS

Much of the excitement surrounding extracellular 
vesicles/exosomes research is due to its high clinical 
relevance. This is due, in particular, because bone 
exosomes can be easily isolated through minimally 
invasive procedures, such as from the bone marrow 
or MSCs of healthy donor patients, as they have great 
potential in destructive bone disease diagnosis. Also, 
exosome treatments have several advantages due to fewer 
safety concerns over cell-based treatments and reduce 
toxicity and immunogenicity problems [115, 127]. Also, 
exosomes do not express cell surface MHCI or MHCII 
proteins and thereby prevent immunogenicity better 
than cell-based transplantation therapy [128] which 
can effectively stimulate bone remodeling in vivo and 
in vitro [124]. MSC-derived exosomes also maintain 
their privileged immune properties of their origins, and 
this may significantly help researchers to develop novel 
immunotherapies [129]. Additionally, in comparison with 
living cells, nonviable exosomes are more stable, have 
no risk of aneuploidy and a low possibility of immune 
rejection following in vivo administration [75]. Multiple 
prior studies have reported the use of MSCs and miRNAs 
in bone repair and remodeling [121-123, 130]. The 
above findings suggest that stem cell-derived exosomes 
will one day be able to provide the best possible clinical 
medicine in the field of bone repair and remodeling 
therapy. Since MSCs derived exosomes accomplish such 
recovery tasks, further research will be needed to identify 
a novel exosome; thereby efficiently recovering the bone 
remodeling phenomena in the in vivo condition. Therefore, 
they can provide an alternative therapy for bone and other 
diseases.

CONCLUSIONS

In conclusion, our review article collectively 
focused on the recent approaches towards the therapeutic 
application of exosomes in the bone remodeling process, 

which regulates osteoclastogenesis, osteoblastogenesis, 
and angiogenesis. However, the molecular mechanism 
behind the exosomes mediated signaling cascade in bone 
remodeling and development remains elusive. Biomedical 
application of exosomal based medication will bring a new 
challenge in clinical practice. To improve such clinical 
conditions, at the very least, novel reliable methods 
must be developed for easy purification of exosomes in 
large-scale production, and for co-expression of different 
molecules (proteins, mRNA, and miRNA) that affect 
physiological function and its administration route needs 
to achieve targeted delivery and recovery of pathological 
outcomes to be determined. Considering the enormous 
importance of exosome-based clinical therapy, it could 
be a new and safe approach for debilitating bone diseases 
more so than other gene and cell-based therapies.
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