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Abstract—Understanding cell contractility is of fundamental
importance for cardiovascular tissue engineering, due to its
major impact on the tissue’s mechanical properties as well as
the development of permanent dimensional changes, e.g., by
contraction or dilatation of the tissue. Previous attempts to
quantify contractile cellular stresses mostly used strongly
aligned monolayers of cells, which might not represent the
actual organization in engineered cardiovascular tissues such
as heart valves. In the present study, therefore, we investi-
gated whether differences in organization affect the magni-
tude of intrinsic stress generated by individual
myofibroblasts, a frequently used cell source for in vitro
engineered heart valves. Four different monolayer organiza-
tions were created via micro-contact printing of fibronectin
lines on thin PDMS films, ranging from strongly anisotropic
to isotropic. Thin film curvature, cell density, and actin stress
fiber distribution were quantified, and subsequently, intrinsic
stress and contractility of the monolayers were determined by
incorporating these data into sample-specific finite element
models. Our data indicate that the intrinsic stress exerted by
the monolayers in each group correlates with cell density.
Additionally, after normalizing for cell density and
accounting for differences in alignment, no consistent differ-
ences in intrinsic contractility were found between the
different monolayer organizations, suggesting that the intrin-
sic stress exerted by individual myofibroblasts is independent
of the organization. Consequently, this study emphasizes the
importance of choosing proper architectural properties for
scaffolds in cardiovascular tissue engineering, as these
directly affect the stresses in the tissue, which play a crucial
role in both the functionality and remodeling of (engineered)
cardiovascular tissues.
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INTRODUCTION

Many cell types exert contractile stresses onto their
surroundings via stress fibers.®!*?*5? The main con-
tractile components of the stress fibers are the actin
fibers and myosin motors.®**>? The stress fibers can
be externally stimulated to exert stress (defined here as
active cell stress) but also generate an intrinsic level of
stress without any external stimulation (defined here
as intrinsic cell stress). Understanding and controlling
the degree of cell stress is important for tissue engi-
neering in order to obtain mechanically functioning
tissues with a proper matrix organization. In cardio-
vascular tissue engineering, for example, excessive
(intrinsic) cellular stress can lead to tissue contraction,
represented by leaflet shortening in case of tissue-
engineered heart valves (TEHVs).!"3*%* Conversely,
insufficient levels of (intrinsic) cellular stress can cause
tissue dilation, resulting in leaflet elongation in
TEHVs and aneurysm formation in vascular grafts.*?
The magnitude and direction of cellular stresses de-
pend on the (mechanical) environment, e.g., on stiff-
ness, applied strain, or architecture. For example,
previous studies have demonstrated that stiff sub-
strates induce an increased development of stress fi-
bers and focal adhesions compared to soft substrates,
enabling the cells to exert increased contractile stres-
ses onto their surroundings.®'%!*-**->! Furthermore,
cyclic uniaxial strain causes the cells and stress fibers
to orient perpendicular to the strain; a phenomenon
known as strain avoidance behavior.'®?>3® This cau-
ses the cells to exert stresses in the direction perpen-
dicular to the strain, changing the stress
directionality. Another phenomenon that affects cell
orientation is contact guidance, where the cells align
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in the direction of topographical environmental
cues.*!

Numerous studies have been performed to improve
our understanding of stress fiber remodeling and cellular
stress development, both in 2D and in 3D environments.
In 3D, most studies have investigated the compaction of
fibroblast-loaded gels as a measure of cell contractil-
ity.*®7-?7 In addition, studies have been performed to
investigate the influence of external cues, such as stiff-
ness,”’ cyclic strain, '® soluble factors?? or combinations
of stimuli,'”*” on the actin organization in relation to
compaction. Cellular stress development has also been
examined in endogenously produced extracellular
matrices.*****® Even though 3D studies are more rele-
vant for tissue engineering, extracting (individual) cell
stress is challenging due to the complexity of the envi-
ronment in which the cells reside. 2D studies with cells
cultured on substrates may therefore be more suit-
able for providing the fundamental insights into stress
fiber remodeling and cellular stress development.

Various experimental methods exist for measuring
cell contractility in 2D,*® ranging from single cell
methods like traction force microscopy*”> and set-ups
using micropost arrays,'” to monolayer methods such
as cyclic stretching of cell monolayers on flexible sub-
strates” and the thin film method."*' The latter
method is a suitable method for quantifying both stress
fiber remodeling and stress development with minimal
handling of the cells.

The thin film consists of a thin layer of polydimethyl-
siloxane (PDMS) that is attached to a glass substrate via
the temperature sensitive polymer poly-N-isopropy-
lacrylamide (pIPAAm).'*** The PDMS is subsequently
micro-contact printed with lines of extracellular matrix
proteins to enhance cell adhesion and guide the cells into a
specific direction. Rectangular films are typically cut from
the PDMS, which partly release from the glass when the
pIPAAM dissolves upon a decrease in cell culture med-
ium temperature.''**° The curvature of the films as a
result of the contractile cell layer on top of the PDMS can
then be used to quantify the stress exerted by the mono-
layer of cells. The thin film method is therefore an elegant
method for determining the contractile properties of
aligned contractile tissues, such as smooth,>*%>* skele-
tal*” or cardiac®'*' muscle tissue.

Tissue engineered heart valves and blood vessels can
be created using (electrospun) fibrous scaffolds”**3743
that allow for cell infiltration because of their high
porosity. In this case the initial cell alignment is
determined by the scaffold fiber organization via the
mechanism of contact guidance. As the scaffold fiber
organization is highly variable and never perfectly
aligned, the cell organization is also not perfectly
aligned, and it may be questioned whether the stress
exerted by perfectly aligned monolayers represents the
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stress distribution inside these engineered tissues. In
fact, previous studies with cardiomyocytes have shown
that the stress developed by a complete monolayer
increases upon increasing cellular anisotropy.'®*%-3
However, these studies have not investigated whether
this was due to differences in intrinsic contractility of
the cells, or rather due to differences in alignment.

We hypothesize that the intrinsic contractility of
individual cells is independent of the monolayer
organization, which would implicate that the intrinsic
stress generated by the complete monolayer will be
dictated by the cellular organization only. To investi-
gate this hypothesis, we will focus on myofibroblasts
derived from the saphenous vein in this study as this
cell type is commonly used for creating tissue engi-
neered cardiovascular tissues.'"¥-*3%4 We adapted
the thin film method developed by Feinberg ez al.,'*
Alford er al.' and Grosberg e al.?*' to determine the
intrinsic stress developed by a monolayer of myofi-
broblasts with various degrees of alignment. The dif-
ferences in alignment were obtained by seeding the
cells onto micro-contact printed fibronectin patterns
with different orientations with respect to the long axis
of the films. The thin film method was combined with
live imaging to determine the curvature and cell density
of each individual film. Separate samples were used to
stain the cell nuclei, F-actin and phosphorylated
myosin light chain, to determine nuclear and stress fi-
ber organization and provide insight into intrinsic
stress fiber contraction potential. These experimental
results were then combined with sample-specific finite
element modeling to determine the intrinsic stress ex-
erted in the film direction by the complete monolayer
and the normalized intrinsic cellular contractility.

MATERIALS AND METHODS

Construct Fabrication

Thin film constructs were fabricated as previously
described.>?° In brief, a layer of poly-N-isopropy-
lacrylamide (pIPAAm; Sigma, Zwijndrecht, The
Netherlands) and a layer of polydimethylsiloxane
(PDMS; Sylgard 184; Dow Corning, Auburn, MI)
were spin coated on a 25 mm diameter glass cover slip
and cured overnight at 65 °C. 2.5% of blue silicon dye
(Sile-Pig; Smooth-On, Macungie, PA) was added to
the PDMS in order to visualize the films and different
rotation speeds were used to create PDMS films with
different thicknesses in order to account for the dif-
ference in film curvature between the different mono-
layer organizations. In addition, PDMS was spin
coated on copper coated glass cover slips used for
thickness measurements with an optical profilometer
(Plp 2300; Sensofar, Terrassa, Spain). In order to
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determine the elastic modulus of the dyed PDMS,
rectangular bars were uniaxially strained with a tensile
tester (Z010; Zwick/Roell, Venlo, The Netherlands).

Micro-Contact Printing

PDMS stamps were fabricated using standard
photolithography techniques.”®> The stamps contain
features of either 10 um wide lines with 10 um spacing
in between or a fishnet pattern with 5 um wide lines
with 10 um spacing at an angle of +15°, 30° or 45°
with respect to the 0° axis (Fig. 1). PDMS stamps were
incubated with 50 mg/mL rhodamine fibronectin (Cy-
toskeleton, Denver, CO) in PBS for one hour, after
which they were dried using compressed air. The thin
film constructs were treated with UV-ozone (PDS UV-
ozone cleaner; Novascan, Ames, [A) for 8 minutes just
before transfer of the fibronectin onto the constructs.
The stamps were positioned in such a way that the 0°
axis of the stamp coincided with the length direction of
the to be cut films. After 10 minutes of conformal
contact, the constructs were rinsed three times with
PBS and stored in PBS at 4 °C until use."**

Cell Seeding and Culture

Human myofibroblasts were harvested from the
vena saphena magna obtained from patients according
to Dutch guidelines of secondary used material and
were seeded at passage 7 onto the thin film constructs
at a seeding density of 8400 cells/cm”. After seeding,
the HVSCs were cultured at 37 °C and 5% CO, for 2
days in growth medium consisting of Advanced
DMEM (Invitrogen, Breda, The Netherlands) supple-
mented with 10% Fetal Bovine Serum (Greiner Bio-
One), 1% GlutaMax (Invitrogen) and 1% penicillin/
streptomycin (Lonza, Basel, Switzerland).

Cell Orientation Analysis

After culture, half of the samples were fixated in
3.7% formaldehyde (Merck, Schiphol-Rijk, The

0 & 150 1'% I

Netherlands) for 15 minutes, permeabilized with 0.5%
Triton-X 100 (Merck) for 5 minutes and subsequently
incubated for 90 minutes with 2% BSA (Roche, Al-
mere, The Netherlands)—1% horse serum (Sigma) in
TBS supplemented with 0.05% Tween (Merck) to
block non-specific binding. Mouse anti-phospho-
myosin light chain ITA (Cell Signaling, Danvers, MA)
was used to label phosphorylated myosin ITA over-
night before addition of biotin labeled horse-anti-
mouse secondary antibody (Vector, Burlingame, CA)
for 90 minutes. Thereafter, the samples were incubated
with streptavidin-Alexa 647 (Invitrogen) and phal-
loidin-Atto 488 (Sigma) for 90 minutes. Before
mounting with mowiol (Sigma), the samples were
incubated with DAPI (Sigma) for 10 minutes. The
mounted samples were visualized using both fluores-
cent (Axiovert 200 M; Zeiss, Sliedrecht, The Nether-
lands) and confocal microscopy (LSM 510 Meta;
Zeiss). Fluorescent microscopy images at 20 times
magnification were analyzed using custom Matlab
(MathWorks, Natick, MA) scripts to determine the
actin fiber and nuclear orientation with respect to the
fibronectin orientation. The actin fiber orientation was
determined as described previously.'®'® For each
image a histogram containing the fiber percentage per
angle was obtained. The actin stress fiber distribution
was subsequently quantified by fitting the following
curve to each histogram:

i _ 4 ~(y—p)?
Py =A| ctexp| —5 57— (1)

with the main fiber direction (u) in the 0° direction, y
the fiber angle and A4 a scaling factor. The offset (¢)
and dispersity (o) were fit and used as parameters in
the finite element model described below (Table 1).
The nuclear orientation was quantified by thresh-
olding the DAPI image and fitting an ellipse through
each nucleus after which the angle of the major axis of
the ellipse was determined. As for the actin fibers,
histograms were constructed containing the nuclear
orientation percentage per angle. The nuclear aspect

FIGURE 1. Schematic overview of the micro-contact printing layout of the four different fibronectin patterns. The fibronectin lines
are depicted in grey, the spacing in black and the angle « is depicted in the top left corner. The short arrows represent 5 ym and the

long arrows represent 10 um.
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TABLE 1. Overview of specific and common parameters
used in the finite element model.

Fibronectin angle foams (M) a (°) c(-)
0° 8.2 13 0.065
15° 8.2 18 0.086
30° 7.1 23 0.138
45° 6.8 54 2.091
Common parameters

foen (um) 3.2

Ecell (kPa) 0.7

Veell (=) 0.3
Epdms (MPa) 1.52/1.91
Vpdms =) 0.49

ratio was calculated by dividing the length of the major
axis by the length of the minor axis. Phosphorylated
myosin light chain was visualized together with actin at
63 times magnification, to investigate potential co-lo-
calization of the two major stress fiber components.
The monolayer thickness was determined by analyzing
the z-stacks obtained at 40 times magnification with
confocal microscopy,” and used as a parameter in the
finite element model (Table 1).

Intrinsic Cell Stress Assay

After culture, the other half of the samples was
stained with Hoechst (10 pg/ml; Invitrogen) for
15 minutes, subsequently rinsed 3 times with PBS and
growth medium was added to the samples until further
use. The stained nuclei were used to determine the
nuclear aspect ratio and orientation with respect to the
fibronectin lines on each individual film (as described
above). In addition, the cell density (d) was determined
by counting the nuclei in these images. After staining
the nuclei, the samples were transferred to a Petri dish
with preheated growth medium. The long edges of
eight rectangular films were cut from the constructs
and the excess PDMS was removed. The petri dish
containing the sample was then transferred to a con-
focal microscope (TCS SP5X; Leica, Son, The
Netherlands) to perform temperature- and CO,-con-
trolled (37 °C, 5% CO,) live imaging of the nuclei and
fibronectin lines on the films. Hoechst was excited with
a femtosecond pulsed laser (Chameleon; Coherent,
Santa Clara, CA) at 750 nm and a laser power of 10%.
Rhodamine fibronectin was excited with a white light
laser (Leica) at 535 nm and a laser power of 14%.
1024 x 1024 pixel images were taken with a scan speed
of 400 Hz. We did not see any adverse effects of the
imaging procedure on the cells (data not shown). Next,
the ends of the rectangular films were cut while the
medium was allowed to cool down below 32 °C in
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order to dissolve the pI[PAAm, and enable the HVSCs
to deform the PDMS layer. A picture of the initial
curvature (0 h) was taken at room temperature using a
stereomicroscope (Discovery.V8; Zeiss) after which the
thin films were placed back at 37 °C and 5% CO..
Another picture was taken after 1 h when the con-
tractile equilibrium was reached.

Analysis of Intrinsic Cell Stress

The curvature of the films was determined using
Matlab by analyzing the projection length of the bent
films.*® The length and width of each film were obtained
from images of the undeformed films. Thereafter the
intrinsic cellular stress was obtained via sample-specific
finite element modeling in Abaqus (Dassault Systémes
Simulia Corp., Providence, RI). The cell (7.o;)) and PDMS
(tpdms) thickness (Table 1), and the length and width of
each film were used as geometrical input for creating a
double-layered finite element mesh. Both layers consisted
of 200 quadratic brick elements (C3D20), with the bot-
tom layer representing PDMS and the top layer repre-
senting the cell monolayer. The PDMS layer was fixed at
one of the short edges to represent the experimental setup.
The PDMS layer was assigned with compressible Neo-
Hookean material properties:

Gp:KthJI—i-g(B—JzBI) (2)
with shear modulus G = E/2(1 — v), compression
modulus x = 2G(1 + v)/3(1 —2v), B = FF" and
J = det(F), where F represents the deformation gradi-
ent tensor. Parameter values are indicated in Table 1.

The cell layer of the model was a fiber-reinforced
layer with an active, fibrous, component (s.,) repre-
senting the stress fibers, and a passive, compressible
Neo-Hookean, component (a.,) representing the other
cellular components. a., was calculated by assuming
Neo-Hookean material behavior (Eq. (2); Table 1),
while 6., 1s determined from the stress exerted by the
stress fibers in a range of different directions:

i

N .
. A
O = ) PlyOmaxCyey (3)
i=1

P .
where e, is the stress fiber direction in the deformed
configuration, ., 1S @ measure for intrinsic cell con-

tractility, and (};f the actin stress fiber volume fraction
for each direction as obtained from the fluorescent
images. o, Was iteratively increased until the curva-
ture of the finite element models matched the experi-
mentally obtained curvature. The total intrinsic stress in
the cell layer of the model was obtained by adding the
passive and active stress components: 6, = 6., + 6.
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The magnitude of the intrinsic stress component in the

long axis direction of the deformed film (¢;,) in the cell
layer (oy) was determined using:

O'f = O, - E[a . Ek,. (4)

In order to compare intrinsic cell contractility between
samples, we normalized o, for the cell density

g
Onorm — —= . (5)

d

Statistical Analysis

Quantitative data were analyzed with SPSS Statis-
tics 22 (IBM, Amsterdam, The Netherlands) and were
considered significant at p < 0.05. Differences in nu-
clear aspect ratio were analyzed using a one-way
ANOVA with a Bonferroni post hoc test. Spearman’s
correlation coefficient (p) was determined to investi-
gate correlations between cell density and either cur-
vature, gy OF Omax. Differences in oporm between the
four different alignment groups were analyzed using a
non-parametric Kruskal-Wallis test with pairwise
Wilcoxon rank sum tests with corrected levels as post
hoc analysis.

RESULTS

Monolayer Organization is Determined by the
Fibronectin Pattern

The nuclear and actin orientation of the cells on
substrates with different orientations of fibronectin
lines is shown in Fig. 2. For all groups, the orientation
of the actin fibers, the nuclei of the samples used for
staining, and the nuclei of the samples used for the
stress measurements coincided. This indicates that
both the actin orientation and the nuclear orientation
are a good measure for overall cellular orientation. The
cells of the 0° group were primarily aligned in the
direction of the fibronectin lines, as demonstrated by
the high peak in the orientation histograms at 0° for
both the actin fibers and nuclei (Figs. 2a and 2¢). Upon
increasing the angle between the fibronectin lines, the
peak at 0° flattened out until a completely random
orientation was reached in the 45° group (Fig. 2d and
2h). The mean actin fiber distribution of each group
was successfully fit using Eq. (2) (Fig. 3). The obtained
parameters are shown in Table 1, and served as input
for the computational model.

The nuclear aspect ratio was determined to be
1.74 £ 0.09, 1.65 £+ 0.05, 1.61 £ 0.05, and 1.60 £+ 0.06
for the 0°, 15° 30° and 45° group, respectively. This
indicates that the nuclei were all elliptical and significantly

different from each other (p < 0.002), except for the aspect
ratio of the nuclei on the 30° and 45° fibronectin lines.

Curvature Increases with Increasing Cell Density

For all groups, 32 films were manufactured to per-
form curvature measurements on. In case of disconti-
nuities in the fibronectin pattern, the film was not
included in the analysis. This resulted in analysis of
respectively 32, 31, 29, and 26 films for the 0°, 15°, 30°,
and 45° groups. Considerable differences in curvature
between films within the same group were present
(Fig. 4a), due to local variations in cell density.
Therefore, the number of nuclei on each film was
quantified via a Hoechst staining (Figs. 4b, 4c) in order
to determine the correlation between cell density and
film curvature for each group at both time points. For
all groups, positive correlations between cell density
and curvature were found, except for the 45° group at
0 h (Fig. 4d—4g). In addition, a minimum cell density
was required for the cells to be able to bend the film,
which approximately equaled 150-200 cells/mm?>.

Normalized Intrinsic Contractility Seems Independent of
Monolayer Alignment

When film curvature was absent, the intrinsic stress
exerted by the monolayer was lower than the measure-
ment limit of this method. In that case, finite element
simulations were omitted. Simulations were performed
for the remaining 151 films (both time points included).
26 simulations failed before reaching the experimentally
observed curvature due to convergence issues, and were
excluded from further analysis. Due to the lack of
remaining samples with a cell density above 300 cells/
mm? in the 0° group, no clear correlation was found
between the cell density and the intrinsic stress in the
direction of the film (o) for this group. For 15° samples
there was a significant correlation between the cell
density and o A similar correlation was observed for
the 30° samples, albeit with larger dispersity. For the
samples with +45° fibronectin lines a significant corre-
lation was observed at 0 h, however not as strong as for
the 15° and 30° samples, probably also due to the lack
of samples with a high cell density. As the intrinsic stress
in all directions is taken into account in o,.x (Eq. (3)),
its value was higher than o5 which only includes the
intrinsic stress in the direction of the film (Eq. (4)).
Naturally, the difference between 6,,,x and o, increased
with increasing fibronectin angle. No significant differ-
ences in o,.m were found between groups with the
exception of the 30° group being significantly higher
compared to the 0° group at 0 and 1 h. The median
Onorm Tanged between 3.43 and 6.76 Pa at 0 h and
between 4.80 and 8.76 Pa at 1 h (Fig. 6).
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FIGURE 2. Actin (green) and nuclei (blue) of myofibroblasts cultured on fibronectin lines (grey) with four different orientation
angles (a—d; scale bar is 50 um) and corresponding histograms of the actin and nuclear orientation (e-h; mean = standard error of
mean). The green markers represent the actin fibers (40 images), blue markers represent the nuclei of the stained samples (40
images) and the red markers represent the nuclei of the samples used for stress measurements (2632 films).

Stress Fiber Organization is Similar in All Groups present and oriented along the longitudinal direction

Stainings for actin and phosphorylated myosin light of the cells. Phosphorylgted myosin light chain was

chain, the major stress fiber components, are shown in observed to co-localize with the actin fibers, confirming
’ ’ the ability of the stress fibers to contract.

Fig. 7. In all groups, actin fibers were abundantly
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DISCUSSION

Understanding cell contractility is of fundamental
importance for cardiovascular tissue engineering, due
to its major impact on the tissue’s mechanical prop-
erties as well as the development of permanent
dimensional changes, e.g., by contraction or dilatation

N

Percentage

N

Angle [degrees]

FIGURE 3. Mean actin orientation (grey triangles) with cor-
responding fit (black lines) for 0° (upward triangles; dotted
line), 15° (downward triangles; dash dot line), 30° (left point-
ing triangles; dashed line), and 45° (right pointing triangles;
solid line).

of the tissue. In previous attempts to quantify the
contractile cellular stresses by means of the thin film
method,>?!3149-30:53 mostly strongly aligned mono-
layers of cells were used, which might not represent the
actual cellular organization in engineered cardiovas-
cular tissues. In the present study, we investigated
whether differences in alignment would affect the
magnitude of the intrinsic stress generated by individ-
ual myofibroblasts. We hypothesized that the intrinsic
contractile stress exerted by the myofibroblasts is
independent of the monolayer organization, as a result
of which the total intrinsic stress exerted by the
monolayer should be dictated by the actual cell align-
ment. To test our hypothesis, patterns of fibronectin
lines were micro-contact printed on thin film con-
structs in order to create monolayers with varying
degrees of cell alignment. The intrinsic stress exerted
by each monolayer in the direction of the film was
determined from the curvature of the thin films, and
was found to correlate positively with the cell density.
Importantly, after accounting for differences in cell
alignment and normalizing for cell density, no consis-
tent differences in intrinsic cellular contractility were
found between the different monolayer organizations,
suggesting that the intrinsic stress exerted by mono-
layers of myofibroblasts can indeed be predicted from
the cellular organization. These findings are supported
by the similarity in staining for stress fiber organization
observed in the different groups.
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FIGURE 4. Representative top view image of bent films with 30° fibronectin lines at equilibrium (1 h), the black bars represent the
projection length and the white bars the initial length; scale bar is 1 mm (a). Examples of confocal images of nuclei (blue) on
fibronectin lines (grey) at 0° (b) and +45° (c); scale bar is 50 um. Density-curvature plots of the films at 0 h (red triangles) and 1 h
(black diamonds) for the 0° (d), 15° (e), 30° (f), and 45° (g) groups. Spearman’s correlation coefficient is depicted in the top left
corner for each density-curvature plot (n = 26-32). *p<0.05, **p<0.01.
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FIGURE 5. Density-stress plots for the stress in the length direction of the film (¢1; a—d) and for the maximum stress fiber stress
(omax; €—h) for the 0° (a, e), 15° (b, f), 30° (c, g), and 45° (d, h) group at 0 h (red triangles) and 1 h (black diamonds). Spearman’s
correlation coefficient is depicted in the top left corner of each density-stress plot (n = 13-25). *p<0.05, **p<0.01.

40 -
st o 1
. (o]
©
a,
E20f o .
o o
b:
1 % é E
O = -
Oh 1h Oh 1h Oh 1h Oh 1h
0° 15° 30° 45°
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(red) and 1 h (black), n = 13-25. **p<0.01.

Using a simple and controlled method consisting of
micro-contact printing different fibronectin patterns,
cell sheets with organizations ranging from highly
aligned to completely random were successfully cre-
ated. As the actin fiber orientation and the nuclear
orientation were overlapping (Fig. 2e-2h), both
appeared to be good indicators of cell orientation and
organization. Since previous research has shown that
the nuclear aspect ratio is correlated with the cellular
aspect ratio,>%>® we used this measure as an indicator
of cellular shape. In all conditions, the aspect ratio was
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larger than 1.60 indicating the presence of elliptical
nuclear shapes and thus elongated cells (Fig. 2a—d).
The nuclear aspect ratio increased upon increasing
cellular alignment, suggesting that the cells adopted a
more elongated shape for higher degrees of cellular
alignment.

The minimum cell density that was required to in-
duce significant curvature of the films was 150-200
cells/mm?, regardless of the cellular organization
(Fig. 4). In a study that investigated collagen gel
compaction by osteoblasts, a comparable threshold
value of 100 cellsymm> was found.'"> When the
threshold density was exceeded, both the intrinsic
stress in the direction of the film (/) and the measure
for intrinsic cell contractility (o,.x) correlated with cell
density and increased over time (Fig. 5). These corre-
lations were less strong in the 0° and 45° group,
probably due to the low number of samples with a high
cell density (> 300 cells/mm?). Few studies have been
published on the effect of cell density on contraction
using gel compaction assays without a predefined cel-
lular organization.”'>'>%5  Similar to the results
obtained in our study, they found that the initial
compaction is higher in high-density gels compared to
low-density gels. Moreover, the high-density gels also
reached the maximum compaction at a faster rate
compared to the low-density gels, although the actual
maximum was the same for both types of gels. It is
however unclear if the maximum degree of compaction
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FIGURE 7. Representative fluorescent microscopy images of actin (green), phosphorylated myosin light chain (red), fibronectin
(grey), and nuclei (blue). The angle of the fibronectin lines is 0° in (a—c), 15° in (d—f), 30° in (g—i), and 45° in (j—-I). Merged images are
shown on the top row (a, d, g, j), actin and nuclei are shown on the middle row (b, e, h, k), and phosphorylated myosin light chain
and nuclei are shown on the bottom row (c, f, i, I). Scale bar is 50 zm.

in these gels is caused by direct cellular contractility
only.

When correcting the intrinsic stress exerted by the
monolayer for differences in cell density and cellular
organization, significant differences in intrinsic cell con-
tractility (o,0rm; Fig. 6) were only found between the 0°
and 30° degree groups, which may be explained by the
combined effects of the high spread in 6, at the 30°
group, the lack of samples with a high cell density in the 0°
group, and the lack of low cell density samples in the 30°
group. Taken together, no consistent significant differ-
ences in the normalized stress were observed between the
different groups (with the median 0,4, ranging from
3.43 to 8.76 Pa). Therefore, our data suggest that the
intrinsic stress exerted by individual myofibroblasts is
independent of the monolayer organization. The actin
and phosphorylated myosin light chain staining support
this finding as no differences in the stress fiber organiza-
tion were found between groups (Fig. 7).

Previous studies that have investigated the rela-
tionship between cell organization and stress develop-
ment have mainly focused on myocardial
tissues. 220324045 Most of these studies observed that
the stress developed by the complete tissue is higher

when the cells are aligned compared to a random cell
organization. In addition to that, similar to this study,
Knight er al.*® recently investigated multiple degrees of
anisotropy, demonstrating a doubling of the stress in
the film direction of anisotropic myocardial tissue
compared to isotropic tissue, with a gradual decrease
in global stress with decreasing anisotropy. However,
as these stresses were not corrected for differences in
alignment and cell density, it remains unclear whether
the stress generated by individual cardiomyocytes de-
pends on the local or global cell alignment. This
uncertainty is even more emphasized by the fact that
two studies that have normalized the globally found
cardiac tissue stress are contradictory to each other,
where Feinberg ef al.'® concluded that the force gen-
erated by individual sarcomeres increases upon
increasing alignment, and Van Spreeuwel et al.** found
that cardiomyocytes in both anisotropic and isotropic
tissues exert similar amounts of force.

A limitation of the current study is the presence of a
spatial variability in PDMS thickness between samples
that were manufactured with the same settings. As the
stress that is necessary to bend the thin film is strongly
dependent on the magnitude of the thickness,'* this
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variability may have induced some uncertainty in the
calculated stresses. Furthermore, it resulted in a de-
crease in sample size of 05 Gmax, and onorm compared
to the curvature data, due to the fact that in case of
0 mm ™' curvature the stresses could not be quantified
as a result of low cell densities in combination with
relatively high local PDMS thickness. In addition, by
normalizing the calculated intrinsic stress for cell
density, we assumed that all cells were exerting their
intrinsic stress solely onto the PDMS layer, without
pulling on their neighboring cells via cell—cell contacts.
Future studies should point out whether this assump-
tion is completely valid.

In summary, the results of our study suggest that the
individual intrinsic contractility of myofibroblasts is
independent of monolayer architecture, implying that
the architecture itself dictates the total intrinsic stress
distribution in the tissue. With regard to cardiovascular
tissue engineering, the initial organization of engineered
tissues is often imposed via the presence of fibrous
scaffolds.™**374* These scaffolds are essential in deliv-
ering the correct material properties that will induce
physiological tissue deformations.>* As the scaffold
architecture directly determines the direction in which
individual cells exert stress and the magnitude of this
stress is not affected by the architecture, the total stress
distribution in the tissue, generated by all cells in that
tissue, is completely determined by the scaffold archi-
tecture. Hence, the fact that the intrinsic stress gener-
ated by individual cells remains the same implies that
the total intrinsic stress distribution can directly be al-
tered by changing the architecture of the scaffold. This
plays a crucial role in both the functionality and
remodeling of (engineered) cardiovascular tissues.
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