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A B S T R A C T   

An investigation was carried out in order to develop an accurate analytical solution and a nu-
merical (FEA) solution for steady-state heat transfer in a circular sandwich structure incorporated 
with convective-radiative boundary conditions. The dimensional governing equations and 
boundary conditions were developed in the form of a 4th order algebraic equation, and then the 
solution was obtained using Ferrari’s method. By solving for the roots of the quartic equation, we 
were able to determine the dimensionless temperature fields of the FG sandwich composite. The 
findings obtained utilizing the exact analytical solution for the FG sandwich composite under 
thermal loads were satisfactorily validated against those data obtained using the Galerkin finite 
element approximation. The impact of geometric and thermo-physical characteristics, such as 

Biot number (Bii=1,2), Inner and outer surface thickness ratio 
(

ri=1,2
/
Ro

)
, ambient temperature 

ratio (θd), radiation-conduction parameter (Nr), and thermal conductivity ratio 
(

λ3/λ1

)
on the 

efficiency of heat transfer, has also been studied. This study reveals the distinct effect of Biot 
number on the inner and outer layers of the composite cylinder. It shows that Bi1 has a negligent 
effect on temperature distribution; on the other hand, the outer surface (Bi2 ≤ 1) minimizes 
temperature variation. However, for design consideration, a thicker inner face sheet is not rec-
ommended in high thermal load, as Nr > 4 has an insignificant impact on inner surface thickness 
on top surface temperature. Moreover, the outer surface temperature appears to be more sensitive 
to θd than the radiation-convection side. Furthermore, the given analytical solution is adequately 
verified against the proposed FEA method, having an error of less than 1.5 %.   

1. Introduction 

The functionally graded materials (FGMs) are composites having two or more phases and constantly varying compositions along 
spatial positions. FGMs have recently attracted the interest of numerous experts because they are anticipated to be highly heat-resistant 
materials under situations of high temperature or temperature gradient. So the study of heat transfer plays a pivotal role in the 
practical implementation of FGMs in extremely high-temperature environments. 
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A significant amount of effort has been put in by a variety of researchers to comprehend the heat transfer characteristic of FGMs. 
Using the boundary integral approximation and the Gelerekin approximation in the finite element analysis (FEA), 3D and 2D rotating 
and non-rotating FGM structures subjected to heat transfer were solved for exponentially varying characteristics [1]. The 2-D heat 
conduction problems are frequently solved using the boundary element method (BEM), which uses triple reciprocity relations [2]. Guo 
et al. [3,4] examined the thermally shocked behavior of fractured FGMs structures. Under convective boundary conditions, 
two-dimensional anisotropic FGM Cauchy problems have been studied [5]. An exact analytical solution for the transient heat con-
duction in an annular cylinder of an FGM was given by Babaei et al. [6]. Zenkour [7] describes the thermomechanical behavior of an 
FG sandwich structure with traction under Dirichlet thermal boundary conditions (B.Cs). A lot of research has been done on a 
non-Fourier heat transfer analysis for moving and constant heat flux with convective-radiative B.Cs for cylinders and spheres [8–12]. 
Besides heat transfer, a lot of research has been carried out in the context of FGM structure. A. Tounsi et al. study the vibratory, 
buckling, and bending characteristics of a FGM porous beam using the first-order shear deformation theory. They demonstrate that the 
influence of material distribution, geometrical configuration, boundary conditions, and porosity distributions has a significant effect 
on critical buckling and natural frequencies on FGM structures [13–16]. Additionally, the impact of imperfection sensitivity on vi-
bration response in 2D-FGPs was also investigated [17]. Moreover, as part of the enhancement of the computational model of the FG 
structure, the element stiffness matrix for FG nanoplates was evaluated in a unique way using the boundary element method [18]. 
Aside from elastic materials, substantial research has been conducted on free vibration on various viscoelastic material models on FGM 
[19–21]. In addition to the linear shear deformation theory, the sinusoidal shear deformation model has been used to explore the 
combined effects of porosity and elastic parameters on sandwich structures [22]. 

A large number of analytical and numerical solutions are carried out when the FGM structures are subjected to mechanical load in 
the elastic zone under various material inhomogeneities [23–29]. According to a power law in the material properties, Bayat et al. [30] 
analyze the displacements and stress fields of FGM spheres under thermomechanical loadings. Other scholars, however, have done 
comparable work for axisymmetry structures having rotational or irrotational considerations with constant poisson ratio and varying 
material inhomogeneities index [31–42]. Moreover, both steady and unsteady asymmetric thermomechanical-loaded cylinders have 
been examined [43–45]. N. Djilali et al. reported an HSDT-based investigation of nonlinear cylindrical bending of FG plates reinforced 
by single-walled carbon nanotubes in an elevated temperature environment [46]. A similar but dynamic analysis has been done on FG 
carbon nano tube [47]. Apart from elastic analysis, a significant amount of work is being done on elastoplastic analysis of FGM 
structures [48,49]. The stress and displacement fields of FGM are studied by NEMATOLLAHI et al. [50], who investigate the influence 
of a magnetic field in addition to thermo-mechanical loads on rotating FGM spheres. Arefi et al. [51] given a nonlinear 
electro-thermo-mechanical model of a thick spherical vessel made of functional dependent piezoelectric materials. 

Cylindrical Sandwiches,conversely, a multilayer structures are mostly characterized by their prevalence because of their excellent 
strength-to-weight ratio, heat resistant capacity, and extensive use in a variety of technological applications such as nuclear reactor 
and aircraft [52]. To solve the problem of how heat conduction takes place through a multilayer structure, a number of analytical and 
numerical methods have been suggested. PS Reddy et al. proposed an analytical solution for heat and mass transmission in a ther-
momagnetic environment for a nanofluid. They investigated the impact of convective boundary conditions along with thermal ra-
diation on flow of nanofluid in saturated porous media [53–56]. Additionally, heat transfer and flow analysis of a water- Maxwell 
nanofluid between two rotating disks under convective boundary condition are numerically investigated [57]. Delouei et al. [58] came 
up with an exact mathematical solution for the heat conduction equation in spherical coordinates of FGM with material properties that 
change in both radial (r) and tangential (θ) directions. For analyzing the variation of characteristics, the power law is used. The 
temperature profiles for different asymmetric boundary conditions have been generated for FG cylindrical segments exposed to general 
boundary conditions [59]. Besides, the problem of axial heat flow in an axisymmetric cylinder (r,z) is solved using Fourier transform 
[60]. The conductivity parameter in this scenario is taken to be a function of radial and tangential coordinates that follows a power 
law. Moreover, the method of variable separation is utilized to solve the heat equation in polar coordinates in order to have a thorough 
grasp of the thermal behavior of FGM structures [61]. Kayhani et al. [62] propose a stable analytical solution for heat conduction in a 
cylindrical multilayer composite laminate with varying fiber orientation between layers. Manthena et al. [63] give an unsteady 
analysis of FG cylinder heat conduction under temperature-dependent thermal conductivity. Laplace transform, a semi-analytical 
approach, and numerical inverse Laplace transform employing Meromorphic function were used to solve 2-D transient heat con-
duction of laminated spherical structure [64]. The non-transient heat conduction problem encountered in non-isotropic multilayered 
media with Dirichlet B.C.s was described by Ma et al. [65] using an analytical solution. Furthermore, in a study conducted by Kumar 
et al. [66], the Finite Difference Method (FDM) was employed to address the solution of a one-dimensional heat conduction equation 
within a multilayer Thermal Protection System (TPS) that featured a radiative boundary condition. Torabi et al. [67] investigated the 
temperature distribution in dual layer composite walls under the influence of convection and radiation boundary conditions. To 
analyze this phenomenon, they employed the differential transform (DT) method. Wang et al. [68] used Ferrari’s methodology to 
conduct a complete thermal study in a rectangular FG sandwich covered with isotropic materials in radiative-convective conditions. 

Moreover, A. A. Bousahla et al. [69] investigated thermal stability under varying thermal expansion coefficients. 
However, in most earlier studies, the inhomogeneity of materials was thought to be either power law or exponential law. To the best 

of the author’s knowledge, there are no known analytical or numerical (FEA) solutions for cylindrical composite structures operating in 
radiation-convection environments. In addition, the heat transfer behavior of FG circular sandwich structures under the above- 
mentioned environment is not well understood. Furthermore, there is little to no work in the literature that addresses thermal con-
ductivity in the generalized formula that does not use singly power law and exponential law. The vast majority of works done in the 
past are solely concerned with a constant temperature and convection boundary condition, rather than a combination of convection 
and radiation since radiation is unavoidable. For instance, developing thermal coatings and shielding are examples of such cases. The 
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goal of this paper is to develop a one-dimensional analytical and numerical model, for the first time to study the convective-radiative 
heat transfer behavior of a FG sandwich cylinder under generalized material parameters. The thermally loaded vessel was also 
modeled using finite element analysis (FEA), where a FE code (USDFLD) was used to represent the continuous variation of thermal 
conductivity along with the vessel’s thickness. Afterward, we compared the exact and FE findings. The findings will emphasize the 
influence of the Biot number, the radiation-conduction parameter, the ratio of the temperature of the inner layer to that of the 
outermost layer, and the thickness of coated materials on temperature distribution in FG sandwich cylinders. 

2. Problem formulation 

In this study, a multilayered composite cylinder with isotropic coatings and a generalized FGMs core are considered (Fig. 1) where 
a, b, c and d are inner, intermediates, and outer radial dimensions. Thermal conductivities of inner coating and outer coating k1 and k3, 
respectively. According to the literature [70] a generic function of thermal conductivity along the thickness direction is considered for 
FGM core has been shown in Eq. (1) as follows 

k(r)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k1 in inner coating (r ∈ [a, b])

k1

(r
b

)m
e

γ

{(
r
b

)s

− 1

}

in FGMs core (r ∈ [b, c])

k3 in inner coating (r ∈ [c, d])

(1)  

where m and s are the material’s inhomogeneity constants. The additional constants γ, k3 are given by 

γ =
m ln

(
b
c

)

+ ln
(

k3
k1

)

bs (cs − bs)
, k3 = k1

(c
b

)m
e

γ

{(
c
b

)s

− 1

}

Heat conduction in a FG composite cylinder with an external surface subject to convection and an internal surface subject to 
coupled convection-radiative heat transfer is considered in this simplified model (see Fig. 1). Moreover, no volumetric heat is 
anticipated to be produced. The temperature distribution for composite cylinder are governed by the following equations (Eq. (2)): 

Fig. 1. Configuration of FGM composite cylinder.  
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d
dr

[

rk1
dT1

dr

]

= 0 a < r < b

d
dr

[

rk(r)
dT2

dr

]

=
d
dr

[

rk1

(r
b

)m
e

γ

{(
r
b

)s

− 1

}

dT2

dr

]

= 0 b < r < c

d
dr

[

rk2
dT3

dr

]

= 0 c < r < d

(2) 

As the cylinder is subjected to a high thermal load, radiation heat transfer predominated in addition to convection. For brevity, it is 
considered the outer surface subject to convection only. A general linear (convection) and non-linear (convection-radiation) B.C. can 
be written as follows (Eq. (3)): 

A1T1(a)+B1
dT1(a)

dr
= f1 + D1T1(a)4

,A2T3(d) + B2
dT3(d)

dr
= f2 (3)  

where Ai=1,2,Bi=1,2 are known thermal parameters related to convection and conduction co-efficient. fi=1,2 is radiation-convection 
known parameters and D1 is the emissivity of the surface in Eq. (3). 

Assuming a perfect thermal contact at the interfaces between the coating and FGM core, in order to determine integration constant 
along with boundary condition additional relation at contact surface can be written as in Eq. (4): 

T1|r=b = T2|r=b

T2|r=c = T3|r=c − k1
dT1

dr

⃒
⃒
⃒
⃒

r=b
= − k1

(r
b

)m
e

γ

{(
r
b

)s

− 1

}

dT2

dr

⃒
⃒
⃒
⃒

r=b
− k1

(r
b

)m
e

γ

{(
r
b

)s

− 1

}

dT2

dr

⃒
⃒
⃒
⃒

r=c
= − k3

dT3

dr

⃒
⃒
⃒
⃒

r=c

(4)  

2.1. Solution utilizing Ferrari’s technique 

The generalized exat analytical solutions for Eq. (2 a, b, c) can be expressed as follows in Eq. (5): 

T1(r) = ξ1 ln(r) + ξ2

T2(r) =
∫
⎛

⎜
⎝

ξ3

(r
b

)m+1
e

γ

{(
r
b

)s

− 1

}

⎞

⎟
⎠dr + ξ4

T3(r) = ξ5 ln(r) + ξ6

(5) 

Eq. (5 b) can be simplified as: 

T2(r)= ξ3ψ(r) + ξ4 (6)  

where; ψ(r) =
∫
(

dr

(r
b)

m+1
eγ{(r

b)
s
− 1}

)

. 

The above integration (Eq. (6)) can be expressed in terms of the Whittaker function [71]. 
Where, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 are integration constants. 
Substituting Eqs. (5a), (5b) and (6) into Eqs. (3) and (4), the following equations can be obtained (Eq. (7)) 

ξ1

(

A1 ln(a) +
B1

a

)

+ A1ξ2 = f1 + D1(ξ1 ln(a) + ξ2)
4

A2ξ6 +

(

A2 ln(d) +
B2

d

)

ξ5 = f2

ξ1 ln(b) + ξ2 = ξ3ψ(b) + ξ4

ξ1

b
= ξ3

dψ(r)
dr

⃒
⃒
⃒
⃒

r=b

ξ3ψ(c) + ξ4 = ξ5 ln(c) + ξ6

ξ3
dψ(r)

dr

⃒
⃒
⃒
⃒

r=c
= ξ5/c

(7) 

The above equation (7)(c)-7(f) can be rearranged as follows: 
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ξ3 = pξ1

ξ4 = qξ1 + ξ2

ξ5 = wξ1

ξ6 = gξ1 + ξ2

Where; p =
1

b
dψ(r)

dr

⃒
⃒
⃒
⃒

r=b

, q = ln(b) −
ψ(r)

b
dψ(r)

dr

⃒
⃒
⃒
⃒

r=b

,w =
c
b

dψ(r)
dr

⃒
⃒
⃒
⃒

r=c
dψ(r)

dr

⃒
⃒
⃒
⃒

r=b

g = pψ(c) + q − ln(c)w

(8) 

Substituting Eq. (8)(c)-8(d) into Eq. (7b), the expression for ξ2 is given by 

ξ2 = u − vξ1 (9)  

Where

u =
f2

A2
, v = g + ln(d)w +

B2w
dA2 

Fig. 2. Meshing with Boundary Conditions (B.C.s) of the numerical model.  

Fig. 3. Grid independence test of the problems.  
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Table 1 
A comparison of analytical (Eq. (5) a, b, c) and FEM numerical data in the normalized radial direction for different thermal conductivity indices (m =

− 3, − 4, − 5) at Bi2 = 10.  
( r − a
d − a

)
Type m = − 3 m = − 4 m = − 5 

θ1 θ1 θ1 

Value %Err. Value %Err. Value %Err. 

0 Anal. 0.901 0.00 0.923 0.00 0.943 0.21 
FEM 0.901  0.923  0.945  

0.1 Anal. 0.801 0.12 0.843 0.11 0.883 0.23 
FEM 0.802  0.844  0.885  

0.2 Anal. 0.720 0.41 0.778 0.13 0.834 0.35 
FEM 0.723  0.779  0.837  

0.4 Anal. 0.555 0.54 0.624 0.16 0.698 0.42 
FEM 0.558  0.625  0.701  

0.5 Anal. 0.455 0.43 0.529 0.37 0.599 0.50 
FEM 0.457  0.531  0.602  

0.8 Anal. 0.314 0.31 0.314 0.63 0.331 0.61 
FEM 0.315  0.316  0.333  

1 Anal. 0.280 0.35 0.264 0.70 0.248 0.80 
FEM 0.281  0.266  0.250   

Table 2 
A comparison of the analytical data (Eq. (5) a, b, and c) with the numerical data from the FEM in the normalized radial direction for several pa-
rameters at m = − 3.  
( r − a
d − a

)
Type Nr = 4 θd = 0.8 λ3/λ1

= 15 

θ1 θ1 θ1 

Value %Err. Value %Err. Value %Err. 

0 Anal. 0.908 0.22 0.979 0.30 0.964 0.31 
FEM 0.910  0.982  0.968  

0.1 Anal. 0.814 0.36 0.955 0.31 0.766 0.39 
FEM 0.817  0.958  0.769  

0.2 Anal. 0.738 0.40 0.936 0.42 0.604 0.82 
FEM 0.741  0.940  0.609  

0.4 Anal. 0.583 0.68 0.897 0.44 0.390 0.79 
FEM 0.587  0.901  0.393  

0.5 Anal. 0.504 0.99 0.877 0.45 0.329 0.91 
FEM 0.509  0.881  0.332  

0.8 Anal. 0.357 0.84 0.840 0.35 0.261 1.53 
FEM 0.360  0.843  0.265  

1 Anal. 0.325 0.92 0.832 0.37 0.253 1.58 
FEM 0.328  0.835  0.257   

Fig. 4. Generalized distributions of thermal conductivity.  
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Fig. 5. Effect of the generalized materials inhomogeneity parameter on the dimensionless temperature.  

Fig. 6. Effect of the generalized materials inhomogeneity parameter (m= − 3) on the dimensionless temperature for various values of (a) the inner 
surface Biot number (Bi1) and (b) the outer surface Biot number (Bi2). 
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again, substituting Eq. (9) into (7a) will be resulted in: 

ξ1φ1 = φ2 + D1(ξ1τ + u)4

Where;

φ1 = A1 ln(a) +
B1

a
− A1v

φ2 = f2 − A1u

τ = ln(a) − v

(10) 

Eq. (10) can be rewritten as: 

x1C1
4 + x2C1

3 + x3C1
2 + x4C1 + x5 = 0 (11)  

where 

x1 =D1τ4, x2 = 4uD1τ3, x3 = 6u2D1τ2, x4 = 4u3D1τ − φ1, x5 = u4D1 + φ2 

The solution of Eq. (11) can be obtained using the well-known Ferrari’s method [72]. After the substitution C1 = y − x2
4x1 

Eq. (11) 
become [71] 

y4 + δ1 y2 + δ2 y + δ3 = 0 (12)  

Fig. 7. Effect of the generalized materials inhomogeneity parameter (m= − 4) on the dimensionless temperature for various values of (a) the inner 
surface Biot number (Bi1) and (b) the outer surface Biot number (Bi2). 
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Fig. 8. Effect of the generalized materials inhomogeneity parameter (m= − 5) on the dimensionless temperature for various values of (a) the inner 
surface Biot number (Bi1) and (b) the outer surface Biot number (Bi2). 

Fig. 9. The influence of the radiation-conduction parameter (Nr) on the dimensionless temperature fields of a circular FG sandwich structure along 
non-dimensional radius. 
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Where,

δ1 =
x3

x1
−

3x2
2

8x1
2

δ2 =
x4

x1
−

x2x3

2x1
2 +

x2
3

8x1
3

δ3 =
x5

x1
−

x2x4

4x1
2 +

x2
2x3

16x1
3 −

3x2
4

256x1
4 

Introducing new parameter s, which satisfy the following equation [71]. 

8s3 − 4δ1s2 − 8δ3s+
(
4 δ1δ3 − δ2

2)= 0  

then Eq. (12) can be written as: 
(

y2 + s+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2s − δ1

√
y −

δ2

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2s − δ1

√

)(

y2 + s −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2s − δ1

√
y+

δ2

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2s − δ1

√

)

= 0 

The given equation has four roots, two of the roots in the above equation are imaginary, whereas the other two are real. One of them 
of two real roots is positive, while the other is negative. Considering the positive one then it can be expressed as: 

Fig. 10. The influence of the ambient temperature ratio (θd) on the dimensionless temperature field of a circular FG sandwich structure along non- 
dimensional radius. 

Fig. 11. Effect of the conductivity ratio 
(

λ3/λ1

)
on the non-dimensional temperature fields of FG circular sandwich structure.  
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y= −
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2s − δ1

√
+

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 2s − δ1 +
2δ2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2s − δ1

√

√

From above equation ξ1 can be expressed as: 

ξ1 = −
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2s − δ1

√
+

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 2s − δ1 +
2δ2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2s − δ1

√

√

−
x2

4x1
(13) 

Substituting Eq. (12) into Eqs. (8) and (9), the general integration constant ξ2, ξ3, ξ4, ξ5, ξ6 can be obtained. After that, the FG 
composite cylinder’s temperature field may be calculated. 

2.2. Finite element analysis (FEA) 

In this problem, a standard Galerkin discretization approach of finite element method is used to solve the differential equation (12 
a, b, c). In this discretization the size of each element is equal and total domain is divided into N elements and then equation is 
converted into simultaneous equations. 

∑2

j=1
KijTj

e = Li
e ; i = 1, 2 e = 1, 2, ........N 

Fig. 12. The influence of the thickness ratio of the inner surface coating on the non-dimensional temperature distribution.  

Fig. 13. The effect of the thickness of the outer surface coating on the non-dimensional temperature distribution.  
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ke
ij =

∫re+1

re

kmr
dΩe

i

dr
dΩe

j

dr
dr +

[

kmrΩe
i

dΩe
j

dr

]

re

re+1

Where,m = 1, 3 r ∈ [a, b] ∪ [c, d]

Ke
ij =

∫re+1

re

[

bk1

(r
b

)m+1
e

γ

{(
r
b

)s

− 1

}

dΩe
i

dr
dΩe

j

dr

]

dr +
[

bk1

(r
b

)m+1
e

γ

{(
r
b

)s

− 1

}

Ωe
i

dΩe
j

dr

]

re

re+1

r ∈ [b, c]

Li
e = 0  

Where Ωe
i is linear interpolation function Te

j unknown nodal temperature. The aforementioned mathematical FE model of heat transfer 
in cylindrical co-ordinate was implemented using the commercial FEA code, ABAQUS. One-quarter of the geometry has been 
addressed in the FEA model due to the axisymmetric nature of the boundary condition and geometry. The system is discretized using an 
8-node quadratic heat transfer quadrilateral (DC2D8) element. Fig. 2 shown the meshing of the system with B.C.s. The final FEM model 
was constructed using 3500 elements that were optimized via grid independent test (Fig. 3). A FORTRAN code USDFLD was developed 
and then coupled with ABAQUS to capture nonlinear material property variations along the radius. 

3. Result and discussion 

In this preceding section, several non-dimensional characteristics were incorporated to enable more comprehensive studies and to 
make the problem as generalized as feasible. 

Fig. 14. The influence of the ambient temperature ratio (θd) on the inner surface temperature of the FG sandwich cylinder with various values of (a) 
Biot number (Bi2) and (b) radiation-conduction parameter (Nr). 

P. Das et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e21725

13

θj = Tj
/

Ti
(j = 1, 2, 3), θd = Td/Ti

,R =
r − a
d − a

,
rj

Ro
(j = 1, 2)

λj = kj
/

kref
(j = 1, 3),Bij = hjL

/
kref

(j = 1, 2),Nr =
σε1LTu

3

kref
Where,L =

ro − ri

2  

3.1. The validation of the results 

Since there is presently no solution available for FG circular sandwich cylinders under thermal load (convection-radiation), a 
number of case studies comparing and contrasting analytical and numerical techniques for investigating temperature distribution 
across a range of parameters have been provided. (Table-1 and Table − 2). Tables 1 and 2 make it abundantly evident that numerical 
and analytical findings converge where there is an error of less than 1.5 %. This implies that the proposed analytical mathematical 
model and numerical (FEA) model are robust enough to illustrate the utility and usefulness of this research under all situations. 

3.2. Different parameters’ effects on temperature distribution 

Analytical and numerical solution described in the preceding section for composite FG cylinders with dimensions of d = 3.5 a, c =

3 a, b = 1.5 a and kref = 20 w m− 1k− 1 are examined. In Fig. 4, a two-layer, isotropic coating on a FGM cylinder that follows a gener-
alized thermal conductivity distribution is shown non-dimensionally. The distribution function is designed to handle a broad variety of 
laws such as power law, exponential law, or a mix of both. In order to make the analysis more straightforward, the numerical values of 
the constants in E.q (2) have been modified in this manner in order to generate a condition. In order to replicate the above situation, the 
constant may be altered in a number of different ways. According to Ref. [70], the numerical values of the constants are as follows: γ =

0.172, s = 4.1.Then the study was conducted for different values of the inhomogeneity parameter (m), Biot number (Bii=[1,2]), 

Fig. 15. The influence of the ambient temperature ratio (θd) on the outer surface temperature of the FG sandwich cylindrical structure with various 
values of (a) Biot number (Bi2) and (b) radiation-conduction parameter (Nr). 
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radiation-conduction parameter (Nr), environment’s temperature ratio (θd), inner and outer coating thickness 
(

ri=1,2
/
Ro

)
, and thermal 

conductivity ratio 
(

λ3/λ1

)
.Figs. 5–19 show the numerical findings for the several geometrical and physical factors that influence how 

the sandwich system behaves in terms of heat flow. 
The non-dimensional temperature distribution for different values of material inhomogeneity (m) is displayed in Fig. 5. From the 

graph, it is evident that temperature rises as m rises between 0 ≤
( r− a

d− a
)
≤∼ 0.9 and temperature decreases as m increases for 0.9 ∼ ≤

( r− a
d− a
)
≤ 1.0. The cause may be found in the non-uniformity in spatial thermal conductivity variations seen in Fig. 4. 

Moreover, the temperature fields in the FG sandwich cylinders are depicted in Fig. 6 a, where the top surface Biot number (Bi1) is 
varied while all other parameters remain constant and their values are specified in the figure caption. As shown in Fig. 6 a for a 
particular value of the inhomogeneity parameter (m = − 3), raising the inner surface Biot number marginally raises the temperature of 
the FG circular composite. This is because the heat transfer rate increases faster when the Biot number goes up, which strengthens the 
heating impact. Fig. 6 b shows how the temperature changes in the FG composite when the Biot number (Bi2) of the bottom surface is 
changed. As demonstrated in Fig. 6 b, the developed temperature of the FG sandwich structure falls as (Bi2) increases. This is because 
the more (Bi2) there is on the surface, the stronger the convection will be. Therefore, more heat will be lost, which will cause the 
temperature to drop a lot. Additionally, the temperature decrease is smaller from Bi = 5 to 30 and increases dramatically Bi2 ≤ 1. 
Likewise, the explanation of the temperature distributions and patterns for Figs. 5 and 6 are identical to those described earlier in 
Fig. 6. 

In Fig. 9 demonstrate non-dimensional temperature distributions along radial coordinate for different values of radiation- 
conduction parameter Nr. Each curve in Fig. 9 illustrates that when non-dimensional radius grows, the temperature of the sand-
wich structure falls. The graph reveals that when the radiation-conduction parameter increases, the temperature of the structure 
increases at a given radial position. The reason behind is that as Nr increases, radiation heating becomes large enough to raise the 

Fig. 16. Influence of inner surface thickness on the inner surface temperature of the FG sandwich with various values of (a) Biot number (Bi2) and 
(b) radiation-conduction parameter (Nr). 
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temperature of the FG sandwich. 
The impact of the ambient temperature ratio θd concerning temperature distribution on FG sandwiches is shown in Fig. 10. The 

figure clearly shows that when the temperature ratio grows, radiation predominates and convection weakens, resulting in temperature 
increases for the particular radial location. The visualization clearly shows that the rate of temperature increase quickens from θd =

0.05 to 0.8. Therefore, it is obvious that the outer surface has shown more sensitivity to temperature ratio than the inner surface. 
Likewise, the temperature difference between the inner and outer surfaces becomes lower as radiation becomes more prevalent and 
convective heat loss is smaller. In addition, the decreasing nature of temperature along the radius is monotonic up to θd = 0.05 to 0.4 
after that, higher the ambient temperature ratio θd ≥ 0.8 flatten the temperature distributions. 

In Fig. 11, a dimensionless temperature parameter is displayed in the radial direction for different values of the conduction ratio 
λ3/λ1

. The higher the conductance ratio smaller will be the overall thermal resistance results in a lower temperature on the inner 

surface and a high temperature on the upper surface, respectively. 0 ≤
( r− a

d− a
)
≤∼ 0.9 The temperature increase as λ3/λ1 

decrease and 

0.9 ∼≤
( r− a

d− a
)
≤ 1 temperature increases as λ3/λ1 

increases. The temperature rises in the area 0 ≤
( r− a

d− a
)
≤∼ 0.9 as λ3/λ1 

decreases and 

rises 0.9 ∼≤
( r− a

d− a
)
≤ 1 as λ3/λ1 

increases. Furthermore, its is shown clearly that temperature remain identical at the location of 
( r− a

d− a
)
≈

0.85. So it is evident that at that location heat transfer remain independent of thermal conductivity ratio λ3/λ1
. 

Figs. 12 and 13 show the effect of inner and outer surface thickness on temperature distributions, plotted along the radial direction. 
Each curve in Figs. 12 and 13 illustrates that when 

( r− a
d− a
)

grows, the temperature falls. It is also clear that, as anticipated, the non- 
dimensional temperature is non-linear in the FGM core and linear in isotropic coatings. 

Figs. 14 and 15 show the non-dimensional temperature θ of the inner and outer surfaces vs the ambient temperature ratio θd for the 
FG sandwich structure with varied Biot numbers Bi2 (Figs. 14a and 15a) and radiation-conduction parameters Nr (Figs. 14b and 15b). 
Each of the curves in Figs. 14 and 15 demonstrates that the dimensionless temperature of the inner and outer surfaces rises when the 
ratio of ambient temperature θd increases. Furthermore, Figs. 14 and 15 indicate that the top and bottom surface temperatures drop 

Fig. 17. Influence of inner surface thickness on the outer surface temperature of the FG sandwich with various values of (a) Biot number (Bi2) and 
(b) radiation-conduction parameter (Nr). 
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with increasing Biot number Bi2 and rise with increasing radiation-conduction parameters Nr. However, Nr has little effect on the 
temperature of the bottom surface. 

Fig. 16 depicts the non-dimensional temperature of the inner coating vs the inner surface thickness for various Biot numbers Bi2 and 
radiation-conduction parameters Nr. Moreover, Fig. 16 shows that for different thickness ratios, both temperature distributions 
appeared as dome shapes. Convection initially plays a major part in this increasing-decreasing pattern, but at a certain thickness, the 
addition of materials increases thermal resistance, which causes a fall in temperature. Furthermore, the critical radius of the insulation 
concept will be the best explanation in this regard. Again, the dome shape in Fig. 16b flattens as the Biot number decreases. The same 
explanation will be suited to this case. 

Fig. 17 depicts the non-dimensional temperature of the outer coating vs the inner surface thickness for various Biot numbers Bi2 and 
radiation-conduction parameters Nr. In this situation, the temperature at the outer surface continuously rises with the thickness ratio 
(Fig. 17a and b). Furthermore, the temperature rises as the Biot number falls, meaning that the least amount of heat will escape through 
the surface by convection (Fig. 17 a). Again, a higher radiation-conduction parameter results in a higher outer surface temperature 
(Fig. 17b). 

Figs. 18 and 19 show, respectively, the temperature field of the inner and outer surfaces as functions of the conductivity ratio λ3/λ1 
for the FG composite structure with various Biot numbers Bi2 (Figs. 18a and 19a) and radiation-conduction parameters Nr (Figs. 16b 
and 17b). Fig.s 18a, 19a show that temperature decreases as Biot number rises and a raise in the Biot number decreases for a particular 
value of conductivity ratio. This is because more heat loss by convection will result from larger outer surface Biot numbers, and 
reduced heat loss will result from smaller Biot numbers. Therefore, when the Biot number decreases, heat will accumulate and the 
temperature will rise. In addition, Figs. 18 and 19 also indicate that when the Biot number goes up, the temperature field of both the 
inner and outer surfaces goes down, and as the radiation-conduction parameter goes up, the temperature goes up. Moreover, In Fig. 20 
(a–f), a FE visual demonstration has been provided for non-dimensional temperature distribution under various input parameters. 

Fig. 18. Influence of the conductivity ratio 
(

λ3/λ1

)
on the inner surface temperature of FG sandwich structure with various values of (a) Biot 

number (Bi2) and (b) radiation-conduction parameter (Nr). 
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4. Conclusion 

1-D heat conduction consideration of radiation and convection in FGMs is crucial to the design and optimization of cylindrical 
structures for multifunctional areas pertinent to a variety of practical applications. In this study, the problem of heat conduction in 
inhomogeneous B.C.s is addressed analytically and numerically (FEA). Furthermore, For the first time, an exact and FEM solutions for 
steady-state heat transfer in FGM circular composite structures with convective-radiative boundary conditions was obtained. For both 
isotropic coatings and the FGM core, closed-form solutions, and numerical solutions were found and compared. It is also shown that 
there is good agreement between the analytical and numerical solutions. The advantage of the suggested method (exact and FEA) is 
that it may implement a variety of operating conditions, whether they are Dirichlet, Neumann, Robins, or nonlinear Neumann B.C.s. 
However, the following are the key findings of the present study:  

i. The non-dimensional temperature fields θ for the FG circular sandwich structure is influenced differently by the inner and outer 
surface Biot numbers (Bii=1,2). The rise in the inner surface Biot number Bi1 is accompanied by an increase in the dimensionless 
temperature. On the other hand, it decreases when the Biot number on the bottom surface Bi2 grows up.  

ii. Outer surface temperature θ(1) is more responsive to the temperature ratio θd parameter than the inner surface thickness ratio 
ri=1/Ro

.  

iii. Since convection Bi2 is so significant, the top surface temperature θ(0) may be lowered by boosting the conductivity ratio λ3/λ1
, 

resulting in a drop in thermal resistance and enhanced heat transfer.  
iv. The findings of this work are thought to be helpful for steady thermal analysis in FG circular sandwich structures, which will 

enhance thermal protection systems in nuclear reactors, aviation engineering, etc. 

It is also concluded that the current study can be applied to the following future scopes: 

Fig. 19. Influence of the conductivity ratio 
(

λ3/λ1

)
on the inner surface temperature of FG sandwich with various values of (a) Biot number (Bi2)

and (b) radiation-conduction parameter (Nr). 
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I. Material choice: Investigation of novel materials or materials in new combinations that can improve the performance of the 
FGM sandwich structure in a thermal environment. 

II. Thermal Barrier Coatings: Improvement of the FGM sandwich structure’s resilience to thermal stresses and temperature gra-
dients. Creation of cutting-edge thermal barrier coatings.  

III. Optimization and Design: Development of design techniques and optimization algorithms to improve the performance of FGM 
sandwich structures in thermal environments. This may entail employing computational tools, machine learning techniques, or 
genetic algorithms to determine optimal material distributions, layer thicknesses, or geometrical configurations. 
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