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ABSTRACT

Motivation: Metabolic pathway analysis is crucial not only in meta-

bolic engineering but also in rational drug design. However, the bio-

synthetic/biodegradation pathways are known only for a small portion

of metabolites, and a vast amount of pathways remain uncharacter-

ized. Therefore, an important challenge in metabolomics is the de

novo reconstruction of potential reaction networks on a metabo-

lome-scale.

Results: In this article, we develop a novel method to predict the

multistep reaction sequences for de novo reconstruction of metabolic

pathways in the reaction-filling framework. We propose a supervised

approach to learn what we refer to as ‘multistep reaction sequence

likeness’, i.e. whether a compound–compound pair is possibly con-

verted to each other by a sequence of enzymatic reactions. In the

algorithm, we propose a recursive procedure of using step-specific

classifiers to predict the intermediate compounds in the multistep

reaction sequences, based on chemical substructure fingerprints/

descriptors of compounds. We further demonstrate the usefulness

of our proposed method on the prediction of enzymatic reaction net-

works from a metabolome-scale compound set and discuss charac-

teristic features of the extracted chemical substructure transformation

patterns in multistep reaction sequences. Our comprehensively pre-

dicted reaction networks help to fill the metabolic gap and to infer new

reaction sequences in metabolic pathways.
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1 INTRODUCTION

Metabolic pathway analysis is crucial not only in systematic

metabolic engineering (Toya and Shimizu, 2013) but also in ra-

tional drug discovery (Ramautar et al., 2013). For example,

48.6% of cancer drugs are either natural products or their

direct derivatives (Newman and Cragg, 2012), and many

pharmaceutically useful compounds are produced by microbes,

fungi and plants (Nakabayashi and Saito, 2013). It is estimated

that plants produce at least 1 060000 metabolites (Afendi et al.,

2012), and the total number of natural products is undoubtedly

much larger if microbes and fungi are also considered. However,

the biosynthetic/biodegradation pathways are known only for a

small portion of metabolites, and a vast amount of pathways

remain uncharacterized even in human (Sreekumar et al.,

2009). For example, International Union of Biochemistry and

Molecular Biology recognizes only �6000 enzymatic reactions

(McDonald and Tipton, 2014). Therefore, in silico prediction

of unknown pathways is expected to support the experimental

characterization, leading to benefit not only drug discovery and

health care but also agricultural and environmental issues.
There have been many successful studies on computational

reconstruction of metabolic pathways in organisms or in specific

conditions of cellular processes. The most traditional approach is

‘reference-based framework’, where enzyme genes are mapped to

appropriate positions in the predefined reference pathways using

orthologous and other information across different organisms or

conditions (Bono et al., 1998). This framework is dependent on

the predefined reference pathways, i.e. the collection of charac-

terized substrate–product relationships that have been described

in the literature or experimentally validated. Thus, this is not

applicable to predicting unknown substrate–product relation-

ships or completely new metabolic pathways.
In contrast, a variety of computational methods have been

developed for de novo reconstruction of new metabolic pathways

based on chemical structure data of metabolites. The goal is to

elucidate novel reactions (absent from the reference pathway

maps in the reference-based framework) based on our current

knowledge about known reactions and chemical transformations

(to be used as training data). The previous methods are mainly

classified into ‘compound-filling framework’ and ‘reaction-filling

framework’. The compound-filling framework generates the

chemical structures of the intermediates even if they are not pre-

sent in databases. The users input the start (source) compound

and/or the goal (target) compound, and the methods predict

intermediates and reactions between the two compounds
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(Darvas, 1988; Ellis et al., 2008; Greene et al., 1999; Moriya
et al., 2010; Talafous et al., 1994).
On the other hand, the reaction-filling framework does not

generate unknown chemical compounds, but use the compounds
that are already present in databases. The users input a group of
compounds, or vast amount of compounds in databases, and the

methods predict the connectivity among the compounds, i.e. sub-
strate–product pairs in a reaction (Hatzimanikatis et al., 2005;

Kotera et al., 2008a, 2013a,b; Nakamura et al., 2012; Tanaka
et al., 2009). The previous de novometabolic pathway reconstruc-
tion studies handled single reactions independently. Although

metabolic network involves some sequential reactions whose
chemical transformation patterns are conserved (Muto et al.,
2013), these conserved patterns have not been considered.

In this article, we develop a novel method to predict the multi-
step reaction sequences for de novo reconstruction of metabolic
pathways in the reaction-filling framework. We propose a super-

vised approach to learn what we refer to as ‘multistep reaction
sequence likeness’, i.e. whether a compound–compound pair is

possibly converted to each other by multiple enzymatic reactions,
as an extension of the previous work (Kotera et al., 2013b). In
the algorithm, we propose a recursive procedure of using step-

specific classifiers to predict the intermediate compounds in the
multistep reaction sequences, based on chemical substructures.

We further demonstrate the usefulness of our proposed method
on the prediction of enzymatic reaction networks from a meta-
bolome-scale compound set and discuss characteristic features of

multistep reaction sequences. Our comprehensively predicted
reaction networks help to fill the metabolic gap and to infer
new reaction sequences in metabolic pathways.

2 MATERIALS

2.1 Enzymatic reactions and reactant pairs

We retrieved enzymatic reactions and the associated chemical
compounds from the KEGG database (Kanehisa et al., 2012).

Chemical compounds are given IDs consisting of the letter ‘C’
and the following five-digit numerals, and the structures are
described as graphs where nodes and edges represent atoms

and bonds, respectively. Hydrogen atoms are not explicitly rep-
resented as nodes but are included in the accompanying atoms.
For example, the compounds D-glucose (C00031) and D-glucose

6-phosphate (C00092) consist of 12 and 16 nodes, respectively.
KEGG describes reactions not only as conventional reaction

equation format but also as ‘reactant pair’ format (RPAIR;
Kotera et al., 2004), representing substrate–product relationships
with conserved chemical moiety in the reaction. For example, the

pair D-glucose (12 nodes) and D-glucose 6-phosphate (16 nodes)
conserves 12 nodes (corresponding to the glucose residue) during
the reaction (see http://www.kegg.jp/entry/RP00060). As of

January 2014, KEGG RPAIR stores 14 386 reactant pairs.

2.2 Positive/negative dataset for single reactions

In this study, the ‘main’ type of reactant pairs [the compound–

compound pairs in the KEGG RPAIR database; see Kotera et al.
(2013b)] were regarded as the positive examples, and the remaining
all possible pairs of compounds were regarded as the negative

examples for predicting enzymatic-reaction likeness. Each

compound–compound pair has to be described in both forward
and backward directions, avoiding the loss of the similarity in
backward reactions. Considering these, the number of all possible

compound pairs is n(n–1)=O(n2), where n is the number of com-
pounds. We regard these positive/negative substrate–product rela-
tionships as the gold standard data.

It is known that most compound pairs in the negative ex-
amples are structurally dissimilar. In other words, it is easy to
predict that dissimilar compound pairs are unlikely to be con-

verted to each other by single enzymatic reactions. Thus, incorp-
oration of structural dissimilar pairs in the prediction would

overestimate the prediction accuracy in the performance evalu-
ation. To avoid such trivial predictions, we removed compound
pairs whose Tanimoto coefficient (Jaccard coefficient) are50.5

from the gold standard data and constructed the filtered data
consisting of compound pairs whose structures are similar to
some extent. Note that classification is more difficult for the

filtered data compared with the full data.

2.3 Positive/negative dataset for k-step reaction sequences

In the field of enzymology, the term ‘multistep reaction’ some-
times means a series of chemical transformations catalyzed by an

enzyme. In this article, we do not deal with multistep in that
context. To avoid the confusion, we use the term ‘k-step reaction
sequences’ or ‘k-step sequences’ for a series of chemical trans-

formations catalyzed by k enzymes within a metabolic pathway.
One-step sequences correspond to single reactions.
We prepared the positive and negative examples of k-step re-

action sequences as follows (where k=2, 3, 4).

(1) k-step reaction sequences consisting of k+1 compounds
were generated using k reactant pairs sharing common

compounds. For example, from the three reactant pairs
‘C1–C2’, ‘C1–C3’ and ‘C3–C4’ (where Cn represents a com-

pound ID), two 2-step sequences ‘C2–C1–C3’ and ‘C1–C3–
C4’ and a 3-step sequence ‘C2–C1–C3–C4’ were generated.
The first and the last compounds in the sequence were

referred to as the start and the goal compounds,
respectively.

(2) Using the RPAIR database, the conservation ratio of the
atoms from the start compound to the goal compound was

calculated for each k-step sequence. For example, consider
that C1, C2, C3 and C4 consists of 18, 20, 23 and 24 nodes

(i.e. atoms other than hydrogen atoms), respectively, and
the pair ‘C1–C2’ conserve 18 nodes, the conservation ratio
of the step ‘C1–C2’ is 18/18=1.0 and that of ‘C2–C1’ is 18/

20=0.9, respectively. When the 17 nodes from the con-
served nodes in ‘C2–C1’ are conserved in ‘C1–C3’, the con-
servation ratio of the step ‘C2–C1–C3’ is 17/20=0.85. In

this study, the k-step sequences with the monotonic in-
crease of the numbers of the nodes and the conservation

ratio �0.5 were regarded as positive examples. The re-
maining k-step sequences were regarded as negative
examples.

As a result of the data filtering, the numbers of positive
examples of 1-, 2-, 3- and 4-step sequences were 10 852, 4294,
8073 and 15112, respectively, and the numbers of negative ex-

amples in those are 518 854, 75 170, 258 883 and 1 138 634,
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respectively. Note that the definitions of positive/negative ex-
amples in 1-step and the longer-steps were different, resulting

in the numbers of positive/negative examples not in monotonic

increase.

2.4 Vector representation of chemical structures

Weobtained chemical structures of compounds (metabolites) from
the KEGG (Kanehisa et al., 2012) andKNApSAcK (Afendi et al.,

2012) databases. Chemically identical compounds with the same

structures (duplicates) were removed, so structures of all com-
pounds in the dataset were unique. We described each compound

by using KEGG Chemical Function and Substructures (KCF-S;

Kotera et al., 2013a), which was designed based on the numbers of
functional group and other named biochemical substructures in a

molecule (Kotera et al., 2008b).We represented each compound by

an integer vector of length 53 679 in which the occurrence of a

substructure is coded as an integer value.
For a comparison study, we also tested many other chemical

fingerprints by using Chemistry Development Kit (CDK;
Steinbeck et al., 2003) and the descriptor defined by Nakamura,

Sakakibara and colleagues (Nakamura et al., 2012), referred to as

‘NS-descriptor’ in this study. The NS-descriptor is an integer
vector, and the other fingerprints are binary vectors. We calcu-

lated eight fingerprints/descriptors: CDK extended fingerprint,

CDK graph-only fingerprint, CDK hybridization fingerprint, E-
state fingerprint, Klekota–Roth fingerprint, Molecular ACCess

System (MACCS) fingerprint, PubChem fingerprint and NS-de-

scriptor, and their dimensions were 1022, 1024, 1024, 71, 4860,
164, 879 and 1346, respectively, where the feature elements absent

from the compound set are not considered.

2.5 Reaction module

Metabolic network involves some sequential reactions whose

chemical transformation patterns are conserved, and these con-

served sequences are referred to as ‘reactionmodules’ (Muto et al.,
2013). They consist of purely chemical data without incorporating

any enzyme data (genes and proteins). As of January 2014, there

are 34 manually curated reaction modules that are given IDs con-
sisting of the letters ‘RM’ and the following three-digit numerals

(such as RM001; see http://www.genome.jp/kegg/reaction/rmo-

dule.html) and up to 3016 conserved reaction patterns. In this
study, KEGG reaction modules were used for the analysis of

the chemical substructures characteristic to k-step sequences.

3 METHODS

We address the problem of metabolome-scale metabolic pathway recon-

struction in the reaction-filling framework. In this section, we present a

general approach to evaluate the enzymatic-reaction likeness of any pair

of two compounds and to estimate potential intermediate chemical struc-

tures between the two compounds.

3.1 Feature vector representation of compound–compound

pairs

We represent a compound C by a D-dimensional integer vector (an

integer vector of length D) as �ðCÞ=ðc1; c2; :::; cDÞ
T, where ck 2 Z; k=

1; :::;D and each element corresponds to the number of times a given

chemical substructure from a library of defined substructures occurs in

the compound. To characterize any pair of two compounds C and C
0

, we

introduce two kinds of operations for the descriptors as follows:

ð�ðCÞ ^�ðC0ÞÞ=ðminðc1; c
0
1Þ;minðc2; c

0
2Þ; :::;minðcn; c

0
nÞÞ

and

ð�ðCÞ��ðC0ÞÞ=ðmaxðc1 � c01; 0Þ;maxðc2 � c02; 0Þ; :::;

maxðcn � c0n; 0ÞÞ:

where minðck; c
0
kÞ is a function that returns ck if ck � c0k and otherwise

returns c0k, and maxðck; c
0
kÞ is a function that returns ck if ck � c0k

and otherwise returns c0k. Note that ð�ðCÞ ^�ðC0ÞÞ is an operation

that captures common chemical substructures between �ðCÞ and �ðC0Þ,

whereas ð�ðCÞ��ðC0ÞÞ is an operation that captures chemical substruc-

tures present in �ðCÞ and absent in �ðC0Þ.

To represent any compound–compound pair using the above oper-

ations, we define two types of feature vectors as follows:

�ðC;C0Þ=ð�ðCÞ ^�ðC0Þ;�ðCÞ��ðC0Þ;�ðC0Þ��ðCÞÞT

and

�ðC;C0Þ=ð�ðCÞ��ðC0Þ;�ðC0Þ��ðCÞÞT:

We shall refer to �ðC;C0Þ and �ðC;C0Þ as ‘diff-common feature vector’

and ‘diff-only feature vector’, respectively (Fig. 1a). Both feature vectors

can handle reversible reactions, and they are designed to capture sub-

structure changes around the reaction center in the conversion of a chem-

ical compound to another compound. In addition, the diff-common

feature vector is designed to capture conserved substructures kept in

the conversion of a chemical compound to another compound.

3.2 Multistep reaction sequence-likeness prediction

3.2.1 Enzymatic-reaction likeness We make a brief review of the

previous method to predict the enzymatic-reaction likeness, i.e. whether

a compound–compound pair is possibly converted to each other by an

enzymatic reaction (Kotera et al., 2013b), which is solved by the following

supervised classification problem.

Using the feature vectors �ðC;C0Þ and �ðC;C0Þ for compounds C and

C
0

, we apply a linear model to estimate a linear function

fðC;C0Þ=wT�ðC;C0Þ, where w is a weight vector. The enzymatic-reaction

likeness between C and C
0

is predicted by thresholding the value of

f(C,C
0

). The weight vector w is estimated such that it can correctly predict

the enzymatic-reaction likeness of compound–compound pairs.

A limitation of the previous method is that the method is only applic-

able to single reactions. Thus, in this study, we generalize it for the use of

multistep reaction sequences as described in the following sections.

3.2.2 Multistep reaction sequence likeness Here we propose an ex-

tension of the enzymatic-reaction likeness from single reactions to multi-

step sequences. Let k be the number of reaction steps.

A k-step reaction sequence is defined as a series of reactions in which a

chemical compound is known to be converted to another compound by

multiple enzymatic reactions, and the corresponding (k– 1) intermediate

compounds are missing. To evaluate the enzymatic-reaction likeness of k-

step reaction sequence, we estimate a linear function fkðC;C
0Þ that would

predict whether a chemical compound C is converted to another com-

pound C
0

by k enzymatic reactions.

Using the feature vectors �ðC;C0Þ and �ðC;C0Þ for compounds C and

C
0

, we propose to learn a linear function fkðC;C
0Þ=wT

k�ðC;C0Þ, where wk

is a weight vector, and the weight vector wk is estimated such that it can

correctly predict k-step reaction sequence likeness.

Given a collection of compound–compound pairs and their labels

ð�ðCi;CjÞ; yijkÞ, where yijk 2 f+1;�1g ði=1; :::; n; j=1; :::; n; i 6¼ jÞ and

yijk=+1 (resp. yijk=� 1) indicates a positive pair (resp. a negative

pair) in the k-step reaction, we estimate the weight vector wk by linear

Metabolome-scale prediction of intermediate compounds
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Support Vector Machine (SVM) formulated by the following uncon-

strained optimization problem:

min
wk

Xn
i=1

(Xi�1
j=1

Mij+
Xn

j=i+1

Mij

)
;

where

Mij=maxf1� yijw
T
k�ðCi;CjÞ; 0g

2
:

To enhance the interpretability of linear models, the weight vector is

optimized with L1-regularization as follows:

min
wk

jjwkjj1+C
Xn
i=1

(Xi�1
j=1

Mij+
Xn

j=i+1

Mij

)
;

where jj�jj1 is L1 norm (the sum of absolute values in the vector), and C is

a hyper-parameter. L1-regularization has an effect of making the weights

of uninformative features zeros without loss of classification accuracy.

L1-regularized linear SVM is referred to as L1SVM.

For example, the prediction for 1-step, 2-step, 3-step and 4-step reac-

tion sequence likeness can be performed as follows:

Enzymatic reaction-likeness prediction

We construct a function f1ðC;C
0Þ=w1

T�ðC;C0Þ based on a learning

set of compound–compound pairs in known single reactions. We

then apply f1 to a given compound–compound pair to predict

whether the two compounds in the pair are interconvertible by one

enzymatic reaction.

2-step reaction sequence-likeness prediction

We construct a function f2ðC;C
0Þ=w2

T�ðC;C0Þ based on a learning

set of compound–compound pairs in known 2-step sequences. We

then apply f2 to a given compound–compound pair to predict

whether the two compounds in the pair are interconvertible by two

enzymatic reactions.

3-step reaction sequence-likeness prediction

We construct a function f3ðC;C
0Þ=w3

T�ðC;C0Þ based on a learning

set of compound–compound pairs in known 3-step reaction se-

quences. We then apply f3 to a given compound–compound pair

to predict whether the two compounds in the pair are interconvert-

ible by three enzymatic reactions.

4-step reaction sequence-likeness prediction

We construct a function f4ðC;C
0Þ=w4

T�ðC;C0Þ based on a learning

set of compound–compound pairs in known 4-step reaction se-

quences. We then apply f4 to a given compound–compound pair

to predict whether the two compounds in the pair are interconvert-

ible by four enzymatic reactions.

3.3 Intermediate compound prediction in the multistep

reaction sequences

Given a pair of start (source) compoundCstart and goal (target) compound

Cgoal in the k-step reaction sequence, we attempt to estimate potential

intermediate compounds Cð1Þinter;C
ð2Þ
inter; . . . ;Cðk�1Þinter between the start com-

pound Cstart and the goal compound Cgoal. Note that there are (k–1) inter-

mediate compounds between the start compound Cstart and the goal

compound Cgoal in the k-step reaction sequence (Fig. 2).

Suppose that we have a chemical database storing a huge number of

chemical compounds, andwe consider selecting potential compounds from

the database for the intermediate compounds in the k-step reaction se-

quence. The j-th intermediate compound C
ðjÞ
inter is considered convertible

from the start compoundCstart by single reactions (1-step sequences) and is

also considered convertible from the goal compound Cgoal by (k+1– j)-

step sequence. Therefore, we propose the following candidate score to

select an appropriate compound for the j-th intermediate compoundC
ðjÞ
inter

ðj=1; 2; . . . ; ðk� 1ÞÞ by integrating individual reaction sequence-likeness

evaluation functions f1; f2; . . . ; fðk�1Þ in a recursive manner:

s
ðjÞ
k ðCÞ=fjðCstart;CÞ+fk+1�jðC;CgoalÞ:

In practice, high-scoring compounds in the database are predicted to

be candidates for the intermediate compounds.

For example, we propose the candidate scores for the 2-step, 3-step

and 4-step reaction sequences as follows:

2-step reaction sequence with one intermediate compound

The intermediate compound is connected with the start com-

pound by one step and with the goal compound by one step, so

we propose the following candidate score for the intermediate com-

pound:

s2ðCÞ=f1ðCstart;CÞ+f1ðC;CgoalÞ:

(a)

(b)

Fig. 1. Overview of training models and predictions of new compound–

compound pairs. (a) Flowchart of training models using diff-common

feature vectors. The same procedure is conducted for diff-only feature

vectors as well. See Sections 3.1 and 3.2 for more details. (b) Flowchart of

predicting the k-step reaction sequences. The k-th step is predicted by

whether fkðCstart;CendÞ40. See Sections 3.1 and 3.3 for more details
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3-step reaction sequence with two intermediate compounds

The first intermediate compound is connected with the start com-

pound by one step and with the goal compound by two steps, so we

propose the following candidate score for the first intermediate com-

pound:

sð1Þ3 ðCÞ=f1ðCstart;CÞ+f2ðC;CgoalÞ:

The second intermediate compound is connected with the start com-

pound by two steps and with the goal compound by one step, so we

propose the following candidate score for the second intermediate

compound:

s
ð2Þ
3 ðCÞ=f2ðCstart;CÞ+f1ðC;CgoalÞ:

4-step reaction sequence with three intermediate compounds

The first intermediate compound is connected with the start com-

pound by one step and with the goal compound by three steps, so we

propose the following candidate score for the first intermediate com-

pound:

s
ð1Þ
4 ðCÞ=f1ðCstart;CÞ+f3ðC;CgoalÞ:

The second intermediate compound is connected with the start com-

pound by two steps and with the goal compound by two steps, so we

propose the following candidate score for the second intermediate

compound:

sð2Þ4 ðCÞ=f2ðCstart;CÞ+f2ðC;CgoalÞ:

The third intermediate compound is connected with the start com-

pound by three steps and with the goal compound by one step, so we

propose the following candidate score for the third intermediate

compound:

s
ð3Þ
4 ðCÞ=f3ðCstart;CÞ+f1ðC;CgoalÞ:

Practical application

In practice, we do not know how many reaction steps are

there between the start compound Cstart and the goal

compound Cgoal, so we propose the following recursive procedure

(Fig. 1b):

(1) If f1ðCstart;CgoalÞ40, Cstart and Cgoal are predicted to be converted

to each other.

(2) If f1ðCstart;CgoalÞ � 0 and f2ðCstart;CgoalÞ40, the intermediate

compound is predicted with s2(C).

(3) If f2ðCstart;CgoalÞ � 0 and f3ðCstart;CgoalÞ40, the intermediate

compounds are predicted with s
ð1Þ
3 ðCÞ and s

ð2Þ
3 ðCÞ.

(4) If f3ðCstart;CgoalÞ � 0 and f4ðCstart;CgoalÞ40, the intermediate

compounds are predicted with s
ð1Þ
4 ðCÞ; s

ð2Þ
4 ðCÞ and s

ð3Þ
4 ðCÞ.

(5) To be continued in a recursive manner.

3.4 Experimental evaluation protocol

3.4.1 Cross-validation experiment on reaction sequence-likeness
prediction We perform the following 5-fold cross-validation. (i) We

randomly split compound–compound pairs in the gold standard reaction

data into five subsets of roughly equal sizes. We regard known start–goal

compound pairs (the first and the last compounds in the sequence) as

positive examples and the other compound–compound pairs as negative

examples. (ii) We take each subset as a test set and the remaining four

subsets as a training set. (iii) We learn a predictive model based only on

the training set. (iv) We compute the prediction scores for compound–

compound pairs in the test set. (v) Finally, we evaluate the prediction

accuracy over the 5-folds.

We evaluate the prediction performance by the receiver operating char-

acteristic (ROC) curve, which is a plot of true-positive rates as a function of

false-positive rates based on various thresholds, and the precision-recall

(PR) curve, which is a plot of precision (positive predictive value) as a

function of recall (sensitivity) based on various thresholds. We summarize

the performance by the area under the ROC curve (AUC) score, where 1 is

for a perfect inference and 0.5 is for a random inference, and the area under

the PR curve (AUPR) score, where 1 is for a perfect inference and the ratio

of positive examples in the gold standard data is for a random inference.

In this study, we perform the above cross-validation experiments for 1-,

2-, 3- and 4-step reaction sequences, separately (see Section 4.1). In each

case, we repeat the cross-validation experiment five times, and computed

the averages of the AUC scores and the AUPR scores over the five cross-

validation folds. The parameters involved in the methods are optimized

with the AUC score and the AUPR score as the objective functions.

3.4.2 Self-rank test on intermediate compound prediction We

conduct a self-rank test to simulate the intermediate compound predic-

tion. The procedure of the self-rank test is as follows: (i) we take inter-

mediate compounds in known k-step reaction sequences and regard them

as missing intermediate compounds (to be tested), (ii) we compute the

candidate scores for all candidate compounds in the chemical database

and the intermediate compounds being tested, (iii) we rank the intermedi-

ate compounds based on the candidate scores among all candidate com-

pounds plus themselves and (iv) we repeat the above steps for all the

k-step reaction sequences. Note that we test one intermediate compound

for the 2-step reaction, two intermediate compounds for the 3-step reac-

tion and three intermediate compounds for the 4-step reaction.

In this study, we conduct the above self-rank test for 2-, 3- and 4-step

reaction sequences, separately (see Section 4.2). A self-rank of 1 is a

perfect prediction, indicating that the method is able to assign the test

compound to the original position in the k-step reaction sequence. In the

case of random prediction, the self-rank follows the uniform distribution

on the interval from 1 to the number of candidate compounds in the

chemical database.

(a)

(b)

(c)

(d)

Fig. 2. k-step reaction sequences and intermediate compound prediction
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3.5 Baseline method

3.5.1 Reaction sequence-likeness prediction The most straightfor-

ward method for the reaction sequence-likeness prediction is a similarity-

based approach, assuming that the start compound and the goal com-

pound are likely to have similar chemical structures. Actually, a substrate

compound and a product compound in an enzyme reaction tend to have

a big conserved substructure, and their different regions tend to be small

(Kotera et al., 2008a), so the start compound and the goal compound in

the k-step reaction sequences are expected to have high chemical structure

similarity. We use weighted Jaccard similarity for binary fingerprints and

cosine correlation coefficient for real-valued descriptors as chemical struc-

ture similarity measures of two compounds. A direct strategy is therefore

to predict the k-step reaction sequence-likeness between the start and goal

compounds whenever the chemical structure similarity value between the

start and goal compounds is above a threshold to be determined. We refer

to this approach as BASELINE.

3.5.2 Intermediate compound prediction In a similar manner as the

reaction sequence-likeness prediction, we define a baseline method for the

intermediate compound prediction, assuming that the intermediate com-

pounds are likely to have similar chemical structures both with the start

compound and with the goal compound. The candidate score in the

k-step sequence is defined as the sum of the chemical structure similarity

between the candidate and start compounds and the chemical structure

similarity between the candidate and goal compounds. We refer to this

approach as BASELINE.

4 RESULTS

4.1 Performance evaluation on multistep reaction

sequence-likeness prediction

We tested the proposed L1SVM method on its ability to predict

the multistep reaction sequence likeness of given compound–

compound pairs from their chemical fingerprint/descriptor data

by performing 5-fold cross-validation experiments (see Section

3.4.1 for more details). We evaluated the performance of the

method for 1-, 2-, 3- and 4-step reaction sequence likeness, sep-

arately. We also compared the performance between nine chem-

ical fingerprints/descriptors: CDK extended fingerprint, CDK

graph-only fingerprint, CDK hybridization fingerprint, E-state

fingerprint, Klekota–Roth fingerprint, MACCS fingerprint,

PubChem fingerprint, NS-descriptor and KCF-S descriptor

(see Section 2.4 for more details). Note that KCF-S is the de-
scriptor we proposed to use in this study.

Table 1, 2, 3 and 4 show the resulting AUC and AUPR scores

for the 1-, 2-, 3- and 4-step reaction sequence-likeness predic-

tions, respectively (full tables are shown in Supplementary

Material). Among the nine chemical fingerprints/descriptors,

the KCF-S descriptor achieved the highest prediction accuracy

in any kinds of enzymatic reactions. The L1SVM method clearly

outperformed the BASELINE method regardless of fingerprints,

which suggests that supervised learning is meaningful for reac-

tion prediction. These results suggest that the proposed L1SVM

method with the KCF-S descriptor is expected to be useful in

practice.
The AUC and AUPR scores of BASELINE were relatively

high regardless of fingerprints in the case of single reactions,

which validated the fact that a core substructure is conserved

between a substrate and a product in a reactant pair. On the

other hand, the AUC and AUPR scores of BASELINE were

low regardless of fingerprints in the case of k enzymatic reactions

where k=2, 3, 4. This result suggests that a core substructure

conserved from the start to the goal compounds tends to be

smaller in the k-step sequences, compared with 1-step reactions.

The diff-common feature vector worked better than the diff-only

feature vector in most cases. This result also implies that both

substructure transformation patterns and core substructures are

important in the k-step sequence prediction.

4.2 Performance evaluation on intermediate compound

prediction

We tested the proposed recursive L1SVM method with the diff-

common feature vector on its ability to infer intermediate com-

pounds in the k-step sequences. We evaluated the performance

by conducting a self-rank test, which simulates the situation

where we want to detect a series of intermediate compounds

between a start compound and a goal compound (see Section

3.4.2 for more details). We evaluated the performance of the

proposed method for 2-, 3- and 4-step sequences, separately.
Figure 3 shows the distributions of the computed self-ranks for

the 2-, 3- and 4-step sequences, where the self-rank scores are

shown on a log scale with base 10 in each panel, and the left box-

plot corresponds to the random inference, the middle box-plot

corresponds to the BASELINE method and the right box-plot

corresponds to the proposed L1SVM method, respectively. Note

that there are 1, 2 and 3 intermediate compounds in the 2-, 3- and

4-step sequences, respectively.
In both BASELINE and L1SVM, the self-rank distributions

have a large peak at high ranks at a significant level (the P-value

is almost zero), which means that both the methods are capable

of predicting most known intermediate compounds correctly,

compared with the random inference. The L1SVM method

Table 1. Cross-validation on the 1-step reaction sequence likeness (enzymatic-reaction likeness)

Chemical Diff-common L1SVM Diff-only L1SVM Baseline Random

fingerprints/descriptors AUC AUPR AUC AUPR AUC AUPR AUC AUPR

CDK extended 0.6917 0.0603 0.6742 0.0468 0.6161 0.0289 0.5000 0.0199

MACCS 0.6837 0.0489 0.6582 0.0342 0.5914 0.0189 0.5000 0.0199

PubChem 0.7170 0.0531 0.7026 0.0422 0.6752 0.0307 0.5000 0.0199

NS-descriptor 0.8858 0.2134 0.8429 0.0968 0.6566 0.0446 0.5000 0.0199

KCF-S descriptor 0.9659 0.3943 0.9610 0.2801 0.6945 0.0755 0.5000 0.0199
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usually outperforms the BASELINE method in terms of the

average of the computed self-ranks. An exception was observed
using the median of the self-ranks in the case of the second inter-

mediate compound of 4-step sequence, but the corresponding
averages of the self-ranks in BASELINE and L1SVM are 249

and 146, respectively. These results suggest that potential inter-

mediate compounds tend to be strongly correlated with the start
and the goal compounds on metabolic pathways in terms of

chemical transformation patterns.

4.3 Biochemical interpretation of the extracted

substructures specific to k-step sequences

We analyzed the characteristics of the extracted substructures as

follows. First, k-step-specific substructures were defined as the
substructures whose obtained weights were above zero only in

the L1SVM for the k-step sequences. Second, among all k-step

sequences, those that contain the k-step-specific substructures in
the start or the goal compounds were selected. Third, the ob-

tained k-step sequences were ranked according to the average

weights of the k-step-specific substructures. Finally, the obtained

k-step sequences were compared with the reaction modules and

the conserved reaction patterns.

As the result, the numbers of the obtained k-step sequences

with k-step-specific substructures were 13264, 3630, 3877 and

5276 for k=1, 2, 3 and 4, respectively. Among those, the num-

bers of the k-step sequences that correspond to the conserved

reaction patterns were 0, 507, 114 and 44, respectively.

Figure 4 shows some correctly predicted examples of k-step

reaction sequences that corresponds to reaction modules, with

the k-step-specific substructures and reaction centers highlighted

in green and red, respectively. It was observed that the k-step-

specific substructures generally do not contain reaction centers,

i.e. the substructures that changes during reactions. This is

understandable because the substructures that contain reaction

centers are so common in metabolic pathways that they cannot

be used to distinguish k-step reaction sequence likeness.

Although the k-step-specific substructures were involved in the

conserved substructures in the start and the goal compounds, the

Table 2. Cross-validation on the 2-step reaction sequence-likeness prediction (with one intermediate compound)

Chemical Diff-common L1SVM Diff-only L1SVM Baseline Random

fingerprints/descriptors AUC AUPR AUC AUPR AUC AUPR AUC AUPR

CDK extended 0.7747 0.1730 0.7178 0.1352 0.4815 0.0576 0.5000 0.0665

MACCS 0.7474 0.1418 0.6634 0.1152 0.4465 0.0502 0.5000 0.0665

PubChem 0.7674 0.1589 0.7270 0.1357 0.5732 0.0710 0.5000 0.0665

NS-descriptor 0.8898 0.2937 0.8673 0.2651 0.6187 0.0937 0.5000 0.0665

KCF-S descriptor 0.9411 0.4493 0.9419 0.4473 0.6621 0.0635 0.5000 0.0665

Table 3. Cross-validation on the 3-step reaction sequence-likeness prediction (with two intermediate compounds)

Chemical Diff-common L1SVM Diff-only L1SVM Baseline Random

fingerprints/descriptors AUC AUPR AUC AUPR AUC AUPR AUC AUPR

CDK extended 0.8103 0.1436 0.7542 0.0959 0.5474 0.0368 0.5000 0.0367

MACCS 0.7608 0.0986 0.6770 0.0713 0.4959 0.0309 0.5000 0.0367

PubChem 0.8097 0.1239 0.7656 0.0910 0.6365 0.0489 0.5000 0.0367

NS-descriptor 0.9284 0.2638 0.9028 0.1989 0.7069 0.0807 0.5000 0.0367

KCF-S descriptor 0.9624 0.4232 0.9585 0.4094 0.6621 0.0635 0.5000 0.0367

Table 4. Cross-validation on the 4-step reaction sequence-likeness prediction (with three intermediate compounds)

Chemical Diff-common L1SVM Diff-only L1SVM Baseline Random

fingerprints/descriptors AUC AUPR AUC AUPR AUC AUPR AUC AUPR

CDK extended 0.8577 0.1062 0.7867 0.0649 0.5863 0.0172 0.5000 0.0156

MACCS 0.7663 0.0582 0.6898 0.0351 0.5187 0.0141 0.5000 0.0156

PubChem 0.8536 0.0818 0.7962 0.0481 0.6590 0.0234 0.5000 0.0156

NS-descriptor 0.9535 0.2058 0.9304 0.1341 0.7521 0.0436 0.5000 0.0156

KCF-S descriptor 0.9772 0.3283 0.9837 0.3202 0.7039 0.0315 0.5000 0.0156
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k-step-specific substructures were not necessarily equal to the

conserved substructures. For example, the first two 2-step reac-

tion sequences in Figure 4a correspond to a reaction module

RM004 [dihydroxylation of aromatic ring, type 1 (dioxygenase

and dehydrogenase reactions)]. As shown in the figure, carbon

atoms in the substituted aromatic rings were extracted as the

k-step-specific substructures in these sequences. However, al-

though RM004 contains 13 reaction sequences, it appeared

that only the simplest reaction sequence, i.e. from benzene

(C01407) to catechol (C00090), did not have any k-step-specific

substructures. A possible interpretation for these observations

would be that benzene ring, not substituted aromatic rings,

was too common to be used to distinguish k-step reaction

likeness.
As another example of 2-step sequences, the extracted sub-

structures from sequence ‘Indole-3-acetonitrile (C02938) -

Indole-3-acetamide (C02693) - Indole-3-acetate (C00954)’, part

of RM031 (oxime to acetate conversion), also was in conserved

substructure (pyrrole ring) rather than the reaction center-related

substructures (nitrile and carboxylate).
Degradation of aromatic compounds consists of three types of

reaction modules, preprocessing, dihydroxylation and cleavage,

and they can be classified into aerobic or anaerobic types (Muto

et al., 2013). Characteristic substructures were extracted from all

3-step sequences in RM003, a preprocessing module. Also, in this

case, extracted substructures were not on reaction centers but on

conserved substructures, as shown in Figure 4b. The anaerobic

equivalent, RM015 (methyl to carboxyl conversion on aromatic

ring, anaerobic), did not include characteristic substructures.
Some other representative modules, i.e. the dihydroxylation

module RM004 and the following cleavage [3-step sequences ‘bi-

phenyl (C06588) - cis-2,3-dihydro-2,3-dihydroxybiphenyl

(C06589) - biphenyl-2,3-diol (C02526) - 2-hydroxy-6-oxo-6-phe-

nylhexa-2,4-dienoate (C01273)’ and ‘4-chlorobiphenyl (C06584)

- cis-2,3-dihydro-2,3-dihydroxy-4’-chlorobiphenyl (C06585) - 2,3-

dihydroxy-4’-chlorobiphenyl (C06586) - 2-hydroxy-6-oxo-6-(4’-

chlorophenyl)-hexa-2,4-dienoate (C06587)’], and RM017 (ring

cleavage via Baeyer–Villiger oxidation; Figure 4c), was also ex-

tracted. There were some more sequences [e.g. ‘benzamide

(C09815) - benzoate (C00180) - 4-hydroxybenzoate (C00156)

(a)

(b)

(c)

Fig. 4. Extracted substructures specific to k-step reaction sequences

(green) and reaction center-related substructures (red)

Fig. 3. Self-rank distributions for the intermediate compounds in the 2-step reaction sequences (upper left), 3-step reaction sequences (upper middle and

upper right) and 4-step reaction sequences (bottom left, bottom middle and bottom right)
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- 3,4-dihydroxybenzoate (C00230) - 3-carboxy-cis,cis-muconate

(C01163)’] that were not included in the previously known mod-

ules but were revealed to contain characteristic substructures.

These results suggest that more intensive investigation would

help the manual curation of reaction modules.

4.4 Novel prediction of multiple reaction sequences

Having confirmed the usefulness of our method, we conducted a

comprehensive reaction prediction for all possible compound

pairs. We trained a predictive model using all known reactant

pairs in the gold standard data, and novel multiple reaction se-

quences were predicted using the KNApSAcK database. Start

and goal compounds for this prediction were prepared by ex-

tracting compound pairs that are not too similar and not too

dissimilar (weighted Jaccard coefficient between 0.6 and 0.7). The

computation time was �4h using 40 threads in two CPUs.

The number of predicted 1-, 2-, 3- and 4-step sequences were

2 499 982, 297295, 18 164 and 16 128, respectively. The advan-

tage of reaction-filling approach is the quick calculation for this

huge amount of pathways, which has not been possible in com-

pound-filling approach to date. It is difficult to confirm how

many of these are true positive—it was naturally observed that

there were some predicted sequences whose intermediate is pos-

sibly correct, but the number of steps is possibly wrong, and vice

versa. Examples are shown in Figure 5. Stereoisomers and geo-

metric isomers were not distinguishable, which is a common dis-

advantage of using vectors including KCF-S and other

fingerprints. Even though our proposed method enabled quick

calculation for metabolome-scale compound sets with better

AUC and AUPR, there is still room to improve, especially

AUPR, for more practical use.

5 DISCUSSION

This study provided a general method to predict the number of

reactions to connect two metabolites. The more the number of

known reactions increases, the better the predictive performance

would become. However, the recursive strategy chooses the smal-

lest number of steps with the fewest numbers of intermediates for

given start–goal compounds. There are some known cases where

different organisms synthesize the same compounds using

different pathways with different number of steps. The further

extension will be needed to obtain possible longer pathways with

keeping the computation efficiency.
This study used a predefined set of chemical substructures

(KCF-S); however, it is known that some metabolic pathways

use their characteristic chemical substructures. This may imply

that when the users want to predict pathways for a specific group

of metabolites, using the common substructures in multiple me-

tabolites (Kotera et al., 2011) would detect the metabolite-group-

specific substructures, leading to the improvement of the specific

pathways.

The preparation of positive and negative examples is crucial in

this study. In the study of enzymatic reaction likeness (1-step

likeness), distinction of positive/negative is relatively clear;

positive if a compound pair corresponds to a known substrate–

product pair and negative otherwise. In the study of multiple

reaction sequence likeness, reversibility of reaction may affect

the distinction of positive/negative. Enzymatic reactions are gen-

erally reversible in vitro, but they are sometimes irreversible

in vivo depending on the physiological condition. These

reversibilities are merely described in databases, making it diffi-

cult to distinguish positive/negative multistep reaction sequences.
Recent metabolomics studies enable metabolite-driven

approaches for understanding previously unknown biosynthetic

mechanisms at the gene level for genome-sequenced plants

(Nakabayashi and Saito, 2013). We believe that this study will

contribute to the understanding and the identification of metab-

olites and genes in the biosynthetic machinery.
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