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Anxiety disorders are more predominant in women than men, however there is a lack of

understanding as to what neurocognitive mechanisms drive this sex difference. Recent

investigation has found a potential moderating role of sex in the relationship between

anxiety and the error related negativity (ERN)—a component of error-monitoring that is

prevalent in high anxiety individuals—such that females display a positive relationship

between anxiety/worry and ERN amplitude. We strove to further explore the influence

of sex on the relationship between trait anxiety and performance monitoring, specifically

with ERN, as well as extend this work to include another hallmark of anxiety, attentional

bias to threat. To meet this end, participants performed the flanker and dot-probe

tasks, respectively. We did not find a significant difference in the relationship between

attention bias scores and anxiety for female vs. males participants. Furthermore, 1ERN

amplitudes were greater in males compared to females, and males had more positive

CRN amplitudes than females. There were no significant associations between ERN

or 1ERN with anxiety in both male and female participants. However, there was a

significant relationship between CRN amplitudes and trait anxiety in male but not

female participants. Given these results, the effect of sex on the relationship between

components of performance monitoring—namely the CRN and ERN—and anxiety may

be more nuanced than the current understanding. Our study was limited to detecting

medium to large sized moderation effects. Our findings may be important for future

meta-analysis on sex differences in anxiety.

Keywords: attention bias for threat, sex differences, trait anxiety, error-monitoring, event-related potentials,

error-related negativity

INTRODUCTION

Anxiety disorders are among the most prevalent mental disorders in the advancing world
(Demyttenaere et al., 2004). Determining a scientific framework for understanding anxiety
disorders and their accompanying symptomatology has become more focused on specific
measurable facets or neurocognitive markers of anxiety, including a hyper-vigilance toward threat
(Stein and Nesse, 2011), and instability in performance monitoring (Moser et al., 2013). Recently,
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there has been increased attention paid to the role of sex
in moderating neurocognitive markers of different anxiety-
related disorders (Larson et al., 2011; Moran et al., 2012;
Moser et al., 2016). Females have been found to experience a
higher prevalence of both affective and anxiety disorders than
males (Kessler et al., 2012). Therefore, it is imperative that
studies investigating different facets of anxiety and its neural
underpinnings include sex as a variable.

One neurocognitive marker linked to anxiety is the tendency
to exhibit a hyperactive neural response to errors (Hajcak et al.,
2003; Hajcak and Foti, 2008; Carrasco et al., 2013; Cavanagh et al.,
2017). Errors function as a source of threat, leading to greater
distress, and subsequent defense mobilization (Hajcak and Foti,
2008; Hajcak, 2012; Proudfit et al., 2013). Anxious individuals
tend to worry about threat to current goals, such as achieving
a sufficient level of performance, and work to adopt strategies
to reduce the anxiety to reach such goals (Eysenck et al., 2007).
Evaluating and correcting one’s behavior throughout a task is
broadly referred to as performance monitoring (Taylor et al.,
2007). Error-monitoring involves recognition and correction
of errors. The Error-Related Negativity (ERN) is an event-
related potential (ERP) with a negative deflection peaking
∼100ms following an incorrect response (Gehring et al., 1993).
It originates in the dorsal anterior cingulate cortex (ACC), and
appears to involve a distributed network of regions including
the prefrontal cortex (PFC) and supplementary motor area
collectively involved in error-monitoring (SMA; Taylor et al.,
2007; Gehring et al., 2012). Variability in ERN amplitude is
linked to greater ACC—SMA functional connectivity (Gilbertson
et al., 2021). According to the conflict monitoring theory (Carter
et al., 1998; Botvinick et al., 1999; Botvinick et al., 2001), the
ACC detects conflict during response selection, and relays this
information to other brain regions involved in cognitive control.

Cognitive deficits in anxious individuals, particularly with
processing efficiency, are proposed to impact performance
(Eysenck et al., 2007). Furthermore, anxious apprehension (i.e.,
worry) is thought to moderate cognitive abnormalities in anxiety
(Eysenck et al., 2007; Moser et al., 2013). Enhanced ERN
in anxious individuals with high worry may indicate higher
compensatory effort needed to maintain a standard level of
performance (Moser et al., 2013). Thus, the distracting impact of
worry leads to inefficient cognitive processing given that anxious
individuals utilize greater error-monitoring resources to reach
the same level of performance as those without anxiety. In
general, the ERN is a consistent and reliable neural marker of
anxiety symptomatology (Weinberg et al., 2010, 2012).

The correct-response negativity (CRN) is another
performance monitoring potential that occurs around the
same time as the ERN, and is thought to reflect a similar process
as the ERN, however on correct trials (Vidal et al., 2000, 2003).
Similar to the ERN, an enhanced CRN has been found in anxious
individuals (Hajcak and Simons, 2002; Hajcak et al., 2003;
Endrass et al., 2008, 2010; Moran et al., 2012), therefore it has
been proposed that anxiety is related to a general increase in
performance monitoring processes originating in the ACC.

Recent investigations into the ERN and CRN have found sex
differences. Males exhibit increased ERN amplitudes relative to

females (Larson et al., 2011; Fischer et al., 2016; Imburgio et al.,
2020). Worry in particular is associated with enhanced ERN
and CRN amplitudes in female but not male undergraduates
(Moran et al., 2012). Furthermore, meta-analysis indicates that
the relationship between anxiety and ERN amplitude is greater in
females than males (Moser et al., 2016). Given these results, the
ERN and CRN could potentially serve as biomarkers of anxiety
in females. Aside from these findings, there is little research
examining the moderating role of sex in the relationship between
performance monitoring and anxiety.

Another neurocognitive marker of anxiety is an attention bias
toward threat-related stimuli (Dalgleish and Watts, 1990; Bar-
Haim et al., 2007), which is thought to play a causal role in
developing and sustaining anxiety symptoms (MacLeod et al.,
1986, 2002). Eysenck et al. (2007) attentional control theory
predicts that adverse effects of anxiety on performance occur
more often when stimuli are threat-related vs. neutral, such that
inhibitory functions are less efficient in anxious individuals in the
face of threat-related distractors. At the neural level, the amygdala
plays a role in the processing of threat-related information and
behavior (LeDoux, 2000; Davis and Whalen, 2001; Rosen, 2004;
Davis, 2006; Myers and Davis, 2007), including attentional bias
to threat (Anderson and Phelps, 2001; Monk et al., 2004, 2008;
Van den Heuvel et al., 2005; Carlson et al., 2009). Furthermore,
elevated ACC gray matter volume (Carlson et al., 2012), and
amygdala–ACC connectivity (Carlson et al., 2013) are linked to
heightened attention bias to threat. Thus, abnormal performance
monitoring and attentional bias to threat are both anxiety-related
symptoms that appear to share a common neural substrate in
the ACC.

Similar to performancemonitoring, previous research has also
explored sex differences in attention bias. Meta-analysis indicates
no sex differences in attentional bias to threat1. Thus, sex does not
appear to be related to differences in attentional bias. However,
to the best of our knowledge, there is no research assessing the
effect of sex as a moderator of the relationship between anxiety
and attention bias in individuals with high levels of trait anxiety.

The objective of this study was to further investigate sex
differences in performance monitoring and attention bias as
well as the potential moderating role of sex in the relationship
between anxiety and performance monitoring as well as anxiety
and attention bias. Thus, we investigated the effect of sex on
the relationship between both ERN and CRN and anxiety as
well as the relationship between attention bias and anxiety.
We hypothesized that male participants would demonstrate a
larger ERN amplitude in comparison to female participants,
and anticipated a greater association between ERN/CRN and
trait anxiety in females than in males. However, we did not
expect to find sex differences in attention bias or its relationship
with anxiety.

1Note, however, that a recent study by Carlson et al. (2019) found a relationship
between sex and temporal dynamics in attention bias (but not static/global
measures of attention bias). Females exhibited enhanced biases towards and away
from emotional stimuli, as well as higher variability in attention bias to both
positive and negative emotional stimuli (but see Carlson and Fang, 2020 for null
sex effects).
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METHODS

Participants
A sample of 114 individuals were recruited from the university
and surrounding community. These participants were involved
in a larger clinical trial (NCT03092609) assessing the effect of
attention bias modification over a 6-week period, and were
subject to the following inclusion criteria: (1) right-handed, (2)
18–42 years of age, (3) normal (or corrected to normal) vision,
(4) no current psychological treatment, (5) no recent history of
head injury or loss of consciousness, (6) no current psychoactive
medications, (7) not claustrophobic, (8) not pregnant, (9) no
metal in the body or other MRI contraindications (10) trait
anxiety scores≥40 on the STAI-T, and (11) attentional bias scores
≥7ms in the dot-probe task.

Participants were excluded from data analysis for having fewer
than 8 valid ERN error trials (n = 4) or flanker accuracy below
75% (n = 3). The final sample included one-hundred and seven
individuals 18–38 years old (M = 21.81, SD = 4.75). Sex was
collected according to participants’ assigned sex at birth (nfemale

= 71, nmale = 36). Using G∗Power (3.1.9.2), we ran a sensitivity
analysis to test for interaction effects in ANCOVA with α =

0.05, power = 0.80, N = 107, which indicates that our study was
powered to detect medium-to-large effect sizes of f ≥ 0.27.

State-Trait Anxiety Inventory
Trait anxiety scores were collected from the Spielberger state-
trait anxiety inventory (STAI) which uses self-report measures
of participants’ anxiety (Spielberger et al., 1970). The STAI
measures both transient (i.e., state) and persistent (i.e., trait)
levels of anxiety, and demonstrates high validity, reliability,
and discriminative validity between both dimensions (Metzger,
1976). There are 40 questions based on a 4-point likert scale, with
20 questions specifically measuring state anxiety and the other 20
measuring trait anxiety.

Flanker Task
A modified Eriksen flanker task was administered with E-
Prime 3.0 (Figure 1). During each trial, five white, centered,
and horizontally positioned arrows were presented for 200ms
after a 1,000ms fixation cue. Stimuli were presented as either a
compatible trial (e.g., <<<<< or >>>>>) or an incompatible
trial (e.g., << > << or >> < >>), and each trial type had an
equal probability of occurring. Arrow stimuli were used because
they have been found to exhibit the strongest convergent validity
for ERN elicitation (Riesel et al., 2013). Following stimulus
presentation, there was a 1,000–1,400ms inter-trial interval
during which participants indicated the direction the center
arrow (right or left). The task contained a practice block of 20
trials, and seven subsequent blocks of 60 trials (15 trials of each
stimulus type).

Throughout the task, verbal emphasis was placed on both
speed and accuracy in order to sufficiently elicit a valid ERN.
To meet this standard, participants had to maintain an accuracy
level between 75 and 90% for each block (Olvet and Hajcak, 2009;
Larson et al., 2010; Pontifex et al., 2010). After each block, the
screen displayed the participant’s accuracy for that block, and

based on their performance, the experimenter provided one of
three types of feedback: participants instructed to respond faster
in order to commit more errors (accuracy above 90%), they
are instructed to respond slower (accuracy below 75%), or they
are told that they responded appropriately with balanced speed
and accuracy.

Dot-Probe Task
The dot-probe task was performed with stimuli presented using
E-Prime 2.0, and responses recorded via the Chronos response
box (Psychology Software Tools, Sharpsburg, PA). The task
involved presentation of 10 facial stimuli pairs featuring both
neutral and fearful facial expressions with 50% female stimuli.
Faces were edited to remove hair and presented in gray scale. Of
the 20 stimuli, 12 were retrieved from the Karolinska Directed
Emotional Face database (Lundqvist et al., 1998), and eight were
retrieved from the 3D Facial Emotional Stimuli database (Gur
et al., 2002).

As displayed in Figure 1, each trial began with a fixation cue
presented for 1,000ms, and immediately followed by one of three
stimulus pairings presented horizontally to the fixation cue for
100ms. These stimulus pairings were then replaced by a dot, and
participants were required to respond to which side of the screen
the dot was located on, followed by an inter-trial interval of
1,000ms. Throughout the task, the participant was seated 59 cm
from the monitor and instructed to maintain fixation on the
fixation cue.

The dot-probe paradigm consisted of five blocks of 90 trials
(450 total trials), with each block containing three equally
presented trial types. Such trial types included incongruent trials
(dot always appeared behind neutral stimulus in a neutral-fearful
stimulus pairing), congruent trials (dot appeared behind fearful
stimulus in a neutral-fearful pairing), and neutral-same trials (dot
appeared behind neutral stimulus in a neutral-neutral stimulus
pairing). EEG data were not collected during the dot-probe task.

Data Collection, Recording, and Analysis
EEG Data

Continuous EEG was recorded during the flanker task using a 64
channel Geodesic Sensor Net (Electrical Geodesics Inc., Eugene
OR) with AgCl electrodes placed according to the international
10–20 system. The EEGwas recorded viaNet Station 4.5 software
(Electrical Geodesics Inc., Eugene, OR) and was digitized at a
sampling rate of 500Hz. Similar to previous research using the
EGI system, electrode impedance levels were kept below 75 k�
(Rizer et al., 2018; Tunison et al., 2019).

Behavioral Data

The dot-probe behavioral data was combined and averaged
within E-Prime 2.0 software. Trials with an incorrect response
and/or trials with a RT <150 or >750ms were excluded from
analysis in order to eliminate premature responses and lapses
in attention (Aday and Carlson, 2019). Attention bias scores
were calculated by taking the average reaction times (RT) for
both incongruent and congruent trials and subtracting the mean
incongruent RT from the congruent RT. Higher scores represent
more attentional bias toward threat. Behavioral data from the
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FIGURE 1 | Dot-probe task (top). Examples of congruent and incongruent trials with fearful and neutral face stimuli. Participants respond to the location of the target

dot. Attentional bias is measured by faster reaction times on congruent relative to incongruent trials. Arrow flanker task (bottom). Participants were instructed to

identify the direction of the center arrow when flanker arrows were compatible (top) or incompatible (bottom).

flanker and dot-probe tasks were combined and averaged within
E-Prime 3.0 software.

EEG Processing and ERP Data Analysis
EEG preprocessing was completed with EEGLAB toolbox
v2019.0 (Delorme and Makeig, 2004) and ERPLAB toolbox
V7.0.0 (Lopez-Calderon and Luck, 2014). Each continuous EEG
file was re-referenced to a mastoid average and bandpass filtered
(30Hz lowpass, 0.1Hz highpass). Data was then segmented
from −500 to 500ms around the participant’s response within
the flanker task and subjected to a −400 to −200ms baseline
correction. Segments were separated by participant response
(correct or incorrect). An independent component analysis
(ICA) was performed on segmented EEG data. ICA was used to
isolate artifactual EEG components including eye, muscle, and
heart activity, line or channel noise, and other unidentifiable
sources from brain activity. By extracting these components
from the dataset, one can remove evidence of artifacts without
removing other activity of interest (Delorme and Makeig,
2004). After visual inspection of the scalp distributions and
activity power spectrum of components for each participant, the
components with obvious eyeblink and muscle artifacts were
removed. In further artifact rejection, a step function was used to
detect voltage exceeding 100 µV within the time period between
500ms before and 200ms after the response. Finally, segments
were averaged.

Segment counts were inspected to ensure that there were
at least eight valid incorrect response segments (Olvet and

Hajcak, 2009; Pontifex et al., 2010). Failure to meet this segment
count resulted in exclusion from analysis. Segment averages were
combined into grand average files, which were visually inspected
in order to determine the frontocentral electrode that best
represented ERN. Consistent with previous research (e.g., Olvet
and Hajcak, 2009; Pontifex et al., 2010), the mean amplitude of
the frontocentral electrode, FCz, was extracted 0–100ms post-
response for error (i.e., ERN) and correct trials (i.e., correct
related negativity; CRN) for each participant. 1ERN amplitudes
were calculated as the ERN–CRN difference.

RESULTS

Sex Differences in the Flanker Task
Overall, reaction times were quicker for males compared to
females, whereas accuracy was greater for females compared
to males in the flanker task (see Table 1). In addition, 1ERN
amplitudes were greater and CRN were more positive in males
compared to females (Figure 2).

Sex Differences in the Dot-Probe Task
As can be seen in Table 1, male participants tended to have
greater attention bias scores (incongruent—congruent RTs)
compared to female participants in the dot-probe task, but
this effect was not statistically significant. Females had greater
accuracy in the dot-probe task compared to males (see Table 1).
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TABLE 1 | Mean differences (SDs) between females and males on study variables.

Factor Female (n = 71) Male (n = 36) Statistics

Age 21.39 (4.75) 22.64 (4.67) t(105) = 1.29, p = 0.20

STAI-trait anxiety 51.37 (7.56) 51.94 (6.68) t(105) = 0.39, p = 0.70

STAI-trait worry items 12.30 (3.04) 13.00 (2.80) t(105) = 1.16, p = 0.25

STAI-state anxiety 45.34 (10.08) 43.86 (11.35) t(105) = −0.69, p = 0.49

Attention bias score (ms) 13.69 (6.69) 16.49 (8.86) t(105) = 1.83, p = 0.07

Dot-probe accuracy (%) 98.27 (2.02) 97 (2.66) t(105) = −2.75, p = 0.007

Flanker RT (ms) 347.57 (34.18) 330.14 (32.36) F (1,105) = 6.43, p = 0.01

Flanker accuracy (%) 88.91 (4.12) 87.32 (3.41) t(105) = −1.99, p = 0.049

ERN amplitude (µV) −0.91 (4.29) −0.07 (5.50) t(105) = 0.86, p = 0.39

CRN amplitude (µV) 2.92 (3.95) 5.99 (4.50) t(105) = 3.62, p < 0.001*

1ERN amplitude (µV) −3.83 (4.37) −6.06 (4.54) t(105) = −2.47, p = 0.015

STAI, State Trait Anxiety Inventory; ERN, error-related negativity; CRN, correct-related negativity; 1ERN, difference score between ERN and CRN. With the Bonferroni correction applied

with 11 comparisons α = 0.0045. *p < 0.0045.
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FIGURE 2 | (A) ERN and CRN waveforms for incorrect and correct responses

for female and male participants. ERN amplitudes did not differ between

female and male participants, whereas CRN amplitudes and 1ERN

(incorrect–correct) amplitudes were greater in male participants. (B) Scalp

topography for correct and incorrect response between 0 and 100ms

post-response for females (top) and males (bottom).

Sex Differences in the Association With
Anxiety
The general linear model was used to assess the interaction
between anxiety and sex to determine the moderating role of sex

with each of the dependent variables (seeTable 2). Sexmoderated
the association between trait anxiety and CRN amplitudes. There
was a positive correlation between CRN amplitudes and trait
anxiety inmale, but not female participants. Sex did notmoderate
the associations between trait anxiety and 1ERN or ERN
amplitudes. Furthermore, sex did not moderate the association
between trait anxiety and any other study variable. The same
general pattern was found when only worry-related items from
the STAI-T were used (see Table 3; Verkuil and Burger, 2019).

DISCUSSION

The purpose of this study was to further investigate sex as a
moderator in the relationship between symptoms of anxiety and
performance monitoring in addition to anxiety and attention
bias. Our findings may contribute to future meta-analyses on sex
differences in anxiety and highlight the significance of assessing
sex differences in future research.

Performance Monitoring
Consistent with previous research, 1ERN amplitudes were
greater in males compared to females (Larson et al., 2011; Fischer
et al., 2016; Imburgio et al., 2020). In particular, in our data,
this difference is driven by more positive CRN amplitudes in
males relative to females with no difference in ERN. This general
pattern is consistent with a recent study that found gender effects
on the CRN and 1ERN, but not ERN (Imburgio et al., 2020).
However, earlier studies found that sex (Larson et al., 2011) or
gender (Fischer et al., 2016) differences were more related to
the ERN. The reason for these discrepancies is unclear. Yet,
despite these inconsistencies, it is clear that 1ERN amplitudes
are greater in males relative to females. In fMRI research,
increased ACC activity has been found in males compared to
females during a stop-signal task, where comparable behavioral
performance was demonstrated for both sexes (Li et al., 2006).
Thus, elevated ACC activity in males may underlie enhanced
1ERN amplitudes. Given that increased 1ERN amplitudes in
males has been consistently observed, future research should
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TABLE 2 | Test of sex differences in the correlations between trait anxiety and study variables.

Factor Female STAI-T Male STAI-T Anxiety × sex interaction

Dot-probe attention bias −0.12 0.08 F (1,103) = 0.88, p = 0.35, η
2
partial = 0.008

Dot-probe accuracy −0.07 0.13 F (1,103) = 1.08, p = 0.30, η
2
partial = 0.01

Flanker RT 0.07 −0.09 F (1,103) = 0.59, p = 0.44, η
2
partial = 0.006

Flanker accuracy −0.25* 0.03 F (1,103) = 1.74, p = 0.19, η
2
partial = 0.02

CRN amplitude 0.01 0.37* F (1,103) = 4.01, p = 0.048, η
2
partial = 0.04

ERN amplitude 0.18 0.25 F (1,103) = 0.52, p = 0.47, η
2
partial = 0.005

1ERN amplitude 0.17 −0.07 F (1,103) = 1.18, p = 0.28, η
2
partial = 0.01

STAI, State Trait Anxiety Inventory; ERN, error-related negativity; CRN, correct-related negativity; 1ERN, difference score between ERN and CRN. *Indicates bivariate pearson

correlation p < 0.05.

TABLE 3 | Test of sex differences in the correlations between worry only items and study variables.

Factor Female STAI-T worry Male STAI-T worry Anxiety × sex interaction

Dot-probe attention bias −0.15 0.09 F (1,103) = 1.33, p = 0.25, η
2
partial = 0.01

Dot-probe accuracy −0.09 0.004 F (1,103) = 0.14, p = 0.71, η
2
partial = 0.001

Flanker RT −0.03 0.02 F (1,103) = 0.47, p = 0.83, η
2
partial = 0.000

Flanker accuracy −0.14 0.11 F (1,103) = 1.32, p = 0.25, η
2
partial = 0.01

CRN amplitude −0.10 0.45* F (1,103) = 8.66, p = 0.004, η
2
partial = 0.08

ERN amplitude 0.16 0.37* F (1,103) = 2.31, p = 0.13, η
2
partial = 0.02

1ERN amplitude 0.24* 0.003 F (1,103) = 1.20, p = 0.28, η
2
partial = 0.01

STAI, State Trait Anxiety Inventory; ERN, error-related negativity; CRN, correct-related negativity; 1ERN, difference score between ERN and CRN. *Indicates bivariate pearson

correlation p < 0.05.

explore the underlying causes of this effect (e.g., ACC activity),
and continue to investigate the potential impact of anxiety.

Furthermore, we found a positive correlation between CRN
amplitudes and trait anxiety in male, but not female participants.
This is inconsistent with previous research that found a
relationship in females, but not males (Moran et al., 2012).
However, this earlier study specifically investigated worry, which
has been found to be related to the CRN and ERN in females
(Moran et al., 2012; Moser et al., 2016). In contrast, a meta-
analysis examining CRN and anxiety found no significant
relationship (Moser et al., 2013). The correlation between
CRN and anxiety in males could potentially be attributed
to performance monitoring on correct response trials and
motivation to performmore accurately, especially for individuals
with higher anxiety. To the best of our knowledge, this is the
first evidence suggesting that trait anxiety in males is linked to
CRN amplitude. Given the unexpected nature of this association,
this result should be interpreted with caution and replication
is warranted.

There were no significant associations between ERN or1ERN
with anxiety in either males or females. This is an unexpected
result, given that previous research suggests the relationship
between anxiety and ERN amplitudes is greater in females than
males (Moser et al., 2016). A lack of significant association in
females could be due to several underlying factors.

First, although initial evidence points to sex differences in
the relationship between anxiety and the ERN (Moran et al.,
2012; Moser et al., 2016), there is a growing understanding
that this association is more nuanced, and further replication

is necessary to support these claims. In recent attempts to
replicate sex differences in the relationship between the ERN
and anxiety, there are opposing results, suggesting a lack of
clarity in the association between these variables. A study
assessing the relationship between anxiety dimensions and
ERN in a non-clinical sample found that gender did not
moderate the association between anxious apprehension and
ERN (Härpfer et al., 2020). In addition, a recent multi-site study
was unsuccessful in replicating the work of Moser et al. (2016)
across sites, including one study that found effects in the opposite
direction (Moser et al., 2019). Thus, it is becoming clear that the
differential association between ERN and anxiety across sexes is
not universally observed. Here, we demonstrate that in highly
anxious individuals with high attentional bias, no relationship
appears to exist or perhaps there are sex differences related to the
CRN in males.

Second, it is unclear which specific factors mediate the ERN-
anxiety relationship in both sexes. A study by Tanovic et al.
(2017) found that in contrast to worry, rumination was associated
with an attenuated ERN. They suggest that individuals who
ruminate respond to aversive events by enhanced engagement
in the negative thoughts that are brought upon by an aversive
stimulus, thus leading to a diminished ERN amplitude. This
study did not consider sex differences, however given the higher
prevalence of rumination in females (Johnson and Whisman,
2013), it is surprising that an attenuated ERN has not carried
over into other studies that found significance in the ERN-anxiety
relationship for females. One possible explanation is that anxious
apprehension includes both elements of worry and rumination.
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These two variables may affect distinct cognitive systems, and
future research should investigate the moderating role of sex in
ERN-worry and ERN-rumination relationships separately to help
gain a more clear understanding of the specific components that
affect the broad ERN-anxiety relationship in females vs. males.

Third, inconsistency in the operationalization of anxiety,
namely our usage of the STAI questionnaire may have
contributed to the inability to replicate the ERN-anxiety
relationship in females. Prior investigations into sex differences
in this relationship typically do not rely on the STAI. Moran
et al. (2012) found the relationship between worry and ERN to
be specific to females, using the Penn State Worry Questionnaire
(PSWQ;Meyer et al., 1990). In addition,Moser et al. (2013) found
an association between ERN and anxious apprehension, but their
methodology constituted several questionnaires that specifically
distinguished “anxiety” as the primary concept measured. In
comparison to these studies, our inclusion of the STAI may
have yielded different results due to its incorporation of worry
components in fewer questions, and a secondary focus on
apprehension. When specifically examining worry-related items
in the STAI-T, sex did not moderate the association between
anxiety and performance monitoring (Table 3).

Fourth, behavioral results from the flanker task indicate that
reaction times were quicker for males compared to females, while
accuracy was greater for females compared tomales (seeTable 1).
In addition, there was a negative correlation between anxiety
and flanker accuracy in females, but not males. This moderation
effect did not reach statistical significance (see Table 2). Yet,
these differences in behavior may impact sex differences in ERPs.
It is possible that males and females took a different approach
to the task, thus impacting the relationship between anxiety
and ERN/CRN across sexes. Note that earlier work showing sex
differences in the relationship between the ERN and anxiety (e.g.,
Moran et al., 2012) did not observe behavioral differences, which
makes direct comparisons between these studies difficult.

Attentional Bias
The presence of attention bias in anxious individuals is a
robust phenomenon (Dalgleish and Watts, 1990). However, sex
differences in attention bias and its relationship with anxiety
has been overlooked. Consistent with the findings of a recent
meta-analysis (Campbell and Muncer, 2017), we found no
evidence for sex differences in attentional bias to threat in
individuals with high trait anxiety. Thus, attentional bias may
not be a suitable measure for investigating sex differences
in anxiety, however further research is necessary to elucidate
this relationship.

Limitations and Conclusions
Our study was only powered to detect medium to large sized
moderation effects. Therefore, our null results are not definitive
and should be interpreted within the context of the larger
literature. Our findings may contribute to future meta-analyses
and/or synthesis of the literature in this area. Moreover, sex
differences may appear throughout the lifespan due to changes
in hormone levels during pregnancy, menopause, as well as

an individual’s menstrual cycle (Gordon and Girdler, 2014),
which may influence ERN amplitudes (Mulligan et al., 2019).
The use of hormonal birth control can also affect the extent
to which sex plays a moderating role (Petersen et al., 2014).
Our study included individuals with heightened levels of anxiety
and attention bias, which limits the ability to generalize our
findings to low anxiety individuals with low levels of attention
bias. Our sample also consisted of more female than male
participants, andwas primarily young adults, which further limits
the generalizability of these findings.

Our study investigated sex differences in performance
monitoring and attention bias as well as the moderating role
of sex in their relationship with anxiety. In line with our
predictions, males exhibited a larger 1ERN in comparison to
females. Furthermore, as expected, there were no significant
sex differences in attention bias and sex had no effect
on the relationship between anxiety and attention bias. In
contrast to previous research (Moser et al., 2016), we did not
find an association between 1ERN and anxiety in females.
Unexpectedly, we found a relationship between CRN amplitude
and anxiety in males. Further research is warranted to
elucidate sex differences in the relationship between anxiety and
performance monitoring.
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