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Inflammation in coronary artery disease-clinical implications 
of novel HDL-cholesterol–related inflammatory parameters 
as predictors
Xuantong Guo and Lihong Ma

Coronary artery disease (CAD) is the leading cause 
of death worldwide. Inflammation and atherosclerotic 
plaques are the primary pathological mechanisms of 
CAD. Upon stimulation by deposited lipids and damaged 
endothelium, innate and adaptive immune cells are 
activated and recruited to initiate plaque development. 
Therefore, inflammatory cells and mediators are used to 
identify inflammatory risk in CAD patients. HDL-cholesterol 
(HDL-C) is demonstrated to have anti-inflammatory 
roles in atherosclerosis by interfering with plasma 
membrane lipid rafts of immune cells. Based on this, 
novel inflammatory parameters such as monocyte to 
HDL-C ratio are explored to improve the risk estimation 
of CAD prognosis. Moreover, with the advance in 
treatment strategies targeting the inflammatory process 
in atherosclerosis, identifying CAD patients with increased 
inflammatory risk by novel inflammatory parameters 
is of great importance in guiding CAD management. 

Therefore, this review aims to summarize the current 
information regarding inflammatory activation and HDL-C 
in atherosclerosis with a particular focus on the clinical 
implication of the novel HDL-C–related inflammatory 
parameters in CAD. Coron Artery Dis 34: 66–77 Copyright 
© 2022 The Author(s). Published by Wolters Kluwer 
Health, Inc.
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Introduction
Coronary artery disease (CAD) is a cardiovascular 
(CV) disorder due to atherosclerosis or atherosclerotic 
occlusion of coronary arteries. Hypercholesterolemia, 
hyperglycemia, and hypertension are prominent CV 
risk factors that contribute to the development of ath-
erosclerosis [1]. During the past few decades, though 
advances in the prevention and management of these 
disease-modifying factors have led to a decrease in 
mortality from CAD causes, CAD remains the lead-
ing cause of death across the globe and accounts for 
approximately 17.9 million deaths annually [2]. Given 
that inflammation plays a pivotal role in the patho-
physiology of atherosclerosis and CAD progression, a 
renewed focus has been put on this topic, which might 
provide clinical benefits by identifying residual risk 
[3]. HDL-cholesterol (HDL-C) is a class of lipoprotein 
responsible for reverse cholesterol transport (RCT) [4]. 
Decreased HDL-C is frequent in CAD and has acted 
as an indicator in evaluating CV risk in CAD patients 
[5,6]. Evidence has recently demonstrated that HDL-C 
was directly involved in the inflammatory process of 

atherosclerosis, and the predictive value of HDL-C 
could be improved by integrating it with inflammatory 
parameters [7–9]. Therefore, our review will elaborate 
on the association between inflammation and HDL-C 
in atherosclerosis, summarize novel HDL-C–related 
inflammatory parameters in CAD, and thus provide an 
up-to-date perspective on this issue.

Inflammation in coronary artery disease
Concept of inflammation in atherosclerosis
Atherosclerosis is a chronic inflammatory disease. 
Genetic studies have discovered that genetic variants in 
the inflammatory signaling pathways could lead to ath-
erosclerosis among the general population [10]. Patients 
with atherosclerosis, compared with control individuals, 
have a higher level of inflammatory biomarkers such 
as C-reactive protein (CRP) and interleukin-1β (IL-
1β) [11,12]. Through analyzing atherosclerotic plaques, 
abundant infiltrated immune cells and increased expres-
sion of inflammatory mediators are identified [13]. 
Besides, imaging techniques have enabled the charac-
terization of arterial inflammation in CAD patients and 
atherosclerotic animal models [14,15]. Moreover, it is 
reported that patients with inflammatory diseases, such 
as chronic kidney disease (CKD), are associated with 
elevated atherosclerosis risk, and nearly 50% of deaths 
in end-stage CKD patients attribute to CV causes [16]. 
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Therefore, it is essential to discuss the inflammatory 
activation in atherosclerosis involving innate and adap-
tive immunity.

Basic mechanisms of innate immunity in atherogenesis
Innate immunity is intimately connected with athero-
genesis (Figs. 1 and 2). During early stages, exposure to 
CV risk factors renders arterial intima susceptible to lipid 
deposition and stimulates the endothelium to express 
adhesion molecules and cytokines such as vascular cell 
adhesion molecule-1 (VCAM-1) and monocyte chemoat-
tractant protein-1 [17]. In response to the retained lipids 
and activated endothelium, circulating monocytes are 
recruited to the lesion and differentiate into macrophages, 
which in turn scavenge lipids to form foam cells [18]. 
Oxidation of the deposited atherogenic lipids, primarily 
the LDL-cholesterol (LDL-C), could prompt the differ-
entiation of monocyte into macrophages and foam cells 
by inducing reactive oxygen species and inflammatory 
cytokines in these leukocytes [19]. Moreover, oxidized 
LDL-C could activate endothelium to attract more leu-
kocytes, resulting in inflammation propagation. Debris 
of apoptotic foam cells and macrophages would form a 
necrotic core, which then develops into atherosclerotic 
plaque through accumulating large amounts of extracel-
lular matrix. Consequently, the progressive growth of ath-
erosclerotic plaques would obstruct coronary blood flow, 
and CAD would arise when the flow-limiting obstruc-
tions are greater than 50%. Additionally, as the ongoing 

inflammatory macrophages and vascular smooth muscle 
cells (VSMC) could produce matrix metalloproteinases 
(MMPs) capable of degrading collagen and other extra-
cellular matrices, the plaques could become vulnerable 
to rupture [20]. Acute coronary events such as myocardial 
infarction (MI) might occur under plaque rupture and 
subsequent thrombosis, leading to ischemic myocardial 
damage.

Histological examinations have found that monocyte-de-
rived macrophages account for the primary cell popula-
tion in plaques and exhibit high heterogeneity through 
the entire process of atherosclerosis [21]. The ability of 
macrophages displaying different phenotypes to medi-
ate inflammatory response is called polarization, which 
involves diverse gene expression patterns and depends 
on microenvironment stimuli [22]. The M1 macrophage 
is a proinflammatory subset stimulated by interferon γ 
(IFN-γ) and lipopolysaccharide. It is found to promote 
plaque growth and instability by secreting ILs such as 
IL-1β and IL-18. Markers of M1 are identified across 
all stages of atherosclerotic lesions, and M1 is vastly 
enriched in the rupture-prone shoulder region of vul-
nerable plaques. Moreover, M1 is generally lipid-filled 
and could promote microcalcification within the necrotic 
core, which indicates potential for foam cell transi-
tion and plaque modification [23]. M2 macrophages are 
alternatively activated by IL-4 or IL-13. It is found to 
induce plaque regression and improve plaque stability 

Fig. 1

Innate and adaptive immune responses in atherosclerosis. Lipid retention and oxidation initiate atherosclerosis development. Subsets of macrophage and CD4+ T cell 
exert distinctive roles in atherosclerosis progression. APC, antigen-presenting cell; COX-2, cyclooxygenase-2; IL, interleukin; LDL-C, LDL-cholesterol; MMPs, matrix 
metalloproteinases; NETs, neutrophil extracellular traps; Ox-LDL-C, oxidized LDL-C; RBC, red blood cell; SMC, smooth muscle cell; TGF-β, transforming growth factor 
β; TNF-α, tumor necrosis factor α.
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by enhancing efferocytosis and generating anti-inflam-
matory mediators, including IL-10 and transforming 
growth factor β (TGF-β) [24]. Compared with M1, M2 is 
localized away from the necrotic core and possesses a rel-
atively higher proportion in stable plaques. Besides, M2 
is less lipid-filled due to reduced expression of scavenge 
receptors and is correlated with plaque stability by pro-
moting macrocalcification. Distinct from M1 and M2, M4 
macrophages have reduced phagocytosis and are associ-
ated with plaque instability [25]. Mhem, a group of newly 
discovered macrophages stimulated upon intraplaque 
hemorrhage, is found to prevent atherogenesis via 
reducing oxidative injuries [26]. Results from the LDL 
receptor-deficient mice model have found that Mox mac-
rophages were responsive to oxidized phospholipid and 
could regulate intraplaque redox status by generating 
antioxidant enzymes, thus exacerbating atherosclerosis 
[27]. Interestingly, VSMCs have been observed to be 
able to transdifferentiate into macrophage-like cells, and 
there are about 30% of VSMCs expressing macrophage 
markers in plaques. Further investigation is needed to 
establish whether the VSMC-derived macrophages con-
tribute to plaque formation [28].

Toll-like receptor (TLR) signaling plays critical roles 
in the chronic innate immune activation in atheroscle-
rotic lesions [29]. Upon activation by oxidized lipids and 

damage-associated molecule patterns, downstream sign-
aling molecules of TLRs would transmit the proathero-
sclerotic signal to the IL-1 gene class family. Increased 
levels of IL-1β could aggravate the inflammation by 
facilitating adhesion molecules expression on the 
endothelium. Moreover, IL-1β acts on VSMC to elicit 
IL-6 production, which could promote acute phase pro-
tein production such as CRP in the liver, further inciting 
inflammatory responses [30]. Studies focused on the asso-
ciation between IL-1β and atherosclerosis have revealed 
that patients with atherosclerotic lesions had significantly 
elevated IL-1β and reduced IL-1β was atheroprotective 
in mice [31]. Furthermore, the nucleotide-binding leu-
cine-rich repeat-containing pyrin receptor3 (NLRP3) 
inflammasome, an intracellular protein complex widely 
expressed in macrophages and foam cells, could acti-
vate the IL-1β meanwhile increase the IL-1β expression 
under the activation of cholesterol crystals [32].

Other innate immune cells, such as neutrophils and 
mast cells, are also important in atherogenesis. Mice 
models of hypercholesterolemia have found that circu-
lating neutrophils proliferated, and the degree of neu-
trophilia was positively correlated with the extent of 
atherosclerotic lesions. Besides, neutrophils are further 
found to promote plaque formation and atherothrombo-
sis by releasing the neutrophil extracellular traps [33]. 

Fig. 2

Toll-like receptor signaling pathway in macrophages. Activation of TLR signaling leads to increased proinflammatory gene transcription, including pro-IL-1β and NLRP3. 
The NLRP3 inflammasome is responsible for processing pro-IL-1β into the active form IL-1β. The IL-1β could act on smooth muscle cells to induce IL-6 which would 
then promote CRP production in the liver. CRP, C-reactive protein; DAMPs, damage-associated molecular patterns; IL, interleukin; LPS, lipopolysaccharide; MyD88, 
myeloid differentiation protein 88; NF-κB, nuclear factor κB; NLRP3, nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3; PAMPs, 
pathogen-associated molecular patterns; SMC, smooth muscle cell; TAK1, transforming growth factor β-activated kinase 1; TIRAP, TIR domain-containing adaptor pro-
tein; TLR, Toll-like receptor.
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Experimental studies have discovered that mast cells 
could directly participate in plaque progression and 
destabilization via secreting MMPs, IL-6, and IFNγ 
[34].

Adaptive immunity in atherogenesis
CD4+ T

H
 cells are the main effector adaptive cells in ath-

erogenesis [35]. Immunodeficient Apoe−/− mice display 
reduced development of atherosclerotic plaque, whereas 
transfer of CD4+ T

H
 cells could significantly promote the 

atherogenic process [36]. Based on this, distinctive roles 
of CD4+ T

H
 subsets are investigated. Single-cell data 

from human atherosclerotic lesions has revealed that T
H

1 
cells were the most abundant CD4+ T

H
 cells [37]. The 

immune activity of T
H

1 cells is primarily mediated by 
IFNγ. IFNγ-deficient mice have shown inhibited ather-
osclerosis, whereas IFNγ administration could aggravate 
atherosclerosis in Apoe−/−mice [38]. T

H
17 cells and their 

signature cytokine IL-17A have been found to be ele-
vated in patients with acute coronary syndrome (ACS), 
and low serum IL-17A levels are considered an indicator 
of increased risk of recurrent CV events [39]. IL-17A is 
further discovered to have plaque stabilizing effects by 
stimulating collagen synthesis in VSMC [40]. T

reg
 cells 

have been demonstrated to promote plaque stability and 
induce plaque regression. Moreover, T

reg
 cell-related 

anti-inflammatory cytokines IL-10 and TGF-β are found 
effective in preventing CAD progression and plaque vul-
nerability [41].

B cell is much less frequent in atherosclerotic plaques 
than CD4+ T

H
 cell, but it is found to protect against ath-

erosclerosis [42]. Mice who underwent splenectomy have 
aggravated atherosclerosis, and splenectomized patients 
have a higher risk for MI [43,44]. The atheroprotective 
effect of humoral immunity is supported by findings that 
antibodies against auto-antigens derived from plaques 
could reduce lipids uptake in macrophages by neutral-
izing the oxidized lipids and inhibiting the proinflamma-
tory epitopes through immune complex formation [45].

HDL-cholesterol
Dyslipidemia characterized by low HDL-C has been 
shown relevant to CAD manifestation [46] (Fig.  3). 
HDL-C is generally considered antiatherogenic as it is 
the critical mediator of RCT, which promotes cholesterol 
efflux from macrophages and foam cells [4]. Decreased 
HDL-C has been inversely correlated with CV events 
among atherosclerotic patients. However, despite the 
strong association between HDL-C and atherosclerosis, 
genetic studies of rare variants that have elevated serum 
HDL-C but increased CV risk and failure of clinical tri-
als aiming to boost HDL-C via medications have led to 
the atheroprotective effects of HDL-C being challenged 
[47]. Actually, emerging data from large cohorts have 
demonstrated that HDL-C was linked to CV diseases 

and all-cause/cause-specific mortality in a U-shape rela-
tionship [48]. Therefore, HDL-C might not be a causal 
factor in atherosclerosis.

Interestingly, the protective roles of HDL-C are found 
independently in persons without CAD, and administra-
tion of HDL in animal models shows significant protec-
tion from atherosclerosis [49]. Investigations of HDL-C 
particles reveal that inflammatory mediators during ath-
erogenesis could alter the composition thereby the func-
tion of HDL-C [50]. Moreover, several lines of evidence 
have suggested that instead of serum levels, the choles-
terol efflux capacity of HDL-C, a rate-limiting step in 
RCT, was directly correlated with CV outcomes in CAD 
patients and could be impaired under inflammatory 
remodeling [51]. Meanwhile, HDL-C is found directly 
interfere with the immune response in atherosclerosis. 
Among patients with CAD, serum levels of HDL-C are 
significantly but negatively associated with circulating 
monocyte and CRP and the association remains consist-
ent during statin treatment [52]. Similarly, an increase in 
apolipoprotein A-I (apoA-I), a major protein component 
of HDL, is accompanied by CRP reduction in hyper-
cholesterolemic patients [53]. Infusion of reconstituted 
HDL in patients at significant risk for CV events has 
shown notable anti-inflammatory effects and reduced 
adhesion ability of leukocytes [54]. Furthermore, HDL 
remodeling by CSL112, a reconstituted apoA-I, could 
enhance the anti-inflammatory activity of peripheral 
blood by reducing proinflammatory cytokines production 
[55]. Determined as the ability to suppress tumor necro-
sis factor-α (TNF-α)–induced VCAM-1 expression, the 
anti-inflammatory capacity of HDL is found to be inde-
pendently associated with CV incidence among the gen-
eral population [56].

Based on the observations between HDL-C and inflam-
mation, HDL and its components are demonstrated to 
be anti-inflammatory by affecting cholesterol content in 
plasma membrane lipid rafts of immune cells. It is shown 
that HDL-C could prevent monocyte from recruit-
ing to vascular endothelium by inhibiting the expres-
sion of monocyte adhesion molecules such as CD11b. 
Moreover, HDL-C could promote monocyte-derived 
M2 macrophage transition by modulating the expression 
pattern, leading to anti-inflammatory cytokines produc-
tion and atherosclerotic plaque regression [57]. Besides, 
HDL-C could limit TLR-induced proinflammatory sig-
naling in macrophages via increasing the expression of 
negative transcriptional regulator ATF3 [58]. As recep-
tors of B lymphocytes and T lymphocytes are closely 
correlated with membrane lipid rafts, HDL and its mol-
ecules could cause dysfunctional adaptive immunity 
that the HDL-deficient mice models are discovered to 
have abnormal expansions of progenitor lymphocytes 
and imbalanced production of cytokines and antibod-
ies [59]. In addition, apoA-I injection is able to regulate 
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inflammation by inducing Treg cells [60]. Furthermore, 
HDL and its components could influence the differen-
tiation and maturation of antigen-presenting cells such 
as dendritic cells (DC), thus affecting lymphocyte acti-
vation [61].

Therefore, by considering the modification between 
inflammation and HDL-C in atherosclerosis, integrat-
ing HDL-C with related inflammatory parameters might 
provide a more precise risk evaluation of CAD.

HDL-cholesterol–related inflammatory 
parameters in coronary artery disease
Monocyte to HDL-cholesterol ratio
Monocytes account for up to 10% of peripheral white 
blood cells (WBCs) and play fundamental roles in inflam-
mation (Table 1). Activation of monocytes is the crucial 
initial step in the development of CAD. Studies have 
shown that circulating monocytes would undergo prolif-
eration and activation under the stimulation of soluble 
proinflammatory mediators. Thus, the circulating mono-
cytes have been used as an independent predictor of cor-
onary events and plaque severity [62]. As HDL-C could 
prevent inflammation by directly acting on monocytes, 
the monocyte to HDL-C ratio (MHR) is proposed as a 
novel parameter enabling a better assessment of inflam-
mation in atherosclerosis.

In patients with ACS who have undergone PCI, MHR 
greater than 17.1 is found to be closely related to inhos-
pital mortality [odds ratio (OR), 1.03; 95% confidence 
interval (CI), 1.01–1.05; P < 0.01], which has a sensitiv-
ity of 88.5% and a specificity of 49.5% [area under the 
curve (AUC), 0.756; P  <  0.01] [63]. Increased MHR is 
also found to correlate with major adverse cardiac events 
(MACE) (OR, 1.02; 95% CI, 1.01–1.04; P < 0.01). Studies 
focused on the long-term prognosis of ACS have dis-
covered that MHR could act as a powerful independ-
ent predictor of all-cause mortality (risk ratio [RR], 
2.61; 95% CI, 1.29–4.89) and MACE (RR, 1.65; 95% CI, 
1.36–2.02) [92]. For diabetes complications with ACS, 
MHR is significantly correlated with inhospital MACE 
(adjusted hazard ratio [HR], 8.36; 95% CI, 1.57–44.47; 
P = 0.013) and long-term bleeding (adjusted HR, 1.21; 
95% CI, 1.07–1.37; P  =  0.002) [86]. Moreover, MHR 
independently contributes to bare-metal stent restenosis 
(SR) in population with stable or unstable angina pec-
toris (OR, 3.64; 95% CI, 2.45–4.84; P < 0.001) and ACS 
(HR, 1.03; 95% CI, 1.02–1.06; P < 0.01) [69,93]. Similarly, 
a high relation between SR and MHR is demonstrated 
in ACS patients who have received drug-eluting 
stent implantation after a mean follow-up duration of 
12 months [83]. As contrast-induced nephropathy (CIN) 
is an acute complication of PCI and inflammation is the 
main pathophysiological mechanism, MHR is explored 

Fig. 3

Anti-inflammatory roles of HDL and its components. HDL and ApoA-I could directly interfere with the inflammatory process in atherosclerosis by modulating the choles-
terol content of the plasma membrane lipid raft. Ag, antigen; ApoA-I, apolipoprotein A-I; IL, interleukin; TCR, T cell receptor; TLR, toll-like receptor.
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to reveal the association with CIN (adjusted OR, 4.48; 
95% CI, 1.38–14.5; P < 0.01) [67]. To further explore the 
relevance between MHR and CAD, MHR is shown to 
be an independent indicator of high thrombus burden 
in patients after PCI (OR, 1.067; 95% CI, 1.031–1.105; 
P  <  0.001) [66]. Additionally, studies using SYNTAX 
score to evaluate the severity of CAD have found that 
MHR was positively correlated with SYNTAX score in 
ST-elevation MI (STEMI) patients (r = 0.580; P < 0.001) 
and stable CAD patients (r = 0.371; P < 0.001) [68,72]. 
Furthermore, MHR is significantly associated with 
Gensini score and TIMI grade in ACS and CAD patients, 
indicating a prognostic role of MHR in predicting the 
complexity and plaque burden of CAD [76,94]. Based 
on angiographic results, MHR is found to be highly 
associated with the no-flow phenomenon [82]. In sum, 
robust evidence has demonstrated the prognostic value 
of MHR in predicting the prognosis of CAD.

Neutrophil to HDL-cholesterol ratio
Neutrophils comprise the largest fraction of WBC and are 
the main effector cells in acute Inflammation. It is found 
that neutrophils could secrete an array of immunomodu-
latory cytokines to enhance the recruitment and function 
of immune cells in atherosclerosis. Therefore, the neutro-
phil count has been used to predict the presence of CAD 
and long-term mortality in patients with stable CAD 
[95]. Besides, neutrophils are significantly increased 
among patients experiencing MI, and plaque injury 
could induce myeloperoxidase production in neutrophils 
[96]. To improve the risk prediction value of neutrophils, 
the neutrophil to HDL-C ratio (NHR) is investigated. A 
cross-sectional study has shown that NHR with a cutoff 
value of 1.51 could independently predict CAD and has 
a sensitivity of 94.8%, Yoden index of 0.024, and AUC of 
0.617 (95% CI, 0.560–0.675; P < 0.001) [87]. Besides, NHR 
displays a superiority over MHR in predicting long-term 
mortality (HR, 1.96; 95% CI, 1.02–3.75; P  =  0.044) and 
long-term recurrent MI (HR, 2.23; 95% CI, 1.04–4.79; 
P  =  0.040) in elderly ACS patients [89]. Furthermore, 
NHR is positively correlated with the Gensini score and 
the extent of stenosis in CAD patients, which suggests a 
relevance between NHR and CAD severity [88].

White blood cell to HDL-cholesterol ratio
WBC is an important marker of systemic inflammation 
and has been reported to be a risk factor for CV events 
in patients with inflammatory bowel disease [97]. Based 
on this, WBC is further found to be positively associated 
with the incidence of CAD among young adults and is 
an independent risk factor for multivessel diseases in 
the general population [98,99]. Previous studies have 
proposed that WBC count was linked to the severity 
of atherosclerosis in CAD patients and correlated with 
the adverse CV outcomes in patients who had PCI and 
diabetic patients who manifested CAD [100]. Besides, 

S
tu

dy
 

Ye
ar

 
S

tu
dy

 p
op

ul
at

io
n 

S
am

pl
e 

si
ze

 
O

ut
co

m
es

 
A

dj
us

te
d,

 O
R

/H
R

 (9
5%

 C
I) 

P
 

C
ut

of
f v

al
ue

 
A

U
C

 (9
5%

 C
I) 

S
en

 (%
) 

S
pe

 (%
) 

Z
ha

ng
 e

t a
l. 

[8
4]

20
16

S
us

pe
ct

ed
 p

at
ie

nt
s 

un
de

rg
oi

ng
 

co
ro

na
ry

 a
ng

io
gr

ap
hy

37
9

8
Lo

ng
-te

rm
 M

A
C

E
 M

H
R

2.
03

1(
1.

26
8–

3.
25

4)
0.

00
3

—
0.

5
62

 (0
.5

3
0–

0.
5

9
4)

—
—

To
k 

et
 a

l. 
[8

5]
20

16
A

ng
in

a 
pe

ct
or

is
 p

at
ie

nt
s 

un
de

r-
go

in
g 

su
cc

es
sf

ul
 b

ar
e-

m
en

ta
l 

st
en

tin
g

83
1

B
ar

e 
st

en
t r

es
te

no
si

s 
7 
≤ 

M
H

R
 ≤

 1
0 

—
—

14
.0

00
0.

74
6 

<
.0

01
71

.0
6

9.
0

12
 ≤

 M
H

R
 ≤

 1
5

1.
02

0 
(0

.7
5

0–
1.

32
0)

0.
74

0
18

 ≤
 M

H
R

 ≤
 2

4
1.

45
0 

(1
.0

6
0–

1.
8

8
0)

0.
00

1

Li
 e

t a
l. 

[8
6]

20
21

T2
D

M
 p

at
ie

nt
s 

w
ith

 N
S

TE
M

I 
un

de
rg

oi
ng

 P
C

I
14

05
In

ho
sp

ita
l M

A
C

E
 M

H
R

8.
3

6
0(

1.
57

0–
4

4.
47

0)
0.

01
3

0.
02

2
0.

72
2 

(0
.5

10
–0

.9
33

)
75

.0
72

.7

K
ou

 e
t a

l. 
[8

7]
20

21
S

us
pe

ct
ed

 p
at

ie
nt

s 
un

de
rg

oi
ng

 
co

ro
na

ry
 a

ng
io

gr
ap

hy
4

0
4

C
A

D
 p

re
se

nc
e 

N
H

R
1.

16
3 

(1
.0

3
4–

1.
3

0
8)

0.
01

2
1.

51
0

0.
61

7 
(0

.5
6

0–
0.

67
5)

9
4.

8
7.

6

B
aş

yi
ği

t e
t a

l. 
[8

8]
20

22
P

at
ie

nt
s 

w
ith

 d
oc

um
en

te
d 

is
ch

em
ia

3
0

6
S

ig
ni

fic
an

t c
or

on
ar

y 
st

en
os

is
 N

H
R

2.
0

8
4 

(1
.1

47
–3

.7
8

6)
0.

01
6

10
3.

20
0

0.
6

07
 (0

.5
35

–0
.6

78
)

61
.2

5
8.

1

H
ua

ng
 e

t a
l. 

[8
9]

20
20

E
ld

er
ly

 A
M

I p
at

ie
nt

s
52

8
Lo

ng
-te

rm
 m

or
ta

lit
y 

N
H

R
1.

9
6

0 
(1

.0
20

–3
.7

5
0)

0.
0

4
4

5.
74

0
0.

6
9

0 
(0

.6
3

0–
0.

76
0)

77
.6

5
0.

8
Lo

ng
-te

rm
 re

cu
rr

en
t M

I N
H

R
2.

23
0 

(1
.0

4
0–

4.
79

0)
0.

0
4

0

W
u 

et
 a

l. 
[9

0]
20

21
C

A
D

 p
at

ie
nt

s 
un

de
rg

oi
ng

 P
C

I
5

67
9

A
ll-

ca
us

e 
m

or
ta

lit
y 

A
C

S
-W

H
R

2.
03

6 
(1

.2
5

8–
3.

29
6)

00
.0

0
4

—
—

—
—

H
R

 s
ta

bl
e 

C
A

D
-W

H
R

1.
5

8
6 

(1
.1

78
–2

.1
3

6)
0.

00
2

Lu
o 

et
 a

l. 
[9

1]
20

21
S

ub
je

ct
s 

un
de

rg
oi

ng
 c

or
on

ar
y 

an
gi

og
ra

ph
y

42
0

P
re

se
nc

e 
of

 C
A

D
 C

H
R

1.
17

8 
(1

.0
16

–1
.3

6
6)

0.
03

0
1.

17
0

0.
6

62
 (0

.6
0

6–
0.

71
9)

3
9.

7
8

6.
7

A
C

S
, a

cu
te

 c
or

on
ar

y 
sy

nd
ro

m
e;

 A
U

C
, a

re
a 

un
de

r t
he

 c
ur

ve
; C

A
D

, c
or

on
ar

y 
ar

te
ry

 d
is

ea
se

; C
H

R
, C

-r
ea

ct
iv

e 
pr

ot
ei

n 
to

 H
D

L-
C

 ra
tio

; C
I, 

co
nfi

de
nc

e 
in

te
rv

al
; H

R
, h

az
ar

d 
ra

tio
; M

A
C

E
, m

aj
or

 a
dv

er
se

 c
ar

di
ac

 e
ve

nt
s;

 M
H

R
, m

on
o-

cy
te

 to
 H

D
L-

C
 ra

tio
; N

H
R

, n
eu

tr
op

hi
l t

o 
H

D
L-

C
 ra

tio
; N

S
TE

M
I, 

no
n-

S
T 

se
gm

en
t e

le
va

te
d 

m
yo

ca
rd

ia
l i

nf
ar

ct
io

n;
 O

R
, o

dd
s 

ra
tio

; P
C

I, 
pe

rc
ut

an
eo

us
 c

or
on

ar
y 

in
te

rv
en

tio
n;

 S
en

, s
en

si
tiv

ity
; S

pe
, s

pe
ci

fic
ity

; S
TE

M
I, 

S
T 

se
gm

en
t 

el
ev

at
ed

 m
yo

ca
rd

ia
l i

nf
ar

ct
io

n;
 M

, d
ia

be
te

s 
m

el
lit

us
 ty

pe
 2

; W
H

R
, w

hi
te

 b
lo

od
 c

el
l t

o 
H

D
L-

C
 ra

tio
.



Novel HDL-C–related inflammatory parameters in CAD Guo and Ma  73

a higher level of WBC is shown to indicate the devel-
opment of heart failure in patients with stable CAD 
[101]. Interestingly, the association between WBC and 
CAD could be improved and serve as an independent 
predictor by associating with apoA-I [102]. Therefore, 
the WBC to HDL-C ratio (WHR) is utilized to meas-
ure the inflammatory status. A large retrospective study 
with a sample size of 5679 has discovered that WHR 
could predict the prognosis of CAD patients who have 
undergone PCI. Moreover, a cutoff value of 8.25 enables 
WHR independently associated with all-cause death in 
ACS patients (adjusted HR, 2.036; 95% CI, 1.258–3.296; 
P = 0.004) and CAD patients (adjusted HR, 1.586; 95% 
CI, 1.178–2.136; P = 0.002) [90].

High-sensitive C-reactive protein to HDL-cholesterol 
ratio
CRP is a well-established inflammatory biomarker 
induced in the early stages of atherosclerosis. High-
sensitive CRP (hs-CRP) test is a highly sensitive assay 
that could detect extremely low serum levels of CRP. A 
wealth of data has discovered that hs-CRP was valuable 
in short-term prognosis and long-term risk assessment of 
CAD [103]. Notably, elevated hs-CRP with low HDL-C 
level is significantly linked to an increased incidence of 
all-cause death in patients who received PCI. Moreover, 
hs-CRP is found to be inversely associated with the 
RCT of HDL and the association between hs-CRP and 
coronary artery calcification score could be modified by 
HDL-C [7,104]. Therefore, hs-CRP to HDL-C ratio 
(CHR) is explored and has been discovered to be an 
independent predictor of CAD presence (adjusted OR, 
1.178; 95% CI, 1.016–1.366; P = 0.03) with a specificity of 
86.7%, Yoden index of 0.264 and AUC of 0.662 (95% CI, 
0.606–0.719; P < 0.001) [91]. Additionally, CHR is shown 
closely related to Gensini score in coronary angiography 
(r  =  0.389; P  <  0.001). Moreover, in a population with 
subclinical CAD, CHR is correlated with left ventricular 
diastolic dysfunction (OR = 0.649; 95% CI, 0.444–0.948; 
P = 0.025) [105].

Discussion
As stated above, HDL-C–related inflammatory param-
eters are strongly associated with CV events in CAD 
populations, which might benefit the management of 
CAD by identifying patients with elevated residual 
risk. However, most of these studies are based on sin-
gle-center cross-sectional retrospective cohorts, which 
might result in bias as potential confounding factors 
could not be included in the analysis. Besides, given 
that HDL-C–related inflammatory parameters are meas-
ured at different time points across studies and mostly 
only once, the interpretation and consistency of results 
are largely limited. Moreover, the practical use of these 
parameters would be restricted as the cutoff value and 
reference range vary from study to study. Because the 

association between inflammation and atherosclerosis is 
complex and vast, the additive clinical value of HDL-C–
related inflammatory parameters in current risk scoring 
models needs further investigation to avoid underes-
timation. Therefore, more data is needed to assess the 
clinical implication of the HDL-C–related inflammatory 
parameters in CAD.

Evidence-based guidelines on CV disease prevention 
have established the critical role of persistent inflam-
mation in driving atherosclerosis [106]. Chronic inflam-
matory conditions and biomarkers such as rheumatoid 
arthritis and hs-CRP are listed as risk-enhancing factors 
in CAD, which could contribute to the revision of risk 
estimation. However, adding inflammatory biomarkers 
such as hs-CRP has shown minor improvements in risk 
assessment of conventional models, and the cumulative 
effects of hs-CRP in discrimination and reclassification 
are inconsistent across studies [107]. In this regard, as 
most of these results come from synthesized literature, 
the practical value of inflammation in predicting CAD 
might be underestimated due to the limits of these mod-
els. Moreover, it remains discussed whether the introduc-
tion of hs-CRP could explain the overall inflammatory 
risk. Because there are differences in the prevalence of 
autoimmune diseases and inflammatory conditions con-
cerning sex, ethnic groups, ages, cigarette consumption, 
obesity, etc. [108], adding these factors might help to 
modify the inflammatory assessment. Therefore, a risk 
calculator that incorporates comprehensive inflammatory 
parameters calls for need, and in this sense, the HDL-C–
related inflammatory parameters might contribute to 
improvements in the model.

Identification of elevated inflammatory risk in CAD 
patients calls for intensity-matched treatment. Therapy 
with statin in ACS patients has been observed to reduce 
recurrent coronary events and mortality through its 
anti-inflammatory effects [109]. The target level of 
hs-CRP less than 2  mg/l achieved by statin is signif-
icantly associated with event-free survival, and the 
achieved hs-CRP levels are independently associated 
with long-term survival among ACS patients [110]. With 
the aid of intravascular ultrasonography, the change of 
hs-CRP is further identified as an independent predic-
tor of plaque regression after statin therapy. Besides, 
guided by high hs-CRP level but normal LDL-C level, 
statin has effectively reduced coronary risk in healthy 
individuals [111]. Moreover, anti-inflammatory drugs 
such as steroids could further reduce CV events in 
CAD patients [112]. Disease-modifying antirheumatic 
drugs and TNF-α inhibitors are found to prevent CAD 
risk by reducing systemic inflammatory burden while 
improving lipid profiles and insulin resistance [113]. 
Nevertheless, in addition to myopathy and hepatic 
injury, statin administration among the healthy popu-
lation has reported significant diabetes, and concurrent 
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anti-inflammatory treatment might increase the risk of 
bleeding and life-threatening infection in CAD patients 
[114]. Therefore, exploring novel therapeutic agents 
with good safety profiles to ameliorate inflammation 
in CAD is of great clinical relevance. In this regard, 
efforts have been made to target innate immunity in 
atherosclerosis, such as the anti-IL-1β antibody canaki-
numab, which could reduce recurrent major adverse CV 
events over guideline-recommended standard therapies 
in MI patients with hs-CRP greater than 2 mg/l [115]. 
Moreover, the success of canakinumab has spurred the 
development of NLRP3 inflammasome inhibitors, which 
have yielded convincing results in preventing the initi-
ation and progression of atherosclerosis [116]. Although 
much accomplishment has been achieved, translation 
from research to clinical use requires more investigation 
and consideration.

Conclusion
In terms of the association between inflammation and 
HDL-C in atherosclerosis, our review summarizes clini-
cal trials about HDL-C–related inflammatory parameters 
in CAD for the first time. We have found that HDL-C 
is closely interconnected with the inflammatory pro-
cess, and the HDL-C–related inflammatory parameters 
are positively correlated with the adverse outcomes in 
CAD patients. Besides, experimental and clinical studies 
have suggested that modulating the inflammatory pro-
cess provides promising targets for mitigating the CAD 
burden. Moreover, evidence is absent on whether these 
novel inflammatory parameters could serve as indicators 
in measuring the efficacy of anti-inflammatory treatment. 
Therefore, further studies are needed to reveal the clin-
ical implications of the HDL-C–related inflammatory 
parameters.
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