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1  |  INTRODUC TION

Lead is a nonessential metal element for plants (Naiming, 2013). 
When lead is absorbed by plants and accumulated to a certain ex-
tent, crop quality can be affected (Jinda et al., 2005). Once lead en-
ters the body through consumption, it is harmful to human health 
(Honghong et al., 2020). Low concentrations of lead damages the 
human nervous system and kidney, and high concentrations of the 
lead causes cancer or death. A large number of studies have proved 

that lead is one of the important pollutants affecting food safety and 
human health (Kaiser, 1998; Markus & McBratney, 2001).

Vegetables are an important part of the human diet and one 
of the main sources of minerals and vitamins required by humans 
(Grusak & DellaPenna, 1999; Welch & Graham, 1999). With the im-
provement of living standards, the demand for pollution- free vege-
tables in China is increasing day by day.

In recent years, lead pollution in crops and its health risk to 
the human body has been highlighted in research (Rongguang 
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Abstract
This study aims to evaluate the risk of lead pollution in 9 kinds of vegetables con-
sumed by residents in 20 provinces/cities of China. Sampling data and vegetable con-
sumption data from 20 provinces/cities in 2019 were used. Combined with dietary 
exposure assessment, the vegetable categories and provinces were paired, and a risk 
classification model based on spectral clustering algorithms was proposed. The re-
sults of the spectral clustering algorithm showed that the risk level of lead pollution in 
vegetables can be divided into five levels. The combination of vegetable- province/cit-
ies at the risk level of 1 and 2 accounted for 92.78%, and that at the risk level of 4 and 
5 accounted for 2.22%. The high- risk combinations were fresh edible fungus– Shaanxi, 
fresh edible fungus– Sichuan, and fresh edible fungus– Shanghai and bean sprouts– 
Guangdong. In the proposed model, objective data were used as the classification 
index, and the spectral clustering algorithm was employed to select the optimal risk 
classification in a data- driven way. As a result, the influence of subjective factors was 
effectively reduced, the risk of lead pollution in vegetables was classified, and the re-
sults were scientific and accurate. This study provides a scientific basis of supervision 
priorities for regulatory departments.
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et al., 2010; Zhou et al., 2020). Tuanhui et al. (2019) assessed the 
health risk of crops around a mining area in Fujian Province through 
the target hazard factor (THQ) of the health evaluation model. It 
is found that among the crops in the mining area, lead pollution is 
the second major pollution of the root, potato, and leaf vegetables, 
and there are compound health risks for crops in the mining area of 
Fujian Province. Juan et al. (2021) evaluated the health risk of lead 
in cultivated crops in the eastern regions of Yunnan Province. The 
results showed that there is no obvious carcinogenic or noncarcino-
genic risk of lead in farmland soil of eastern Yunnan to residents, and 
the noncarcinogenic risk of lead for children is greater than that for 
adults in different regions. In the existing studies, the risk assess-
ment of heavy metals in crops is mostly based on point assessment 
in certain areas, and there is a small amount of data and nationwide 
studies.

In terms of risk classification models, various qualitative, semi- 
quantitative, and quantitative models have been developed. For ex-
ample, the iResk model is established by the U.S. Food and Drug 
Administration (FDA); the health risk classification of chemicals in 
food is proposed by the China National Center for Food Safety Risk 
Assessment (CFSA) (Zhou et al., 2014), and the semi- quantitative 
risk classification method is put forward by Guangdong Center for 
Disease Control and Prevention (Chen et al., 2013). The iResk model 
of FDA is a quantitative model applicable to both microorganisms 
and chemicals. In this model, the Monte Carlo simulation technology, 
disease burden estimation, and other statistical methods are used 
with mathematical functions to integrate and calculate multivariable 
data such as hazards, consumption, and dose– response relationship, 
so as to complete risk assessment, comparison, and sequencing of 
food hazard combination from primary production to consumption 
(Chen et al., 2013). This quantitative model has a wide application 
range, but it is complex and indigestible, requiring a large number of 
computer operations. The UK Veterinary Residues Committee (VRC) 
addresses veterinary drug management and proposes a classifica-
tion model. In this model, the risk matrix and scoring method are ad-
opted, and six indexes are set for scoring calculation: hazard nature, 
hazard intensity, the proportion of drug animals in diet, drug fre-
quency, highly exposed population, and detection of drug residues; 
finally, the risk level is obtained by scores (VRC, 2010). This model 
is relatively simple and convenient, and achieves a better balance in 
accuracy and efficiency. However, these indexes have strong perti-
nence to veterinary drugs and are not widely applicable. Aiming at 
the risk classification of food hazard factors, the above models have 
different scopes of application, simplicity, and index setting due to 
different regulatory needs.

According to the statistics released by the State Administration 
for Market Regulation, about 200,000 sampling data of lead contam-
ination in food are generated every year. To this end, a food safety 
risk classification model based on the sampling data was established 
in this study. The national sampling data of lead in vegetables in 
2019 and the vegetable consumption data were employed, the di-
etary exposure assessment was used to calculate the lead dietary in-
take of residents in 20 provinces/cities of China. Finally, the spectral 

clustering algorithm was employed to determine the risk level of lead 
pollution in vegetables. This model can provide a quantitative basis 
for decision- making and supervision priorities by the sampling data 
and risk level.

2  |  MATERIAL AND METHODS

2.1  |  Data sources

The lead pollution data of vegetables in this study came from the 
National Food Safety Sampling Data in 2019, with a total of 11,456 
samples. The data of vegetable consumption of residents in 20 prov-
inces/cities were from the fifth Total Diet Study. The method of 
stratified, multistage cluster random sampling proportional to the 
population was adopted in the fifth Total Diet Study, and a dietary 
questionnaire survey on the main food consumed by residents in 20 
provinces/cities of China was conducted. In our study, vegetables 
were divided into nine categories: leafy vegetables, root and potato 
vegetables, legume vegetables, bean sprouts, melon vegetables, 
bulb vegetables, Brassica vegetables, solanaceous vegetables, and 
fresh edible fungus. Toxicological data were obtained from reports 
or bibliographic retrieval of international organizations such as the 
Joint Expert Committee on Food Additives of the United Nations 
Food and Agriculture Organization, the World Health Organization 
(FAO/WHO JECFA), and the United States Environmental Protection 
Agency (US EPA). The reference dose (RfD) of lead is 3.5 μg/(kg d), 
the lower limit of 95% confidence interval for 1% reference dose 
(BMDL01) is 0.6 μg/kg bw per day.

2.2  |  Methods

2.2.1  |  Model building

According to the risk assessment method and the model purposes, 
the main influencing factors of health risks caused by food pollut-
ants were considered, and Nemerow integrated pollution index 
(NIPI), hazard index (HI), and margin exposure (MOE) were selected 
as the indexes of the model. The average content, median (P50), 
95th quantile (P95), and maximum value of lead in vegetables were 
selected as the characteristics of food pollution to calculate the ex-
posure of lead under different pollution levels.

The NIPI reflects the characteristics of food pollution. This 
index has been used to evaluate the heavy metal pollution in the 
air (Bekhet & Yasmin, 2013), water (Zang et al., 2017), vegetables 
(Li et al., 2013; Sawut et al., 2018; Shengbang & Baixi, 2015), rice 
(Junxiao et al., 2018), and soil (Han et al., 2018; Mazurek et al., 2017). 
According to the sampling data in different provinces/cities, the lead 
pollution degree of sampling data is calculated by using the NIPI as 
follows:

Pi,j =
Xi,j

Sj
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where Pi,j is the pollution index of vegetable j in province/city i ; Xi,j is 
the detection value of lead content in vegetable j in province/city i  
(mg/kg); Sj is the national limit standard of lead in vegetable j (mg/kg).

where Pc(i,j) is the NIPI of vegetable j in province/city i ; Pmax(i,j) is the 
maximum pollution index of vegetable j in province/city i ; Pave(i,j) is the 
average value of pollution index Pi,j of vegetable j in province/city i .

The HI is used to characterize the noncarcinogenic risk of lead 
in vegetables by lead exposure and reference dose. The expression 
is as follows:

where HIi,j is the lead noncarcinogenic risk of vegetable j in province/
city i ; RfD is the oral reference dose of lead (μg/kg d); EDI95

i,j
 (estimated 

daily intake) is the estimated daily intake of lead through vegetable j in 
the province/city i  under high exposure (P95); FCi,j is the average daily 
consumption of vegetable j in province/city i  (kg/d); X95

i,j  is the 95th 
quantile (mg/kg) of lead sampling content in vegetable j in province/
city i ; W is the average body mass of residents (60 kg).

The MOE is used to characterize the chronic dietary intake risk 
of lead by the lower limit of 95% confidence interval of 1% bench-
mark dose of lead and the exposure. The expression is as follows:

where MOEi,j is the risk of chronic dietary intake of lead in vegetable j 
in province/city i ; EDI50

i,j
(estimated daily intake) is the estimated daily 

intake of lead from vegetable j in province/city i  under moderate ex-
posure (P50); FCi,j is the daily consumption of vegetable j in province/
city i  (kg/d); X

50
i,j  is the median lead content of vegetable j in province/

city i  (mg/kg); W is the average body mass of residents (60 kg).

Computational environment
In this study, the Windows10 64 system was used as the experimen-
tal environment of spectral clustering algorithm; the Intel(R) Xeon(R) 
E5- 1620 v4 @3.50GHz was used as processor; the running memory 
was 64GB; the NVIDIA GTX 1060 Ti was used as the data accelera-
tor, and Python and related libraries were used as the experimental 
programming language.

Clustering classification
The possibility of excessive pollutants, exposure, and harmfulness 
of food pollutants were considered to quantify the risk factors of 

pollutants, and the food safety risk assessment model was estab-
lished by the above three indexes. Clustering is a process of dividing 
a given sample into multiple clusters to obtain samples in the same 
cluster with high similarities and different clusters with low similar-
ity. Clustering analysis can be used to mine deep information of data. 
With a low sensitivity to sample shape and good support for high- 
dimensional data, the spectral clustering algorithm can achieve good 
clustering performance in the arbitrary shape of sample space and is 
suitable for analyzing the model data of this study.

Scientific and accurate determination of classification level is one 
of the main problems of food safety risk classification. In this study, 
the clustering algorithm was used to determine the risk level of food 
pollutants. Through calculating the Calinski– Harabasz (CH) index of 
different parameters- cluster number combination (the larger the CH 
index, the smaller the total similarity between clusters, and the bet-
ter the clustering effect), the spectral clustering algorithm was used 
to select the optimal parameter and cluster number combination, 
carry out risk classification in a data- driven way, and eliminate the 
subjectivity of risk classification.

The main process of spectral clustering algorithm was as follows:

1. A matrix W describing the characteristics of the sample was 
constructed from the data sample.

2. The eigenvalues and eigenvectors of matrix W were calculated 
and sorted.

3. The eigenvectors corresponding to the first k eigenvalues after 
sorting were taken, and the vectors were arranged according to 
the column direction to form a new solution space.

4. The K- means clustering was adopted in the new solution space, 
and finally, the clustering results were mapped to the original so-
lution space.

Data processing
According to the principle of Low levels of pollutants credible evalua-
tion proposed at the second meeting of WHO Global Environmental 
Monitoring System/Food (GEMS/FOOD), when the proportion of 
undetected data was less than 60%, all undetected data shall be re-
placed by 1/2 of the limit of detection (LOD); when the proportion 
of undetected data was higher than 60%, all undetected data are 
replaced by LOD (Xuqing et al., 2002). In this study, the undetected 
data were given 1/2 LOD value for statistical calculation.

3  |  RESULTS

3.1  |  Lead pollution in vegetables

As shown in Table 1, the vegetables with the highest average lead 
content were fresh edible fungus in Shaanxi Province (0.0662 mg/
kg), followed by fresh edible fungus in Shanghai City (0.0656 mg/kg), 
and root and potato vegetables in Sichuan Province (0.06 mg/kg).

China Food Safety Standard specifies the limit index of lead 
in vegetables, including 0.3 mg/kg for Brassica vegetables and 

Pc(i.j) =

√

P2
max(i,j)

+ P2
ave(i,j)

2

HIi,j =
EDI95

i,j

RfD

EDI95
i,j

=

FCi,j × X95
i,j

W

MOEi,j =
BMDL01

EDI50
i,j

EDI50
i,j

=

FCi,j × X50
i,j

W
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leafy vegetables, 0.2 mg/kg for legume vegetables and 0.1 mg/
kg for other vegetables. According to the national standards and 
Table 2, the fresh edible fungus had the most serious lead pollu-
tion, which was excessive in eight provinces/cities (including Beijing 
and Shanghai); followed by root and potato vegetables in the Jilin, 
Sichuan, and Fujian Provinces. The lead in bean sprouts in the 
Guangdong Province and in solanaceous vegetables in the Fujian 
Province also exceeded the national standard. Among the samples 
with excessive lead, fresh edible fungus in the Shaanxi and Sichuan 
Provinces and bean sprouts in the Guangdong Province exceeded 
the standard most seriously, and the lead content was 4.2 times 
(0.42 mg/kg), 3.04 times (0.304 mg/kg), and 3.43 times (0.343 mg/
kg) of the national standard, respectively.

3.2  |  Model index results

According to the calculation rules of model indexes, the index values 
of various vegetables in 20 provinces/cities were obtained, as shown 
in Table 3.

3.2.1  |  Nemerow integrated pollution index

According to Table 3, the lead pollution of bean sprouts (2.4571) in 
the Guangdong Province, and edible fresh fungus (3.0065, 2.1803) 
in the Shaanxi Province and Sichuan Province was relatively serious. 
The main contaminated vegetables were fresh edible fungus, root 

and potato vegetables, bean sprouts and eggplant, and fruit vegeta-
bles, of which fresh edible fungus accounted for 60% of the total 
number of polluted combinations.

3.2.2  |  Hazard index

The lead risk of noncarcinogenic dietary intake in all provinces/cities 
was extremely low, and the highest HI was only 0.4705. Therefore, 
the lead risk of noncarcinogenic dietary intake by eating vegetables 
was acceptable.

3.2.3  |  Margin exposure

The risk of chronic dietary intake in all provinces/cities was ex-
tremely low, and the highest average daily exposure was melon 
vegetables in Hunan Province (0.317 μg/kg bw), MOE is 1.8931. 
Therefore, the lead risk of chronic dietary intake by eating vegeta-
bles is acceptable.

3.3  |  Risk classification results based on spectral 
clustering algorithm

The parameters in the algorithm were selected from 1 to 10, and the 
number of clustering categories was selected from 3 to 7. Table 4 
showed the scores of some combinations. According to Table 4, the 

TA B L E  1  Average content of lead in different kinds of vegetables in provinces/cities (mg/kg)

Vegetable 
categories Shanghai

Inner 
Mongolia Beijing Jilin Sichuan Ningxia Guangdong Guangxi Jiangsu Jiangxi

Leafy 0.025 0.030 0.027 0.020 0.044 0.023 0.023 0.024 0.023 0.027

Root and potato 0.020 0.032 0.020 0.028 0.060 0.020 0.025 0.024 0.022 0.023

Melon 0.035 0.035 0.030 0.030 0.033 0.030 0.030 0.030 0.029 0.030

Brassica 0.022 0.025 0.020 0.020 0.020 0.022 0.025 0.020 0.021 0.031

Solanaceous 0.021 0.025 0.020 0.020 0.027 0.022 0.021 0.020 0.021 0.024

Legume 0.020 0.028 0.022 0.020 0.036 0.025 0.056 0.022 0.025 0.029

Bean sprouts 0.022 0.023 0.021 0.021 0.033 0.023 0.030 0.020 0.022 0.025

Fresh edible fungus 0.066 0.031 0.026 0.023 0.052 0.020 0.026 0.020 0.032 0.023

Bulb 0.023 0.045 0.033 0.020 0.022 0.024 0.026 0.023 0.020 0.025

Hebei Heilongjiang Zhejiang Hubei Hunan Fujian Liaoning Shaanxi Qinghai Henan

Leafy 0.030 0.031 0.025 0.025 0.022 0.031 0.037 0.051 0.023 0.029

Root and potato 0.020 0.024 0.036 0.020 0.020 0.026 0.017 0.032 0.020 0.020

Melon 0.030 0.033 0.020 0.030 0.030 0.030 0.029 0.030 0.022 0.031

Brassica 0.034 0.020 0.019 0.034 0.021 0.021 0.029 0.029 0.016 0.022

Solanaceous 0.024 0.023 0.017 0.021 0.020 0.021 0.022 0.032 0.012 0.022

Legume 0.025 0.029 0.015 0.020 0.023 0.021 0.023 0.020 0.020 0.021

Bean sprouts 0.022 0.023 0.018 0.021 0.023 0.020 0.020 0.022 0.019 0.020

Fresh edible fungus 0.023 0.027 0.027 0.022 0.021 0.020 0.040 0.066 0.017 0.038

Bulb 0.032 0.024 0.024 0.021 0.023 0.023 0.028 0.028 0.027 0.031
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combination with the highest score was 293 points with 5 param-
eters and 5 cluster categories. Therefore, the risk level of dietary 
lead intake in vegetables was divided into five levels.

The spectral clustering algorithm was used to determine the risk 
classification model of lead dietary intake in vegetables, the risk clas-
sification results of various vegetable– province combinations were 
obtained, as shown in Table 5. The combinations with risk levels 
above level 3 were sorted in descending order, as shown in Table 6.

As shown in Table 5, the combination of vegetables– province 
with the risk level of 1 and 2 accounted for 92.78% of the total, 
and that with the risk level of 4 and 5 (high- risk level) accounted for 
2.22%. Table 6 showed that the high- risk combinations were fresh 
edible fungus– Shaanxi, fresh edible fungus– Sichuan, fresh edible 
fungus– Shanghai and bean sprouts– Guangdong. Vegetables with 
relatively high risk were fresh edible fungus, bean sprouts, roots, 
and potato vegetables.

4  |  DISCUSSION

The results of dietary exposure showed that the high and medium 
lead exposure of residents in all provinces/cities through vegetables 
were lower than the corresponding reference dose or benchmark 
dose; most of them were more than 5% of the reference dose, and 
some exceeded 20% of the reference dose. According to the rel-
evant regulations of the Codex Alimentarius Commission (CAC), this 
condition was identified as significantly contributing to total expo-
sure and needed to be managed by limiting criteria.

On the basis of exposure assessment, the risk classification 
model established in this study used a spectral clustering algorithm 
to realize the risk classification of lead pollution in vegetables. For 
the three indexes in the model, HI was used to characterize the 
risk of noncarcinogenic dietary intake in dietary exposure assess-
ment, and MOE was used to characterize the risk of chronic di-
etary intake. Combined with the use of NIPI, the comprehensive 
evaluation needs of risk management were taken into account to a 
certain extent. Besides, the spectral clustering algorithm was used 
in the model to directly obtain the optimal classification results, 
in which manual selection of parameters and risk levels were not 
required. However, the classification results only reflected the 
relative risk of health hazards caused by corresponding pollut-
ants and consumption levels in various regions, that is, the results 
were based on the mutual comparison between food and regional 
combinations and cannot reflect the absolute risk. Therefore, the 
combinations at the risk levels of 3, 4, and 5 mainly indicated the 
priority of attention.

This study mainly focused on the establishment of a risk classi-
fication model for lead pollution. If the proposed model was applied 
to other pollutants, such as cadmium (Cd) and chromium (Cr), the 
risk index of chronic dietary intake can be replaced with the index of 
target cancer risk (TCR).

The model developed in this study was applied to analyze the 
monitoring data of lead in vegetables in China in 2019, and 180 
provinces/cities– vegetable combinations were ranked in terms of 
risk. The results were generally consistent with those obtained 
using classical assessment methods. A study on the levels of eight 

TA B L E  2  Maximum value of lead in different kinds of vegetables in provinces/cities (mg/kg)

Vegetable 
categories Shanghai

Inner 
Mongolia Beijing Jilin Sichuan Ningxia Guangdong Guangxi Jiangsu Jiangxi

Leafy 0.100 0.104 0.265 0.030 0.250 0.156 0.058 0.290 0.085 0.100

Root and potato 0.020 0.072 0.020 0.110 0.140 0.020 0.030 0.055 0.030 0.030

Melon 0.083 0.082 0.030 0.030 0.087 0.030 0.030 0.030 0.069 0.030

Brassica 0.057 0.030 0.020 0.020 0.020 0.077 0.030 0.020 0.030 0.206

Solanaceous 0.057 0.099 0.020 0.030 0.093 0.082 0.030 0.051 0.060 0.090

Legume 0.020 0.104 0.088 0.030 0.168 0.142 0.343 0.070 0.146 0.090

Bean sprouts 0.070 0.030 0.030 0.030 0.092 0.076 0.030 0.020 0.030 0.070

Fresh edible fungus 0.258 0.085 0.130 0.066 0.304 0.020 0.079 0.020 0.130 0.030

Bulb 0.077 0.094 0.098 0.020 0.079 0.083 0.080 0.083 0.030 0.080

Hebei Heilongjiang Zhejiang Hubei Hunan Fujian Liaoning Shaanxi Qinghai Henan

Leafy 0.160 0.161 0.093 0.161 0.092 0.182 0.266 0.200 0.140 0.110

Root and potato 0.020 0.062 0.090 0.020 0.020 0.167 0.020 0.080 0.059 0.020

Melon 0.050 0.073 0.070 0.030 0.030 0.030 0.030 0.030 0.057 0.060

Brassica 0.110 0.020 0.080 0.168 0.062 0.084 0.090 0.200 0.091 0.065

Solanaceous 0.092 0.073 0.080 0.030 0.020 0.160 0.093 0.092 0.054 0.069

Legume 0.100 0.067 0.090 0.030 0.077 0.067 0.092 0.020 0.084 0.030

Bean sprouts 0.048 0.056 0.080 0.030 0.057 0.020 0.020 0.061 0.093 0.030

Fresh edible fungus 0.030 0.077 0.189 0.127 0.020 0.020 0.160 0.420 0.045 0.210

Bulb 0.098 0.075 0.090 0.056 0.065 0.087 0.082 0.091 0.066 0.094
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TA B L E  3  Index values in the risk assessment model

Place

Legume Bean sprouts Root and potato

Pc HI MOE Pc HI MOE Pc HI MOE

Shanghai 0.100 0.045 3.635 0.519 0.045 3.635 0.200 0.045 3.635

Inner Mongolia 0.381 0.087 7.779 0.269 0.031 7.779 0.560 0.071 7.779

Beijing 0.321 0.053 3.081 0.257 0.053 3.081 0.200 0.053 3.081

Jilin 0.128 0.041 3.926 0.259 0.061 3.926 0.802 0.174 3.926

Sichuan 0.607 0.279 3.651 0.690 0.202 3.651 1.077 0.284 3.651

Ningxia 0.510 0.056 5.099 0.561 0.032 5.099 0.200 0.032 5.099

Guangdong 0.130 0.034 7.096 2.457 0.366 7.096 0.274 0.034 7.096

Guangxi 0.259 0.051 3.179 0.200 0.051 3.179 0.424 0.105 3.179

Jiangsu 0.524 0.062 4.452 0.262 0.055 4.452 0.262 0.050 4.452

Jiangxi 0.334 0.095 6.825 0.526 0.083 6.825 0.265 0.034 6.825

Hebei 0.364 0.074 5.177 0.373 0.047 5.177 0.200 0.031 5.177

Henan 0.129 0.047 5.214 0.256 0.031 5.214 0.200 0.031 5.214

Zhejiang 0.323 0.136 4.392 0.580 0.130 4.392 0.687 0.156 4.392

Hubei 0.128 0.044 3.722 0.259 0.064 3.722 0.200 0.044 3.722

Hunan 0.100 0.057 2.840 0.572 0.092 2.840 0.200 0.057 2.840

Fujian 0.249 0.036 4.525 0.200 0.036 4.525 1.196 0.036 4.525

Liaoning 0.335 0.077 6.352 0.200 0.026 6.352 0.184 0.026 6.352

Shanxi 0.100 0.031 5.200 0.458 0.031 5.200 0.610 0.111 5.200

Qinghai 0.305 0.140 4.391 0.671 0.112 4.391 0.440 0.079 4.391

Heilongjiang 0.257 0.107 5.005 0.429 0.062 5.005 0.469 0.096 5.005

Melon Bulb Solanaceous

Pc HI MOE Pc HI MOE Pc HI MOE

Shanghai 0.635 0.160 2.423 0.568 0.075 3.635 0.425 0.045 3.635

Inner Mongolia 0.628 0.059 5.186 0.737 0.091 3.051 0.721 0.071 7.779

Beijing 0.300 0.079 2.054 0.730 0.232 3.081 0.200 0.053 3.081

Jilin 0.300 0.062 2.617 0.200 0.041 3.926 0.256 0.041 3.926

Sichuan 0.658 0.079 2.434 0.577 0.044 3.651 0.687 0.181 3.651

Ningxia 0.300 0.048 3.399 0.611 0.069 5.099 0.600 0.032 5.099

Guangdong 0.300 0.034 4.731 0.588 0.069 7.096 0.277 0.034 4.731

Guangxi 0.300 0.077 2.119 0.609 0.085 3.179 0.388 0.051 3.179

Jiangsu 0.528 0.055 2.968 0.256 0.036 4.452 0.449 0.042 4.452

Jiangxi 0.300 0.036 4.550 0.593 0.067 6.825 0.658 0.062 6.825

Hebei 0.412 0.047 3.452 0.729 0.130 5.177 0.672 0.070 5.177

Henan 0.477 0.060 3.476 0.700 0.099 5.214 0.513 0.047 5.214

Zhejiang 0.515 0.113 4.392 0.658 0.129 8.785 0.578 0.134 4.392

Hubei 0.300 0.065 2.481 0.423 0.052 3.722 0.258 0.065 3.722

Hunan 0.300 0.086 1.893 0.434 0.132 2.840 0.460 0.057 2.840

Fujian 0.300 0.054 3.017 0.638 0.064 4.525 1.141 0.036 4.525

Liaoning 0.293 0.079 2.054 0.612 0.098 6.352 0.676 0.071 6.352

Shanxi 0.300 0.047 3.467 0.672 0.115 5.200 0.690 0.128 5.200

Qinghai 0.434 0.101 2.927 0.503 0.113 4.391 0.395 0.060 4.391

Heilongjiang 0.570 0.086 3.337 0.559 0.095 5.005 0.539 0.088 5.005
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heavy metals and health risk assessment considering food con-
sumption by China's residents based on the fifth Total Diet Study 
showed that the lead risk was higher in Liaoning, Shaanxi, and 
Sichuan provinces, and the main dietary source were vegetables, 

which was consistent with the evaluation results of this study. The 
results of a study on the evaluation and benchmarking of health 
risks of lead contamination in agricultural soils in east Yunnan 
showed that the exceedance rate of fresh edible fungus sites in 
Sichuan was higher, but there was no significant health risk to resi-
dents. There is no published report on the results of risk classifica-
tion of lead in vegetables by applying risk classification methods at 
home and abroad. The existing evaluation of heavy metals in veg-
etables mostly adopts the contamination index method, which fo-
cuses on the comprehensive evaluation of the contamination level 
without considering the influence of consumption.

Food safety is a complex problem, and there is no general risk 
classification method for food safety. A suitable model should be es-
tablished according to the classification purpose and the feasibility 
of the data. To reduce the influence of subjective factors and obtain 
scientific and effective results, objective data were used as the clas-
sification index in establishing the risk classification model in this 
study, and the clustering algorithm was employed to automatically 
select the optimal risk classification in a data- driven way. In actual 
food supervision, the order of the management priority is affected 
by many factors. The results of risk classification can provide a basis 
for regulators to set management priorities based on health risks, 
but food safety management cannot be carried out simply according 
to a model or formula (Batz et al., 2004). In this study, the risk as-
sessment and classification methods were applied by using the sam-
pling data of vegetables in China. The results showed that the health 

Fresh edible fungus leafy Brassica

Pc HI MOE Pc HI MOE Pc HI MOE

Shanghai 1.882 0.470 3.635 0.242 0.151 3.635 0.143 0.049 3.635

Inner Mongolia 0.639 0.075 7.779 0.255 0.086 7.779 0.092 0.031 6.224

Beijing 0.937 0.067 3.081 0.628 0.177 3.081 0.067 0.053 3.081

Jilin 0.494 0.062 3.926 0.085 0.041 3.926 0.067 0.041 3.926

Sichuan 2.180 0.423 3.651 0.598 0.428 3.651 0.067 0.044 3.651

Ningxia 0.200 0.032 5.099 0.372 0.033 5.099 0.189 0.041 5.099

Guangdong 0.300 0.034 4.731 0.146 0.034 7.096 0.092 0.032 4.730

Guangxi 0.200 0.051 3.179 0.686 0.051 3.179 0.067 0.051 3.179

Jiangsu 0.947 0.165 4.452 0.207 0.078 4.452 0.086 0.040 4.452

Jiangxi 0.265 0.034 6.825 0.244 0.095 6.825 0.491 0.097 6.825

Hebei 0.269 0.047 5.177 0.384 0.113 5.177 0.271 0.153 5.177

Henan 1.509 0.208 5.214 0.268 0.126 5.214 0.162 0.047 5.214

Zhejiang 1.350 0.230 4.392 0.226 0.162 4.392 0.194 0.132 4.392

Hubei 0.912 0.044 3.722 0.384 0.108 3.722 0.404 0.201 3.722

Hunan 0.460 0.057 2.840 0.223 0.057 2.840 0.138 0.122 3.840

Fujian 0.200 0.036 4.525 0.435 0.184 4.525 0.203 0.036 4.525

Liaoning 1.167 0.157 6.352 0.633 0.163 6.352 0.223 0.099 6.352

Shanxi 3.007 0.317 2.419 0.486 0.218 2.568 0.476 0.113 5.200

Qinghai 0.340 0.069 4.391 0.334 0.169 4.391 0.218 0.096 4.391

Heilongjiang 0.574 0.108 5.005 0.386 0.126 5.005 0.067 0.032 5.005

TA B L E  3  (Continued)

TA B L E  4  Scores of combination with different parameters- 
number of clustering categories (part)

Parameter
Cluster category 
number Scores

1 3 270

1 4 276

1 5 282

1 6 97

1 7 256

5 3 127

5 4 283

5 5 293

5 6 286

5 7 289

10 3 127

10 4 92

10 5 292

10 6 246

10 7 253
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risks of lead in vegetables can be successfully classified. The results 
showed that the health risks of lead in vegetables can be reliably 
classified. The proposed model can be used for the risk classifica-
tion of various types of hazardous substances in various foods at the 
provincial and municipal levels, but more model applicability tests 
were also needed.
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TA B L E  5  Risk classification results of vegetables in provinces

Provinces Leafy
Root and 
potato Melon Brassica Solanaceous Legume

Bean 
sprouts

Fresh 
edible 
fungus Bulb

Shanghai 1 1 2 1 1 1 2 5 2

Inner Mongolia 1 2 2 1 2 1 1 2 2

Beijing 2 1 1 1 1 1 1 2 2

Jilin 1 2 1 1 1 1 1 1 1

Sichuan 2 3 2 1 2 2 2 5 2

Ningxia 1 1 1 1 2 2 2 1 2

Guangdong 1 1 1 1 1 1 4 1 2

Guangxi 2 1 1 1 1 1 1 1 2

Jiangsu 1 1 2 1 1 1 1 3 1

Jiangxi 1 1 1 1 2 1 1 1 2

Hebei 1 1 1 1 2 1 1 1 2

Henan 1 1 1 1 2 1 1 3 2

Zhejiang 1 2 2 1 2 1 2 3 2

Hubei 1 1 2 1 1 1 1 3 1

Hunan 1 1 3 1 2 1 2 1 2

Fujian 1 3 1 1 3 1 1 1 2

Liaoning 2 1 1 1 2 1 1 3 1

Shanxi 2 2 1 1 2 1 1 5 2

Qinghai 1 1 2 1 1 1 2 1 1

Heilongjiang 1 1 2 1 2 1 1 2 2

TA B L E  6  The combination of vegetable– province with a higher 
risk level

Vegetable categories Province
Risk 
level

Fresh edible fungus Shanxi 5

Fresh edible fungus Sichuan 5

Fresh edible fungus Shanghai 5

Bean sprouts Guangdong 4

Fresh edible fungus Henan 3

Fresh edible fungus Zhejiang 3

Root and potato Fujian 3

Solanaceous Fujian 3

Fresh edible fungus Liaoning 3

Melon Hunan 3

Root and potato Sichuan 3

Fresh edible fungus Jiangsu 3

Fresh edible fungus Hubei 3
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