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Abstract
After initial strategies targeting inotropism and congestion, the neurohormonal interpretative model of heart failure (HF) patho-
physiology has set the basis for current pharmacological management of HF, as most of guideline recommended drug classes, 
including beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid recep-
tor antagonists, blunt the activation of detrimental neurohormonal axes, namely sympathetic and renin–angiotensin–aldosterone 
(RAAS) systems. More recently, sacubitril/valsartan, a first-in-class angiotensin receptor neprilysin inhibitor, combining inhibition 
of RAAS and potentiation of the counter-regulatory natriuretic peptide system, has been consistently demonstrated to reduce 
mortality and HF-related hospitalization. A number of novel pharmacological approaches have been tested during the latest years, 
leading to mixed results. Among them, drugs acting directly at a second messenger level, such as the soluble guanylate cyclase 
stimulator vericiguat, or other addressing myocardial energetics and mitochondrial function, such as elamipretide or omecamtiv-
mecarbil, will likely change the therapeutic management of patients with HF. Sodium glucose cotransporter 2 inhibitors, initially 
designed for the management of type 2 diabetes mellitus, have been recently demonstrated to improve outcome in HF, although 
mechanisms of their action on cardiovascular system are yet to be elucidated. Most of these emerging approaches have shifted 
the therapeutic target from neurohormonal systems to the heart, by improving cardiac contractility, metabolism, fibrosis, inflam-
mation, and remodeling. In the present paper, we review from a pathophysiological perspective current and novel therapeutic 
strategies in chronic HF.
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ACE  Angiotensin-converting enzyme
ADH  Antidiuretic hormone/arginine-vasopressin
Ang  Angiotensin
ANP  Atrial natriuretic peptide
BNP  B-type natriuretic peptide
cAMP  Cyclic adenosine monophosphate

cGMP  Cyclic guanosine monophosphate
CNP  C-type natriuretic peptide
GC  Guanylate cyclase
HF  Heart failure
HFmrEF  Heart failure with mid-range ejection fraction
HFpEF  Heart failure with preserved ejection fraction
HFrEF  Heart failure with reduced ejection fraction
MAPK  Mitogen-activated protein kinase
MR  Mineralocorticoid receptor
MRA  Mineralocorticoid receptor antagonists
NADPH  Nicotinamide-adenine dinucleotide phosphate
NO  Nitric oxide
NPR  Natriuretic peptide receptor
NT  N-terminal
PPAR  Peroxisome proliferator-activated receptor
RAAS  Renin-angiotensin-aldosterone system
SGLT  Sodium glucose cotransporter
TGF  Transforming growth factor
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TRPV-4  Transient receptor potential cation channel 
subfamily V member 4

vSMCs  Vascular smooth muscle cells

Introduction

Heart failure (HF) represents a global health issue, as it is 
estimated to affect 1–2% of the general population, with an 
even higher prevalence in cohorts of elderly subjects [1]. 
Several interpretative models have been proposed over the 
last decades to explain HF pathophysiology. They initially 
focused on the concomitant impairment of both heart and 
kidney (cardio-renal model), and later on hemodynamic 
alterations secondary to pump failure (hemodynamic model) 
[2]. In the last 30 years, the neurohormonal model has taken 
a central role, following the demonstration that derangement 
of neurohormonal activation and of peripheral feedbacks 
acts as promoter in HF syndrome and represents the patho-
physiological basis for the use of most of pharmacological 
classes with a prognostic benefit [3].

In clinical practice, HF is usually classified based on left 
ventricular ejection fraction (LVEF) into HF with reduced 
ejection fraction (HFrEF, LVEF < 40%), HF with preserved 
ejection fraction (HFpEF, LVEF ≥ 50%), and in the recently 
proposed category of HF with mid-range ejection fraction 
(HFmrEF, LVEF 40–49%) [4]. While many pharmacological 
and non-pharmacological therapies of HFrEF have shown a 

prognostic benefit, the outcome of patients with HFrEF still 
remains poor [5]. To date, few evidence-based data are avail-
able as concerns treatment of patients with milder degree 
of LV systolic dysfunction, as the majority of the drugs 
investigated have failed to demonstrate prognostic benefit 
in HFpEF [6]. Nevertheless, novel therapies are emerging 
in latest years, most of them targeting myocardial energet-
ics, shifting the focus back from the periphery to the heart 
muscle (Fig. 1). Herein, we review the current and novel 
potential therapeutic strategies in chronic HF from a patho-
physiological perspective.

Current therapeutic targets

Sympathetic nervous system

HF is characterized by an imbalance between sympathetic 
and parasympathetic afferent systems. A blunted baroreflex 
is usually combined with hyperactive chemo- and ergore-
flexes [7, 8]. The final result of this imbalance is an overac-
tivation of the sympathetic nervous system (SNS), initially 
aimed at restoring the circulatory homeostasis. Chronic 
stimulation of SNS causes a systemic spill-over of catecho-
lamines, attributed to their increased release and reduced 
reuptake, and to an excessive intra-myocardial production 
[9] (Fig. 2).

Fig. 1  Chronologic development of drugs in heart failure, highlight-
ing the shift from neurohormonal antagonism to specific cardiac tar-
geting. Current guideline recommended drugs classes are represented 
in bold red; drug classes with existing evidence on an outcome ben-
efit in heart failure are represented in bold blue; novel possible targets 

are represented in green. ACE angiotensin-converting enzyme; ARBs 
angiotensin receptor blockers; ARNI angiotensin receptor neprilysin 
inhibitor; MRAs mineralocorticoid receptor antagonists; sGC soluble 
guanylate cyclase; SGLT2 sodium-glucose cotransporter 2
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Stimulation of � 1 adrenergic receptor by catechola-
mines, mainly by norepinephrine, activates  GS protein [10]. 
 GS protein in turn stimulates L-type calcium channels with 
increased calcium conductance, and activates adenylate-
cyclase, thus resulting in an increased cyclic adenosine 
monophosphate (cAMP) production and in protein-kinase 
A activation. Protein-kinase A regulates phosphorylation 
of phospholamban, troponin I, and ryanodine receptor, 
thus improving myocardial contraction and relaxation [11]. 
Chronic stimulation of adrenergic receptors holds detri-
mental effects. The role of α1 receptors is less defined, and 
there is evidence that they may hold important adaptive 
functions, promoting cardiomyocyte survival and protect-
ing against adverse remodeling [12]. Conversely, persis-
tent activation of � 1-adrenergic receptor negatively affects 
excitation–contraction coupling (ECC) and enhances pro-
apoptotic pathways [13] (see also Table 1).

Inhibition of adrenergic receptors is effectively achieved 
by �-blockers, a wide and heterogeneous class of drugs. 
Their use in HF has been firstly debated because of their 
negative chronotropic and inotropic effects. Actually, their 
use has been proved effective, and represents a cornerstone 
of the pharmacological treatment for HF [14]. Specifically, �

-blockers cause a reduction in myocardial oxygen consump-
tion and prevent the detrimental consequences of a long-
standing adrenergic stimulation [15]. Some molecules can 
also inhibit � adrenergic receptor (non-selective �-blockers, 
such as carvedilol); other can exert a weak agonism to the �
-receptor (i.e., pindolol), a property known as intrinsic sym-
pathomimetic activity, but none of them has been proven 
effective in HF. �-blockers, particularly non-selective ones, 
might cause subtype-specific upregulation of adrenergic 
receptors and therefore should not be withdrawn abruptly 
[16].

Renin–angiotensin–aldosterone system

Renin and angiotensins

Renin–angiotensin–aldosterone system (RAAS) is one of 
the main drivers in HF pathophysiology. Renin release from 
juxtaglomerular apparatus is the first step in the RAAS cas-
cade. SNS activation, together with renal hypoperfusion and 
reduced filtered sodium levels reaching the macula densa are 
the main stimuli for renin secretion [13, 17]. Renin converts 
angiotensinogen—synthetized by the liver—into Ang-I, 

Fig. 2  Molecular signaling of sympathetic nervous system (SNS) 
activation in the cardiomyocyte in heart failure. �

1
-AR �

1
 adrenergic 

receptor; AC adenylate cyclase; AR adrenergic receptor; CaMK-II  
calcium-calmodulin kinase type 2; cAMP cyclic adenosine monophos-
phate; Gi G-protein “i” associated with trans-membrane receptor; 
Gq G-protein “q” associated with trans-membrane receptor; GRK2 
complex G protein-coupled receptor kinase type 2; Gs G-protein “s”  

associated with trans-membrane receptor; HDAC-5 histone deacety-
lase type 5; IP3 inositol trisphosphate; L-type L-type calcium chan-
nel; MEF-2 myocyte enhancer factor type 2; PKA protein-kinase A; 
PKC protein-kinase C; PKD protein-kinase D; PLC-�

1
 phospholipase 

C-�
1
 ; PLN phospholamban; PSNS parasympathetic nervous system; 

ROS reactive oxygen species; RyR ryanodine receptor; SR sarcoplas-
mic reticulum; TnI troponin-I
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which is further cleaved into Ang-II by the angiotensin-
converting enzyme (ACE), and, to a lesser extent, by other 
enzymes, such as chymases [18]. Renin, as well as its pre-
cursor prorenin, also exists as a cytosolic protein with other 
non-enzymatic functions [19]. The cytosolic renin exerts 
different and even opposite functions to those of secretory 
renin; specifically, whereas secretory renin promotes necro-
sis and fibrosis, the cytosolic renin variant protects cells 
from necrotic death. Binding of either secretory renin or 
prorenin to its (pro)renin receptor triggers downstream intra-
cellular signals leading to the overexpression of pro-fibrotic 
genes. The interaction between renin and (pro)renin receptor 
also increases renin cleavage activity at cell surface [20].

Ang-II interacts with angiotensin receptor (AT) 1 and 
AT-2. Ang-II directly regulates glomerular homeosta-
sis and stimulates aldosterone production in the adrenal 
gland. Downstream actions following the interaction of 
Ang-II with AT-1 include nicotinamide-adenine dinucleo-
tide phosphate (NADPH) oxidase activation, JAK-STAT 
signaling, phospholipase C pathway, and tyrosine kinases 
activation [21, 22]. NADPH oxidase activation causes 
ROS production, reduced nitric oxide (NO) concentra-
tion, inflammation, and proliferation [23–25]. Ang-II/AT-2 

interaction promotes ROS production, increases intracel-
lular ceramide levels, and causes the uncoupling of AT-2 
from  Gq, leading to a reduction of mitogen-activated pro-
tein kinase (MAPK) activity and of inflammatory, pro-
liferative, and growth-related effects [26]. Ang-II is also 
cleaved into other peptides (Ang-III and Ang-IV), causing 
vasoconstrictive effects, and Ang peptide 1–7 via ACE 
isoform 2, counteracting the deleterious effects of Ang-II 
[27] (Fig. 3). Ang 1–7 also have direct cardioprotective 
and vasodilatory actions, by inducing the release of NO 
and prostaglandins and by antagonizing AT-1 [28, 29]. 
Indeed, preclinical studies have shown that Ang 1–7 blunts 
ischemia–reperfusion injury and inhibits Ang-II-induced 
cardiac hypertrophy and remodeling [30, 31]. The latter 
effect is mostly mediated by the binding to its high selec-
tive G-protein coupled Mas receptor [32].

RAAS blockade plays a key role in the neurohormo-
nal antagonism in HF. Many molecules targeting different 
steps in the RAAS cascade have been evaluated, with ACE 
inhibitors, AT-1 receptor blockers (ARBs), and aldosterone 
antagonists being the most widely tested. ACE inhibitors 
and ARBs have been introduced in clinical practice as potent 
vasodilators, but also showed antiremodeling properties in 

Fig. 3  Molecular signaling of the renin–angiotensin–aldosterone 
system in heart failure. Angiotensin receptor 1 (AT-1) as well as 
many angiotensins (II, III, IV) are responsible for vasoconstriction, 
inflammation, proliferation and atherosclerosis. AT-2 counteracts 
these detrimental responses mainly via vasodilation. Ang angioten-
sin; AP-1 activator protein 1; ATS atherosclerosis, BK bradykinin; 
cGMP cyclic guanosine monophosphate; DAG diacyl-glycerol; IP3 

inositol-triphosphate; JAK/STAT  Janus kinase/signal transducer and 
activator transcription factor; NAD(P)H nicotinamide-adenine dinu-
cleotide (phosphate); NFkB nuclear factor kappa-B; NO nitric oxide; 
oxLDL oxidized low-density lipoprotein; PKC protein kinase C; PLC 
phospholipase; PP2A protein phosphatase 2A; PTK phosphotyrosine 
kinase; PTP phosphotyrosine phosphatase; Ser/Thr serine/threonine; 
Tyr tyrosine
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the setting of either ischemic and non-ischemic LV dysfunc-
tion [33–35].

Compared to ACE inhibitors, ARBs have a downstream 
activity as they prevent Ang-II from binding to AT-1. This 
was hypothesized to contribute to a binding shift of Ang-II 
to AT-2, thus resulting in additional antifibrotic effects vs. 
ACE inhibitors. Nonetheless, there is weaker evidence on 
the clinical efficacy of ARBs compared to ACE inhibitors 
in HF patients [4]. Although a potential advantage from a 
double RAAS blockade with a combination of ACE inhibi-
tors and ARBs may be envisaged, such strategy did not prove 
effective in clinical practice. Further, the direct renin inhibi-
tor aliskiren did not reduce the rates of all-cause and cardio-
vascular mortality in HF patients [36]. Novel renin inhibitors 
are currently under investigation and are showing promising 
results in murine models [37]. Finally, as discussed in a fol-
lowing paragraph, combined angiotensin receptor and nepri-
lysin inhibition has become the first option among drugs 
acting on RAAS.

Vasodilation as a potential therapeutic target has been 
addressed also before RAAS inhibition, as hydralazine—an 
inositol triphosphate inhibitor—reduced mortality by 34% 
in the V-HeFT trial [38]. Today, it is used especially in the 
Afro-Americans, as it showed a 47% reduction in mortality 
in the A-HeFT trial [39].

Aldosterone

Aldosterone is a steroid hormone produced by the adrenal 
cortex. Aldosterone signaling includes genomic and non-
genomic actions, which are mediated by intracellular and 
membrane mineralocorticoid receptors (MRs), respectively 
[40]. Although the intracellular receptor is responsible for 
the potential binding of several molecules, including aldos-
terone and glucocorticoids, the receptor specificity for 
aldosterone depends on the presence of 11-�-hydroxyster-
oid dehydrogenase 2 [41]. The intracellular MR mediates 
sodium-water retention in renal epithelial cells of the distal 
nephron, stimulates fibrosis, apoptosis, and atherosclerosis 
in vascular smooth muscle cells (vSMCs) and promotes 
leukocyte adhesion, pro-thrombotic phenotype and epithe-
lial–mesenchymal transition in endothelial cells [42].

The intracellular MR is also present in other non-
epithelial tissues, acting in a 11-�-hydroxysteroid dehy-
drogenase 2-independent fashion [43]. In macrophages, 
MR activation promotes  M1-phenotype differentiation, 
thus leading to galectin-3 secretion, fibroblast activation, 
and deposition of fibrous tissue [44]. In cardiomyocytes, 
MR usually acts as glucocorticoid receptor, and increases 
contractility, stimulates hypertrophy, and contributes to 
electrical remodeling [45].

While MR antagonists (MRAs) were first employed in 
clinical practice as potassium-sparing diuretics, they have 

been proven useful in cardiovascular diseases and in HF, 
mostly due to their antifibrotic and antihypertrophic actions 
[46]. Currently available molecules have either a steroidal 
(i.e., spironolactone and eplerenone) or non-steroidal struc-
ture (i.e., finerenone). The in-class and between-class differ-
ences mainly stand in the selectivity (rather than in the affin-
ity) for MR, as only steroidal MRA can also bind to other 
steroids receptors. As the founder of this class, spironol-
actone has a similar structure to both aldosterone and pro-
gesterone, whereas eplerenone more specifically binds MR. 
This results in a reduced incidence of adverse drug reactions 
related to the binding to sexual hormones receptors [47]. 
Finerenone shows the highest specificity within this class, 
and is currently under a phase-III clinical trial evaluation for 
the treatment of HF [48].

MR blockade, as well as the use of ACE inhibitors and 
ARBs, has been associated with a rebound increase in circu-
lating aldosterone, named the aldosterone breakthrough [49]. 
Although the mechanisms underlying this phenomenon are 
still to be clarified, the ACE-independent synthesis of RAAS 
effectors has been advocated.

Endothelin

Endothelin plays pleiotropic roles in the cardiovascular sys-
tem. Synthesis of pre-pro-endothelin is stimulated by several 
neuro-hormones (i.e., Ang-II, norepinephrine), cytokines  
(i.e. interleukin-1), hypoxia, acidosis and shear stress [50]. 
The precursor is then cleaved by proteases into pro-endothelin,  
which is further processed into endothelin, the biologically 
active form, by the endothelin-converting enzyme [51].

Endothelin binds to receptors ET-A and ET-B, both 
expressed in heart and vessels. ET-A plays a major role 
on cardiomyocytes, mediating hypertrophy, fibrosis, and 
favoring the onset of arrhythmias; it also exerts a positive 
inotropic effect by increasing intracellular calcium concen-
tration [52, 53]. In blood vessels, ET-A promotes fibrosis 
through fibroblast activation and mediates vasoconstriction 
in vSMCs via  Gq-phospholipase C signaling [54]. Further-
more, it has been demonstrated that ET-A is regulated by 
complex G protein-coupled receptor kinase type 2-mediated 
phosphorylation that may increase its affinity for arrestins 
[55]. ET-B expression is higher in fibroblast than in cardio-
myocytes, promoting fibrosis, apoptosis, and hypertrophy 
[56]. In the vasculature, ET-B is responsible for fibrosis, act-
ing synergistically with ET-A, as well as for vasoconstrictive 
signals in vSMCs via protein kinase C [57].

Despite the role of endothelin in the progression of end-
organ damage, many drugs antagonizing ET-A and/or ET-B 
(i.e., bosentan, sitaxentan) displayed no beneficial effects 
compared to placebo, while some others were shown to 
be harmful, both in the settings of acute and chronic HF 
[58–60].
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Antidiuretic hormone

The antidiuretic hormone (ADH) pathway has been consid-
ered one of the leading pathophysiological drivers of HF, 
especially in advanced stages, when hyponatremia is more 
often observed [61]. Despite this assumption, the main clini-
cal trials targeting ADH system have yielded controversial 
results, mainly with non-significant improvements in hard 
endpoints [62].

In physiological conditions, ADH is produced by the 
supraoptic and paraventricular nuclei in the hypothalamus 
and then stored in the neurohypophysis. Its release mainly 
depends on osmotic imbalance, sensed by specific recep-
tors. In patients with HF, ADH secretion is also dependent 
on non-osmotic mechanisms, especially SNS and RAAS 
overactivation.

ADH acts on three types of receptors: V1a, V1b, V2 
[63]. V1a signaling is mediated by  Gq-PLC pathway, thus 
inducing vSMCs vasoconstriction, platelet aggregation, and 
myocyte modifications, such as activation of growth fac-
tors, synthesis of contractile proteins and positive inotropic 
effect. The binding of V1b causes an increased production of 
adrenocorticotropic hormone by the adenohypophysis [64]. 
Finally, V2 stimulation in the kidney increases the exposure 
of aquaporin 2 at the plasma membrane, which is in turn 
is responsible for a higher rate of free water reabsorption, 
plasma dilution, and hyponatremia [65].

Conivaptan is a non-selective, intravenous V1a and V2 
antagonist, whereas tolvaptan is a selective V2 antagonist 
which has been shown to ameliorate serum sodium levels in 
acute and chronic HF [66, 67]. Both drugs target free water 
retention and have been proposed as second-line diuretics 
[68], whilst conivaptan has further antiremodeling proper-
ties. Nevertheless, both these molecules failed to signifi-
cantly reduce mortality in clinical studies [69].

Natriuretic peptides

The natriuretic peptide system represents the main counter-
regulatory axis, with diuretic, natriuretic, vasodilative, and 
antifibrotic actions [70–72]. The main stimulus to the release 
of natriuretic peptides is the increase in cardiac wall ten-
sion. Atrial natriuretic peptide (ANP), produced mainly by 
atrial cardiomyocytes, is released following acute changes in 
atrial wall stress, whereas B-type natriuretic peptide (BNP) 
secretion is finely, transcriptionally regulated by a chronic 
overload of the left ventricle [73, 74]. Moreover, several 
cardiac (e.g. atrial fibrillation) or extracardiac co-factors 
(such as pulmonary comorbidities, renal function, age and 
body mass index) might affect circulating levels of natriu-
retic peptide [75].

Pro-ANP, cleaved by pre-pro-ANP, is a peptide precursor 
enzymatically processed by corin into the inactive fragment 

N-terminal (NT)-pro-ANP and into the active peptide ANP 
[76]. ANP release is promoted by a large number of damage 
systems, including endothelin, Ang-II, and ADH [77]. BNP 
is produced by the enzymatic cleavage of proBNP (derived 
from pre-proBNP) by corin and furin. BNP is released with 
the biologically inactive N-terminal fragment (NT-proBNP) 
in an equimolar fashion [78]. Both ANP and BNP can bind 
to two types of membrane receptors: natriuretic peptide 
receptor (NPR)-A, which is responsible for their biological 
actions, and NPR-C, which is involved in the internaliza-
tion and the degradation of natriuretic peptides. BNP can 
further bind to NPR-B [79]. NPR-A and NPR-B stimula-
tion increases the activity of guanylate cyclase (GC), which 
turns into an increase in cyclic guanosine monophosphate 
(cGMP) production and protein-kinase G activation [80]. 
Following protein kinase G activation, natriuretic peptides 
induce renal vasodilation, natriuresis, and diuresis via dila-
tion of the afferent and constriction of the efferent arteriole, 
reduce sodium-water reabsorption and inhibit RAAS and 
ADH signaling pathways. Other targets include the increase 
in parasympathetic stimulation and the blunting of sympa-
thetic activity, as well as the inhibition of fibroblasts, mac-
rophages, pro-inflammatory cytokines, and pro-hypertrophic 
stimuli [71, 72, 77].

C-type natriuretic peptide (CNP) is produced by pre-
proCNP following a double enzymatic cleavage in brain, 
endothelial cells, heart, fibroblasts, and macrophages [75, 81]. 
CNP binds to NPR-B and, by increasing cGMP levels, inhib-
its vSMCs proliferation, oxidized low-density lipoprotein  
accumulation in the arterial walls, endothelin release, phos-
phorylation of calmodulin kinase, and extracellular signal- 
regulated kinase [82].

Plasma levels of natriuretic peptides are dependent on 
both synthesis and clearance processes. NPR-C is the third 
isoform of natriuretic peptides receptors, whose bind-
ing determines the internalization of the ligand-receptor 
complex and the ligand degradation [83]. Neprilysin is a 
zinc-dependent endopeptidase, which is able to degrade 
all natriuretic peptides, although with a higher affinity for 
ANP than for BNP [84]. Neprilysin has also other substrates, 
including Ang-II, glucagon, and bradykinin [85].

Despite their important counterbalancing role, natriuretic 
peptides can fully oppose detrimental drivers only at ear-
lier stages of disease. Along with HF progression, multiple 
derangements in natriuretic peptide system occur, including 
a reduced expression of corin and furin leading to low bio-
logically active peptides, an increased dipeptidyl-peptidase 
IV activity causing the rise in circulating levels of truncated 
pro-BNP and BNP, a downregulation of NPR-A and NPR-
B, a desensitization of NPR-A/GC system and an increase 
NPR-C-mediated clearance [86].

The first attempt in targeting this system was to administer 
exogenous natriuretic peptides. Despite initial optimism, the 
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largest trial on nesiritide (a recombinant form of BNP) failed 
to show a difference in mortality or re-hospitalization rates 
versus placebo, and disclosed poor tolerability (e.g., hypo-
tension and worsening renal function), leading to approval 
withdrawal [87, 88]. More stable molecules have been devel-
oped and are currently undergoing clinical tests. M-ANP, a 
natriuretic peptide analogue, was shown to improve natriu-
resis and glomerular filtration rate as compared with endog-
enous ANP [89].

Many attempts have been made to test neprilysin inhibi-
tors in HF, but no molecule proved to be effective when used 
alone. This has been attributed to a blunt in Ang-II break-
down by reduced neprilysin activity, increasing Ang-II con-
centrations. Therefore, neprilysin inhibitors were first tested 
in combination with ACE inhibitors, as omapatrilat [90]. This 
combination proved harmful. In fact, both ACE and neprily-
sin are responsible for the degradation of bradykinin; hence, 
their concurrent inhibition led to the rise of bradykinin levels 
with increased risk of angioedema [91]. Conversely, the asso-
ciation of neprilysin inhibitor and ARB proved effective and 
safe, and represents the only available neurohormonal modu-
lator to date providing both antagonism of RAAS pathway 
and potentiation of the natriuretic peptide axis. The Prospec-
tive Comparison of ARNI with ACEI to Determine Impact 
on Global Mortality and Morbidity in Heart Failure (PARA-
DIGM) trial was the first study to demonstrate the prognostic 
benefits of a neprilysin inhibitor (sacubitril) combined with 
the ARB valsartan over enalapril in a large population with 
HFrEF [92]. Still, as assessed in the Prospective Compari-
son of angiotensin receptor–neprilysin inhibitor with ARB 
Global Outcomes in HF with Preserved Ejection Fraction 
(PARAGON-HF) trial, the use of sacubitril/valsartan missed 
the composite primary endpoint of reducing hospitalization 
and death in HFpEF [93].

Novel therapeutic targets

NO synthase and guanylate cyclase

NO is highly volatile molecule with a short half-life that 
mediates vasodilation in coronary and non-coronary districts 
and has positive effects on the myocardium [94]. Once NO 
is produced in the endothelium and in the endocardium, it 
spreads to the vSMCs and the myocardium and is respon-
sible for soluble GC activation [95]. The resulting cGMP 
causes a decrease in intracellular free calcium levels, pro-
moting relaxation, and is then degraded by phosphodiester-
ase type 5 [95–97]. In HF, NO production is significantly 
reduced because of multiple mechanisms including down-
regulation of endothelial NO synthase and inactivation by 
ROS, especially superoxide anions [98]. This is in turn 

responsible for vasoconstriction, increased muscular, and 
vascular stiffness and adverse remodeling [96, 99].

A broad range of molecules targeting the NO-GC system 
has been developed. Phosphodiesterase 5 inhibitors (such 
as sildenafil) reduce cGMP degradation [100]. Other drugs 
directly interact with the soluble form of GC and are classi-
fied into activators (cinaciguat) and stimulators (vericiguat 
and riociguat). GC activators target the oxidized, malfunc-
tioning, NO-unresponsive enzyme by mimicking NO itself. 
Conversely, GC stimulators act on the reduced, functioning 
isoform, enhancing soluble GC activity in the presence of 
the endogenous ligand [101]. Benefits of The SOluble Gua-
nylate Cyclase stimulatoR in heArT failurE patientS With 
REDUCED EF (SOCRATES-REDUCED) trial showed a 
reduction in NT-proBNP levels with vericiguat in patients 
with HFrEF [102, 103]. In the recent Vericiguat Global 
Study in Subjects with Heart Failure with Reduced Ejection 
Fraction (VICTORIA) trial, vericiguat reduced the compos-
ite end-point of death from any cause or hospitalization for 
HF compared to placebo among patients with HF at high 
risk of decompensation [104].

SGLT2 inhibitors

Sodium glucose cotransporter 2 (SGLT2) inhibitors were 
specifically designed for the management of type 2 diabetes 
mellitus, as they promote renal glucose excretion by inhib-
iting reabsorption [105]. Nonetheless, their effects go far 
beyond their role of glucose-lowering drugs, as they have 
been proved to be effective in the context of HFrEF, even in 
the absence of diabetes. Data from large randomized clini-
cal trials with empagliflozin (EMPA-REG, Empagliflozin, 
Cardiovascular Outcomes, and Mortality in Type 2 Diabe-
tes) [106] and dapagliflozin (DECLARE–TIMI 58, Dapa-
gliflozin and Cardiovascular Outcomes in Type 2 Diabetes) 
[107] demonstrated a reduction in hospitalization for HF, in 
cardiovascular and all-cause mortality, in atherosclerosis-
related events and in the progression of chronic kidney dis-
ease in large cohorts of diabetic patients. These data have 
been empowered by the results of the EMPEROR-Reduced 
(EMPagliflozin outcomE tRial in Patients With chrOnic 
heaRt Failure With Reduced Ejection Fraction) [108] and 
the DAPA-HF (Dapagliflozin in Patients with Heart Failure 
and Reduced Ejection Fraction) [109] trials, which demon-
strated a lower risk of cardiovascular death and HF hospi-
talization with empagliflozin and dapagliflozin as compared 
to placebo, irrespective of the presence of diabetes mellitus. 
Moreover, a slower decline in renal function was observed 
in those treated with empagliflozin. This may infer that the 
effects on cardiovascular outcomes are at least partially 
mediated by nephroprotection. As a support, the Dapagliflo-
zin in Patients with Chronic Kidney Disease (DAPA-CKD) 
[110] demonstrated that dapagliflozin reduced the risk of 
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worsening renal function or death from cardiovascular or 
kidney disease in patients with chronic kidney disease with 
and without type 2 diabetes mellitus.

The mechanisms underlying the beneficial effects of 
SGLT2 inhibitors in HF remain to be elucidated, although 
some hypotheses have been formulated. As recently reported, 
SGLT2 inhibitors reduce oxidative stress, inflammation, and 
fibrosis in the whole cardiovascular system, and mitigate 
glomerular hypertension, thus preventing shear stress-related 
renal damage [111–114]. Moreover, they reduced cardiac 
cytosolic  Na+ and  Ca2+ concentrations through inhibition 
of  Na+/H+ exchanger, promote weight loss by inducing a 
fasting-like state with increased production of ketones, an 
advantageous substrate for the failing heart [115]. Finally, 
SGLT2 inhibitors may blunt sympathetic activation, as they 
reduce renal and cardiac levels of tyrosine hydroxylase and 
norepinephrine, and their hypotensive effect is maintained 
regardless of renal function worsening [116].

Myocardial contractility

So far, inotropic agents have been predominantly employed 
in the setting of acute HF. Indeed, molecules most commonly 
used in clinical practice are burdened by a high rate of adverse 
effects, especially in end-stage patients, and their use should 
be limited to the shortest time possible. First-generation ino-
tropes (such as adrenergic agonists, e.g., norepinephrine) are 
affected by a relevant pro-arrhythmic burden, due to increased 
oxygen consumption and to the afterdepolarizations caused 
by calcium overload [117]. With these premises, they are not 
recommended in the absence of hypotension or hypoperfu-
sion [4]. Glycosides can be used also in the setting of chronic 
HF, even if they are not associated with improved survival 
[118]. Levosimendan mainly acts as a calcium-sensitizer, has 
a more favorable safety profile as compared with adrenergic 
agonists, and has been shown to have beneficial effects in 
acute HF [119]. Furthermore, encouraging results came from 
the Levosimendan Intermittent administration in Outpatients: 
effects on Natriuretic peptides in advanced chronic HEART 
failure (LION-HEART) trial, where the intermittent use of 
levosimendan in patients with advanced HFrEF was associ-
ated to a reduction in NT-proBNP levels and in the rate of 
hospitalization [120].

More recently, new molecules named “myosin motor acti-
vators” have been developed, the first-in-class drug being 
omecamtiv mecarbil. This drug enhances the ATPase activ-
ity of myosin, thus favoring the formation and stabilization 
of cardiomyocyte cross-bridges. This results in an increased 
force of contraction and in a prolongation of the systolic 
ejection time, without interfering in calcium transients nor in 
the velocity of contraction [121, 122]. As compared to “con-
ventional” inotropes, omecamtiv mecarbil improves systolic 
function without affecting the intracellular concentrations of 

cAMP and calcium, nor increasing oxygen consumption and 
ATP demand [123]. Phase II and III trials showed promising  
results in terms of increase in stroke volume and reduction  
in end-systolic and end-diastolic diameters. Recently, 
the GALACTIC-HF trial (A Double-blind, Randomized,  
Placebo-controlled, Multicenter Study to Assess the Efficacy 
and Safety of Omecamtiv Mecarbil on Mortality and Mor-
bidity in Subjects With Chronic Heart Failure With Reduced 
Ejection Fraction) has shown that use of omecamtiv mecar-
bil was associated with a lower incidence of a composite of 
a HF event or death from cardiovascular causes compared 
to placebo [124, 125].

Mitochondria and metabolism

The resting healthy myocardium drains 60–70% of energy 
from fatty acid oxidation, whereas energy is mostly obtained 
from glucose catabolism in post-prandial phase or during 
physical exercise [126]. Glucose and lipid metabolism are 
tightly inversely regulated in myocytes according to the 
Randle cycle [127]. A shift from free fatty acids to glucose 
utilization has been observed in HF [128]. This mecha-
nism plays an adaptive role, since free fatty acid oxidation 
requires 10–15% more oxygen to obtain the same ATP lev-
els than glucose. The reduction in peroxisome proliferator-
activated receptor (PPAR)-� leads to reduced a number and 
dimension of mitochondria and a reduced expression of pro-
teins involved in �-oxidation [129]. Moreover, the increased 
activity of AMP-kinase, a sensor for low-energy state, pro-
motes the expression of glucose transporters on the plasma 
membrane and the activity of phosphofructokinase-2, thus 
increasing glycolysis rate [130] (Fig. 4). Adrenergic acti-
vation leads to increased lipolysis from adipose tissue and 
reactive oxygen species (ROS) production, with an impair-
ment of cell respiration, an upregulation of mitochondrial 
expression of uncoupling proteins 2 and 3 and insulin resist-
ance [131, 132], finally inhibiting the metabolic switch in 
the heart.

PPAR-� antagonists might favor this glycolytic shift and 
improve myocardial energetics, but their clinical utility 
remains to be established [133]. Trimetazidine, a second-line 
antianginal drug, promotes a shift to glucose metabolism 
by inhibiting the last reaction of free fatty acid oxidation, 
catalyzed by acetyl CoA C-acyltransferase [134]. Growing 
evidence supports its efficacy in chronic HF, even if most of 
the available data come from meta-analyses of retrospective 
studies [135–137].

Mitochondrial function also relies on membrane sta-
bility, mainly dependent on cardiolipin and coenzyme 
Q10 [138, 139]. Elamipretide, a cardiolipin-stabilizer, 
has been first tested on a canine model of HF showing 
improvements in LVEF and reduction in circulating levels 
of NT-proBNP, tumor necrosis factor-� and C-reactive 
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protein. Although no significant reduction in biomarkers 
emerged from studies in humans, some positive effects on 
reverse remodeling were observed [140, 141]. Though, 
a phase-II clinical trial showed no improvement in left 
ventricular end-systolic volume after a 4-week treat-
ment [142]. Coenzyme Q10 promotes the synthesis of 
ATP in the mitochondria by participating in redox reac-
tions within the electron transport chain. Treatment with 
coenzyme Q10, studied in The Effect of Coenzyme Q10 
on Morbidity and Mortality in Chronic Heart Failure 
(Q-SYMBIO) study, was associated with a lower rate of 
mortality for both cardiovascular- and all-cause mortal-
ity and with a reduced rate of hospitalization. However, 
studies on larger cohorts are still lacking [143].

The impairment in cellular respiration is also asso-
ciated to enhanced oxidative stress and inflammation. 
Patients with chronic HF show higher levels of serum 
biomarkers associated with inflammation, including  
high-sensitivity C-reactive protein, interleukin-1β,  
interleukin-6, inteleukin-8, and tumor necrosis factor [144].  
An excess in ROS can modify highly expressed proteins 
in myocytes, including protein-kinases, myofilaments and 
other proteins involved in excitation–contraction coupling 
[145]. In a cohort of high-risk coronary artery disease 
patients, interleukin-1β blockade was associated with sig-
nificant reduction in ischemic events and cardiovascular  
mortality [146]. A post hoc analysisalso detected a reduc-
tion in the rate of hospitalization due to HF [147].

Treatments targeting hypertrophy and fibrosis

Beyond antagonists of renin–angiotensin–aldosterone sys-
tem and beta-blockers that affect cellular hypertrophy [148],  
current efforts are focusing on the anti-hypertrophic effects  
of molecules acting directly on the cardiomyocyte, targeting 
crucial signaling cascades that alter gene expression, protein 
function, and red149ox imbalance (Fig. 5). These agents include  
histone deacetylase inhibitors, a wide spectrum of pro- 
hypertrophic microRNAs and several other small molecules 
(such as rapamycin, inhibitors of Rho kinase) [149–151].

In contrast to the traditional view in which fibrosis is 
regarded as a secondary phenomenon, recent evidences 
indicate a primary role for cardiac fibroblast activity in myo-
cardial disease. Cardiac fibrosis is linked to cardiac dysfunc-
tion, increased risk of arrhythmia, and poor outcomes [152]. 
Despite the use of ACE inhibitors and MRAs, a residual 
fibrotic activity is still observed in HF. Novel antifibrotic 
agents are currently under investigation, specifically target-
ing connective tissue growth factors (e.g., TGF-� by pirfe-
nidone), galectin-3 (e.g., by antisense RNA), matrix metal-
loproteinases, and cell reprogramming via non-coding RNAs 
[153].

HFpEF: a therapeutic challenge

Unlike in HFrEF, neurohormonal antagonists did not reduce 
mortality in patients affected by HFpEF. However, when 

Fig. 4  Metabolic phenotype of 
heart failure. The reduction in  
peroxisome proliferator-activated 
receptor alpha (PPAR-� )  
leads to a decreased expres-
sion of enzymes for fatty acid 
oxidation. This in turn stimulates 
glycolysis and glucose uptake 
via the increase of adenosine 
monophosphate kinase. AMPK 
adenosine monophosphate 
kinase; CPT carnitine palmitoyl  
transferase; FA fatty acid; Glc 
glucose; GLUT glucose trans-
porter; MCAD medium-chain 
acyl-CoA dehydrogenase; PFK 
phosphofructokinase; PGC 
peroxisome proliferator-activated 
receptor gamma coactivator 
1-alpha; PPAR peroxisome 
proliferator-activated receptor; 
RXR retinoid-X receptor
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excluding cohorts from Georgia and Russia in the Treat-
ment of Preserved Cardiac Function Heart Failure With an 
Aldosterone Antagonist (TOPCAT) trial, the use of spirono-
lactone significantly reduced mortality in this setting [154]. 
The finding that aldosterone levels are increased in HFpEF 
may provide a pathophysiological basis for the use of MRA 
in HFpEF [155].

To date, treatment of risk factors and underlying disease 
is the only beneficial therapeutic approach for patients with 
HFpEF. Notably, tafamidis, a pharmacological transthyretin- 
stabilizer, improved outcome of patients affected by  
transthyretin-related cardiac amyloidosis, a progressively 
more recognized clinical phenotype of HFpEF [156].

Future perspectives

Novel therapeutic options are emerging for the treatment 
of HF. Some of them address well-known pathophysiologi-
cal mechanisms, such as neurohormonal deregulation and 
the NO-GC-cGMP system; others, such as SGLT2 inhibi-
tors, hold effects on the cardiovascular system that are still 

to be fully clarified. Several emerging approaches target 
cardiac metabolism, inflammation, and remodeling. Spe-
cific transient receptor potential cation channel subfamily 
V (TRPV)-4 blocker, GSK2798745, has shown promising 
results in a model of chronic HF, possibly by interfering with 
transforming growth factor (TGF) β-1-induced activation of 
myofibroblasts [157].

In the future of HF therapy, stem cells, micro-RNA, 
and epigenetics are likely to become novel cornerstone 
and to allow a tailored approach. Micro-RNAs have been 
thoroughly studied in the processes of hypertrophy, apop-
tosis, and fibrosis. As an example, micro-RNAs-34 fam-
ily encloses many subtypes of micro-RNAs whom are 
involved in fibroblast survival and growth factors secretion 
(i.e., micro-RNA-21) [158] and in the activity of calmo-
dulin kinase (i.e., micro-RNA-1) [159]. As shown in the 
Randomized Clinical Trial of Intravenous Infusion Umbili-
cal Cord Mesenchymal Stem Cells on Cardiopathy (RIME-
CARD), the use of umbilical cord stem cells was safe in 
patients with stable HFrEF under optimal medical treatment, 
and improvements in LVEF, functional status and quality of 
life were observed [160].

Fig. 5  Main molecular pathways for cardiac hypertrophy. Hyper-
trophy may be the consequence of both hemodynamic (chronic 
overload) and non-hemodynamic factors, namely neuroendocrine 
systems derangement and reduction in oxygen myocardial delivery. 
Ang angiotensin; AR adrenergic receptor; AT angiotensin receptor; 
DAG diacyl-glycerol; EGFR epidermal growth factor receptor; ERK 
extracellular signal-regulated kinase; ET endothelin; ET-A endothe-
lin receptor A; H2O2 hydrogen peroxide; HDAC histone deacetylase; 

HIF hypoxia inducible factor; IKK inhibitor of nuclear factor kappa-B 
kinase; IP3 inositol triphosphate; JNK c-Jun N-terminal kinase; MEF 
myocyte enhancer factor; NE norepinephrine; NFAT nuclear factor of 
activated T-cell; Nox NADPH oxidase; PDGF-R receptor of platelet-
derived growth factor; PKC protein kinase C; PKD protein kinase D; 
PLC phospholipase C; Src Rous sarcoma protooncogene; TR thyroid 
receptor; Trx1 thioredoxin 1; VEGF vascular endothelial growth fac-
tor
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Conclusions

HF is a complex, multisystemic syndrome with a dramatic 
social and economic impact. Since decades, HF therapeu-
tics have been following the interpretative pathophysio-
logical models. After initial strategies targeting inotropism 
and congestion, and neurohormonal antagonism address-
ing dysregulation of peripheral feedbacks, novel thera-
peutic approaches have been recently developed, directed 
to the heart muscle. Drugs acting at a second-messenger 
levels, such as vericiguat, as well as other drugs acting on 
myocardial energetics and mitochondrial function, includ-
ing elamipretide or omecamtiv mecarbil may then repre-
sent in the next future some additive, synergistic tools to 
improve patient outcome. Effective, evidence-based drugs 
from the fields of stem cells, micro-RNAs, and epigenetic 
remodulation are awaited in the next decades. In the next 
future, individual profiling and dissection of the activation 
of specific pathophysiological pathways of organ damage 
may represent the base for a tailored treatment of HF.
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