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Abstract: Tryptophanyl-tRNA synthetase (WRS) is an essential enzyme that catalyzes the ligation
of tryptophan (Trp) to its cognate tRNAtrp during translation via aminoacylation. Interestingly,
WRS also plays physiopathological roles in diseases including sepsis, cancer, and autoimmune and
brain diseases and has potential as a pharmacological target and therapeutic. However, WRS is still
generally regarded simply as an enzyme that produces Trp in polypeptides; therefore, studies of
the pharmacological effects, therapeutic targets, and mechanisms of action of WRS are still at an
emerging stage. This review summarizes the involvement of WRS in human diseases. We hope that
this will encourage further investigation into WRS as a potential target for drug development in
various pathological states including infection, tumorigenesis, and autoimmune and brain diseases.

Keywords: tryptophanyl-tRNA synthetase; sepsis; cancer; Alzheimer’s disease; IFN-γ; kynurenine
pathway; tryptophan metabolism

1. Introduction

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate amino acids to
cognate tRNAs in protein synthesis. The catalytic activities of ARSs play essential roles in
maintaining cell viability; however, they are also versatile and multifunctional proteins
regulated by diverse control mechanisms [1–4]. Several features distinguish eukaryotic
ARSs from their prokaryotic homologs. The addition of extra domains and sequence
adaptations contribute to cellular functions, including cytokine activity associated with
inflammation, apoptosis, angiogenesis, and tumorigenesis in mammalian synthetases [5,6].
This review focuses on the roles of eukaryotic tryptophanyl-tRNA synthetase (WRS) in
pathological states and its clinical potential as a pharmacological target.

Elevated levels of WRS are expressed in the bovine pancreas, and its various truncated
forms are secreted into bovine pancreatic fluid. Thus, an important role of WRS beyond
protein translation has long been suspected [7–9]. Eukaryotic WRS exists as a free cytosolic
enzyme that self-aggregates to form large homo-oligomers, rather than associate with a
multi-tRNA synthetase complex (MSC). This property of WRS has been identified in higher
eukaryotes, but not in prokaryotes [10,11].

Evolutionarily, ARSs have added new domains that have no apparent connection
with aminoacylation. Human WRS has a unique N-terminal extension domain of about
150 amino acids that is not present in its prokaryotic counterpart. The extension domain
is composed of a vertebrate-specific extension of about 50 amino acids, also known as
WHEP domain, named after initials of (underlined) WRS, histidyl-tRNA synthetase (HRS),
and glutamyl-prolyl-tRNA synthetase (EPRS). WHEP domain includes a specific helix-
turn-helix motif and is involved with diverse interactions with other proteins [5,6,12–14]
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(Table 1). Elimination of WHEP domain does not markedly inhibit in vitro aminoacyla-
tion activities of several synthetases, indicating that the WHEP domains themselves may
provide a non-canonical function unrelated to aminoacylation [15,16].

Among 20 ARSs, EPRS and WRS have similarities, in that they have WHEP domains
and are regulated by interferon (IFN)-γ. Human EPRS contains three WHEP domains
involved in the formation of the IFN-γ activated inhibitor of translation (GAIT) complex,
and controlling the translation of vascular endothelial growth factor A (VEGFA) and
ceruloplasmin (Cp) [17,18]. Notably, WRS is the only ARS whose expression is induced
by IFN-γ [19–23], the action of which is supposedly mediated by WHEP domain. WRS is
also rapidly secreted from immune cells in response to both bacterial and viral infections,
suggesting a critical role in inflammatory response. In contrast, other ARSs were not
secreted from monocytes upon in vitro microbial infections [24,25].

Full-length WRS (FL-WRS) is alternatively spliced or truncated into mini-WRS (residues
48–471). Proteolytic digestion of WRS by extracellular proteases also produces the N-
terminally truncated variants T1-WRS (residues 71–471) and T2-WRS (residues 94–471) [20,
22,26]. The expression of these truncated variants is stimulated by IFN-γ, which plays a
central regulatory role in anti-angiogenesis [27–29].

Understanding of the biological functions of truncated WRS variants in vascular home-
ostasis [26,30–32] as well as the structure and properties of secreted WRS has progressed
significantly [11,20,21,24,25,33]. Numerous studies have associated WRS with infection,
cancer, autoimmunity, and brain diseases. Considering that WRS is secreted during bacte-
rial and viral infections, it has been recently identified as a promising biomarker in patients
with sepsis [34]. This review summarizes the physiopathological roles of WRS that have
been reported to date and discusses WRS as a potential therapeutic target for human
pathologies, especially infection, cancer, autoimmune, Alzheimer’s disease (AD).

Table 1. Schematic structure of ARSs containing WHEP domain. EPRS and MRS are components of the multi-tRNA
synthetase complex (MSC) and the cell regulatory activities are controlled by specific phosphorylation [5,35–39]. WRS, HRS,
and GRS exist in a free form and are induced under various pathological conditions [12,40–44]. The regulatory activities
of WRS are controlled by proteolytic cleavage. The secreted WRS are cleaved and produce WRS variants such mini-, T1-
and T2-WRS. GST, Glutathione S-transferase; CD, catalytic domain; ERS, glutamyl-tRNA synthetase; PRS, prolyl-tRNA
synthetase; EPRS, glutamyl-prolyl-tRNA synthetase; MRS, methionyl-tRNS synthetase; HRS, histidyl-tRNA synthetase;
GRS, glycyl-tRNA synthetase.
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RNA and protein expression data generated by the Human Protein Atlas project
indicates that WRS is abundantly expressed in monocytes (http://www.proteinatlas.org/
ENSG00000140105-WRS/blood, accessed on 17 December 2020). Monocytes are early
responders to pathogens and maintain vascular homeostasis in acute infections [47]. Like
proteins that specifically act on monocytes, WRS is abundantly expressed during differ-
entiation from monocytes to monocyte-derived macrophages (MDMs) or dendritic cells
(DCs) [48,49]. In addition, microbial infection and IFN-γ stimulation causes monocytes,
but not B, T, or natural killer (NK) cells, to produce and secrete WRS [19,24,25]. Classical
(CD14+CD16−), intermediate (CD14+CD16+), and non-classical (CD14−CD16+) monocytes
have been characterized and relative ratios (%) of monocyte subsets have been determined
to aid in understanding the pathogenesis of infectious and other inflammatory disorders.
WRS is more heavily expressed in intermediate and non-classical monocytes compared
to the classical subset (Figure 1A). At the early stages of infection, FL-WRS is secreted
from monocytes and directly binds to TLR4-MD2 complexes on macrophages to activate
phagocytosis [24]. Initial FL-WRS secretion is IFN-γ-independent and acts as a warning
to prime innate immunity. Similar to these pro-inflammatory functions of FL-WRS, clas-
sical monocytes also play a crucial role in phagocytosis during the initial inflammatory
response [50].

Figure 1. WRS as a biomarker of immune response during infection. (A) Expression levels of WRS transcripts in various
blood cell types. The expression of WRS is enhanced in intermediate and non-classical monocytes. (B) Kinetics of WRS
and three monocyte subsets (classical, intermediate, and non-classical) in inflammatory responses caused by infection. The
secretion of WRS increased consistently with an increase in the numbers of intermediate and non-classical monocytes.

Non-classical monocytes have been widely viewed as being anti-inflammatory in or-
der to maintain vascular homeostasis. Intermediate and non-classical monocytes gradually
increase and expand in infectious diseases such as sepsis, in which they constitute ~50% of
all monocytes [47,51,52]. Pathological conditions such as sepsis and septic shock are char-
acterized by the elevated expression of proteases such as fibrin, neutrophil elastase (NE),
and matrix metalloproteinases (MMPs), which simultaneously produce the mini-WRS,
T1-WRS, and T2-WRS truncated variants [22,26,53,54]. Anti-inflammatory pathways are
concurrently activated at this time, leading to the release of anti-inflammatory cytokines
that dampen and, ultimately, terminate the inflammatory response. With the gradual
increase in intermediate and non-classical monocytes, a secondary increase in WRS ex-
pression is supposed to be occurred to maintain homeostasis (Figure 1B). As the truncated
variants have anti-inflammatory and antiangiogenic functions [20,26,30], it is critical to
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distinguish them from FL-WRS and to evaluate their kinetics during the inflammatory
phase. Furthermore, understanding the pathological roles of the truncated variants in
systemic inflammatory diseases might contribute to their potential as a new therapeutic
target.

2.2. WRS as a Prognostic Biomarker in Sepsis

Sepsis is characterized by an overwhelming systemic inflammatory reaction to mi-
crobial infection that can lead to severe sepsis and septic shock [55]. Early recognition of
sepsis is critical for timely and effective intervention [56]. However, biomarkers that reflect
the severity of infection in patients with sepsis have not yet been identified. Although
C-reactive protein (CRP) is a traditional biomarker that is elevated in inflammatory states,
it has low specificity for diagnosing sepsis [57].

Consistent with previous findings of abundant WRS secretion upon microbial infec-
tion in vitro and in vivo [24,25], high levels of WRS are detected in the serum of critically
ill patients with sepsis. Choi et al. recently reported that WRS has clinical value for de-
tecting sepsis and predicting mortality among critically ill patients with sepsis. The areas
under the receiver operating characteristic curves (AUROCs) for sepsis discrimination
with WRS, procalcitonin (PCT), CRP, and IL-6 are 0.864, 0.727, 0.625, and 0.651, respec-
tively [34], indicating that WRS has better predictive value than other clinical factors of
sepsis (Figure 2A).

Figure 2. Non-canonical physiopathological roles of WRS. (A) Secreted WRS as a sepsis biomarker. Secreted WRS is
a potential biomarker not only for the early detection of sepsis but also for predicting 28-day mortality. (B) Different
angiostatic activities of each WRS variant in angiogenesis. Mini-, T1-, and T2-WRS have antiangiogenic effects that may
be related to metastasis in tumor microenvironments. (C) Intracellular oligomerized WRS with NFTs and extracellular
plaque-like WRS, along with Aβ plaques, are detected in AD.
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Moreover, existing diagnostic markers of sepsis were only able to detect bacterial
sepsis. Among several markers of inflammation and sepsis, PCT is used to identify bacterial
infections, but also has the disadvantage of not identifying viral infections. [58,59]. Besides
higher sensitivity towards sepsis discrimination of WRS, another advantage of WRS is that
it can be used to diagnose sepsis regardless of whether the causal infection is bacterial,
fungal, or viral.

Furthermore, biomarkers are needed that can accurately predict mortality due to
severe sepsis and septic shock. PCT and CRP levels do not provide statistically significant
prediction of 28-day mortality in sepsis patients; however, WRS is significantly associated
with 28-day overall mortality among patients with sepsis in intensive care units [34].
Based on these clinical results, WRS secretion at early infection stages is crucial in the
recognition and phagocytosis of microbes, which are the main roles of classical monocytes.
Sepsis gradually worsens and WRS, which is synthesized de novo and secreted upon IFN-γ
activation, is likely to function similarly to non-classical monocytes that are involved in
pathophysiology associated with anti-inflammatory response and blood vessel remodeling.
Secreted WRS is a sensitive and accurate biomarker not only for discriminating sepsis but
also for predicting mortality among critically ill patients.

3. WRS as a Therapeutic Target in Cancer
3.1. WRS as a Target for Anti-Angiogenic Therapy

Several ARSs have been identified as secretory cytokines that control angiogenesis
and immune responses in the tumor microenvironment. Fragments of the closely related
mammalian tyrosyl-tRNA synthetase (YRS) and WRS are known to regulate angiogene-
sis [60]. Native FL-WRS does not affect angiogenic signaling; however, mini-WRS, T1-WRS,
and T2-WRS, are all angiostatic factors [26,30,32,60,61]. Expression of the truncated WRS
variants, like that of many angiostatic factors, is induced by IFN-γ. In particular, T2-WRS
has proven potently antiangiogenic in several cell-based assays of vascular endothelial
growth factor (VEGF)-induced Matrigel angiogenesis in vitro and in vivo. T2-WRS is
a potent inhibitor of retinal angiogenesis in neonatal mice, where it localizes to retinal
blood vessels [30]. Moreover, the inhibitory activity of T2-WRS in endothelial cells (ECs)
in vitro abrogates cellular responses to flow-induced fluid shear stress, including endothe-
lial nitric-oxide synthase (eNOS), extracellular signal-regulated kinase (ERK1/2), and Akt
activation [31]. The eight-residue D382-TIEEHR-Q389 sequence, which is located within the
tRNA anticodon-binding (TAB) domain, plays a crucial role in the angiostatic activity of the
truncated variants. This implies that WRS uses the same domain for both antiangiogenic
receptor binding and classical protein synthesis [2,61].

Vascular endothelial (VE)-cadherin is a calcium-dependent adhesion molecule that
is selectively expressed at EC intercellular junctions and is essential for normal vascular
development. T2-WRS binds at EC intercellular junctions and VE-cadherin has been iden-
tified as a receptor for T2-WRS. The binding of T2-WRS to human umbilical vein ECs
(HUVECs) inhibits VEGF-induced ERK activation and EC migration [32]. Adam et al. sug-
gested that human WRS manifests antiangiogenic activity only when a eukaryote-specific
N-terminal extension is removed, due to steric hindrance that blocks Trp2 and Trp4 of
VE-cadherin from accessing the active site pocket [62]. T2-WRS contains a Rossmann fold
nucleotide-binding domain that is conserved throughout all prokaryotic and eukaryotic
WRSs. FL-WRS, mini-WRS, and T1-WRS variants retain aminoacylation activity, whereas
T2-WRS does not [30]. Thus, T2-WRS may apparently be produced only to inhibit angiogen-
esis without contributing to aminoacylation (Figure 2B and Table 2). Proteases including
fibrin, NE, and MMPs are abundant in tumor microenvironments or at sites of infection,
where they produce T2-WRS by cleaving the N-terminus. This could explain why WRS
secreted by IFN-γ activation is truncated to T2-WRS, and its role in inhibiting angiogenesis
is of great importance in clinical approaches targeting WRS.
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Table 2. Schematic structure and angiostatic activity of human WRS variants. The Rossmann fold (RF) and anticodon
binding domain (ABD) are well conserved in all WRS variants. The eukaryotic-specific extension (ESE) is common in
eukaryotic WRS. Human full-length (FL)-WRS has a vertebrate-specific extension (VSE), also known as WHEP domain. The
aminoacylation or angiostatic activities of WRS variants are indicated in +/−.

WRS Variants Schematic Structure Aminoacylation Activity Angiostatic Activity

FL-WRS
1
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ARS expression profiles can be a useful prognostic tool for cancers, as they corre-
late with overall patient survival in each cancer type. WRS is dysregulated in different
cancers, including ovarian, cervical, colorectal, oral squamous cell carcinoma (OSCC),
uveal melanoma (UM) and pancreatic cancers [63–68]. In ovarian cancer, WRS protein
levels were up-regulated in highly malignant clear cell adenocarcinoma when compared
with mucinous ovarian adenocarcinoma [63]. The expression level of WRS is increased in
cervical carcinoma tissue when compared with normal tissue [64]. WRS is overexpressed
in OSCC tissues when compared with adjacent normal tissues. Importantly, WRS levels
are significantly higher in tumor cells from metastatic lymph nodes than in primary tumor
sites [65,69]. Bioinformatics analysis based on Gene Expression Omnibus (GEO) database
showed that WRS expression in UM metastatic cancer was significantly higher than that in
non-metastatic group. Kaplan-Meier analysis based on The Cancer Genome Atlas (TCGA)
database showed that high WRS expression was associated with lower survival [66]. Most
cancer-associated mortality is due to tumor cell metastasis to other organs. WRS is ex-
pressed abundantly in patients who did not relapse after surgery for triple-negative breast
cancer (TNBC), when compared with those who did [70]. Moreover, low WRS expression
is associated with an increased risk of lymph node metastasis and reduced survival among
patients with colon cancer [68].

Tumor cells metastasize via lymphatic or hematogenous dissemination. Although lym-
phatic metastasis can occur via extant vessels, evidence supports the notion that metastasis
is significantly improved when lymphatic vessel density increases due to lymphangio-
genesis. For example, VEGF-C stimulates the growth of lymphatic endothelium and is
overexpressed in breast cancer cells. Stimulation by VEGF-A and -C is also associated
with lymphatic vessel formation and sentinel node metastasis [71–73]. WRS are overex-
pressed at stages of cancer metastasis and T2-WRS has a potent inhibitory effect against
VEGF-induced vessel formation. However, whether the angiostatic activity of T2-WRS is
associated with lymphangiogenesis during metastatic progression remains unknown.

The truncated variants are antagonistic in the control of angiogenesis and immune
stimulation and has potential as a therapeutic target for cancer. In contrast, FL-WRS
shows the opposite function compared to the truncated variants, suggesting that caution
is needed when interpreting the relationship between FL-WRS and its truncated variants.
Furthermore, the targets of each truncated WRS variant need to be validated and their
effectiveness as an immuno-oncology target should be confirmed.

4. Pathological Role of WRS in Alzheimer’s Disease

Alzheimer’s disease (AD) is an age-dependent neurodegenerative disorder and the
most common cause of dementia [74]. It is characterized by neurofibrillary tangles (NFTs)
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composed of paired helical filaments and extracellular senile plaques containing aggre-
gated amyloid fibrils and non-amyloid components in the brain [71]. Neither an effective
treatment nor a biochemical drug for AD is currently available.

Neuronal cell death triggers the release of cytoplasmic proteins, some of which interact
with Amyloid-β (Aβ). Specifically, glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
has been shown to interact with neurodegenerative disease-related proteins including β-
amyloid precursor protein (AβPP). Aβ induces disulfide bond formation and aggregation
of GAPDH, possibly due to the formation of neurotoxic aggregates in AD [75–78]. The
amount of GAPDH disulfide bonding is increased in detergent-insoluble extracts from
patients with AD when compared with age-matched controls [79]. Interestingly, bovine
WRS forms complexes with GAPDH. This complex formation between WRS and GAPDH i)
does not influence aminoacylation activity and ii) predominantly involves the dispensable
N-terminal domain of WRS [72]. The tendency of mammalian WRS to self-aggregate
has been observed by electron microscopy, small-angle X-ray scattering, and biochemical
experiments [10,73,74]. Oligomeric WRS is found in cytotoxic fibrils and extracellular
plaque-like WRS aggregates detected in AD have features similar to extracellular senile
plaques and NFTs (Figure 2C). Electron microscopy has shown intensive fibril formation
with a synthetic N-terminal peptide of WRS, corresponding to residues Ser32 to Tyr50,
whereas fewer and less organized fibrils were formed by the C-terminal peptide (Glu414 to
Val437) [11].

Tryptamine is an inhibitor that competes with Trp for binding to the WRS active
site [75]. The expression of WRS is decreased in the cytoplasm and elevated in the detergent-
insoluble “cytoskeleton” fraction of tryptamine-treated human neuronal cells. Moreover,
about three-fold higher WRS immunogold reactivity was associated with NFTs than with
the cytoplasm of tryptamine-treated human neuronal cells [74]. Paley et al. reported
in tryptamine-treated cells that WRS is secreted into the extracellular space as either
a free protein or within vesicles extending from the cytoplasm and then pinched off
from the plasma membrane. Extracellular vesicles fuse in congophilic WRS+ plaques in
tryptamine-treated cultures and in the brain in AD. Prominent WRS immunoreactivity is
associated with plasma and the vesicle membranes of satellites and degenerated neurons
in the brain with AD [76]. Biochemically purified bovine WRS is highly susceptible to
aggregation [10] and recombinant human WRS and N-terminal synthetic peptides self-
assemble in fibrils [11]. These findings provide a new perspective on the versatility of
WRS functions and indicate that WRS is involved in the pathology of AD. Therefore,
further studies are needed to clarify the relationship between human WRS and AD and to
investigate whether WRS could be a novel therapeutic target, in particular by focusing on
anti-WRS therapy to prevent or hinder the clinical progression of AD.

5. Immunological Role of WRS in Trp Metabolism
5.1. Increased Trp Production by WRS in Cancer Cell

Tryptophan (Trp) is an essential amino acid that is important for cell survival and pro-
liferation. Indoleamin-2,3-dioxygenase (IDO) is the initial and rate-limiting enzyme for Trp
degradation through the kynurenine pathway (KP). Trp catabolism suppresses antitumor
immune responses in pathological states such as cancer [80,81]. IFN-γ enhances expression
of IDO as well as WRS. Both IDO and WRS are involved in regulating the immune response
by modulating Trp metabolism. IFN-γ induces WRS to increase Trp uptake into cells
through a process that has high affinity and selectivity for Trp [82]. Consistent with this,
Adam et al. reported that Trp depletion mediated by IDO1 and tryptophan-2,3-dioxygenase
(TDO2) upregulates WRS expression to increase Trp production in cancer cells. Due to
WRS mediated-Trp synthesis, cancer cells are thought to maintain protein synthesis and
proliferate despite low Trp levels [83]. The depletion of Trp induced by IDO up-regulation
results in specifically inhibited T cell proliferation, thus facilitating tumor escape from
immune surveillance. Additionally, increased WRS expression and WRS-mediated Trp
production directly facilitate cancer cell proliferation and survival, implying that both
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IDO and WRS are associated with immune evasion by cancer cells. A new approach to
controlling Trp production by WRS might therefore resolve the redundancy of Trp metabo-
lites in cancer immunotherapy. However, rather than pathological role of WRS acting on
cancer itself, the involvement and regulation of WRS in tolerogenic immune response and
autoinflammatory disease are prominent topics of interest in the context of therapeutics.

5.2. Implications of Increased WRS in Tolerogenic Immune Response

Under healthy conditions, Trp-degrading activity is abundant in the lungs, intestines,
and particularly in placental tissues [84]. Notably, WRS transcripts are also abundantly
expressed in placenta and lung tissues, mostly known as immune privileged sites (https:
//www.proteinatlas.org/ENSG00000140105-WARS/tissue, accessed on 17 December 2020).
The importance of Trp depletion in the placenta is emphasized in maintaining immune
privilege to create an environment that suppresses T cell activity and defends itself against
rejection [85,86]. The expression of IDO1 and TDO2 is positively correlated with WRS,
which in turn is significantly correlated with the expression of T cell markers. Recombinant
soluble cytotoxic T lymphocyte antigen-4 (CTLA-4-Fc) is clinically effective for suppressing
T cell activation in autoimmune diseases such as rheumatoid arthritis (RA). The expression
of IDO and WRS in immune cells, such as DCs and CD4+ T cells is increased by CTLA-4-Fc.
Notably, CD8+ T cells from CTLA-4-Fc-treated peripheral blood mononuclear cells (PBMCs)
express increased levels of WRS but not IDO, suggesting that WRS-mediated regulation
and IDO are involved in the immune tolerance mechanism of CTLA-4 [87]. Overexpression
of WRS in T cells from patients with RA is apparently related to the pathogenesis of this
disease. Although IDO is overexpressed in DCs in the synovial joints of patients with RA,
IDO+ DCs do not have sufficient immunosuppressive ability when WRS is overexpressed
in T cells [88–90]. The activity of IDO is decreased, whereas WRS expression is increased in
T cells from patients with immune thrombocytopenia (ITP) [91] and Graves’ disease [92],
which are autoimmune disorders that result in platelet destruction and hyperthyroidism,
respectively.

The question remains as to whether WRS, which is specifically overexpressed in T
cells in patients with autoimmune diseases, indirectly affects Trp metabolism or whether
WRS is a cause of autoimmune diseases as a result of its direct involvement in the immune
tolerance of T cells. Ongoing clinical trials have shown that IDO inhibitors are well tolerated
in cancer, systemic diseases, and central nervous system disorders targeting the pathogenic
KP. Nonetheless, results using monotherapy have been somewhat limited and need an
additional emerging target to overcome IDO redundancy. Increased WRS expression is
likely to act as a pathological factor, not only in the tumor microenvironment, but also in Trp
metabolism in autoimmune diseases such as RA. The identification of WRS as a biomarker
and the development of selective WRS inhibitors might help improve therapeutic outcomes
when combined with IDO inhibitors.

6. Conclusions and Perspectives

The various features that distinguish eukaryotic WRS from prokaryotic WRS or other
ARSs suggest that WRS has evolutionarily acquired diverse functions that are closely
associated with human disease. Human WRS (hWRS) shows great potential as a suitable
drug target, having non-canonical functions that underlie its physiopathological roles in
human diseases, including infection, cancer, and neurodegenerative diseases (Figure 2).
Upon infection, hWRS is promptly secreted from monocytes for the priming of innate
immunity [24]. Secretory hFL-WRS acted as a therapeutic immune-stimulatory agent and
showed a promising potential as a novel biomarker for diagnosis of sepsis [34]. Moreover,
alternatively spliced and truncated variants, including mini-WRS, T1-WRS, and T2-WRS,
exhibit anti-angiogenic and anti-inflammatory properties. Each truncated WRS variant
is likely to exert its own specific biochemical effect for the maintenance of homeostasis
in pathological states. hWRS, together with oligomerized plaques, contributed to the
pathogenesis of Alzheimer’s disease.

https://www.proteinatlas.org/ENSG00000140105-WARS/tissue
https://www.proteinatlas.org/ENSG00000140105-WARS/tissue
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The hWRS research field has extended from basic research to antibody and diagnostic
development. However, the development of hWRS-targeted therapeutics remains a chal-
lenge. Above all, sensitive analytical methods are required to distinguish each WRS variant,
owing to their different mechanism of action and pathological roles. Subsequently, the
therapeutic effects acting on the hWRS target sites can be easily and accurately monitored.
Achieving this goal will lead a progressive development in the field of hWRS-targeted
therapeutics. Currently, JW Bioscience, a company, is actively developing WRS diagnostic
kits for sepsis and the products are undergoing clinical trials. Although significant progress
has been made in the research on hWRS as a therapeutic target, a qualitative study is
required to determine the unknown features of ARS variants in various diseases.
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